
N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 1 of 6

Doc No: N3346=12-0036

Date: 2012-01-14

Author: Pablo Halpern

 Intel, Corp.

 phalpern@halpernwightsoftware.com

Defect Report: Terminology for Container Element Requirements -
Rev 1

Contents

Document Conventions .. 1

National Body comments and issues .. 1

Changes from N3301 ... 1

Description of Defect ... 2

Proposed Resolution (formal wording) .. 2

Acknowledgements ... 6

References ... 6

Document Conventions

All section names and numbers are relative to the April 2011 FDIS, N3290.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

National Body comments and issues

This defect report describes an omission in N3173, which resolved comment US 115 to the July,

2010 FCD. The proposed wording in this paper interacts with the resolution of LWG 2033.

The wording here assumes that the resolution of LWG 2033 has been applied.

Changes from N3301

 Added the term default-insertion to replace value-initialization in the WP.

 Added the term Erasable to replace Destructible in the containers section.

 Fixed typos

 Added value_type requirements for associative and unordered containers.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3290.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf
http://lwg.github.com/issues/lwg-active.html#2033

N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 2 of 6

Description of Defect

Adoption of N3173 corrected the misuse of the terms CopyConstructible and

MoveConstructible and the phrase “constructible with args” in the containers section of the

FCD. Unfortunately, the paper missed a few incorrect uses of CopyConstructible and failed to

correct similar misuses of the terms DefaultConstructible and Destructible. These errors

persist now in the IS and should be corrected by a TC.

The nature of the terminology misuse is that elements of a container are never constructed or

destructed directly within the container (except in the case of array), but rather are

constructed by calling the construct member function of the container’s allocator and

destructed by calling the destroy member function of the container’s allocator. The allocator

is not required to call the element’s constructor with exactly the list of arguments supplied to

construct. The scoped_allocator_adaptor is an example of an allocator that modifies

the construct argument list before calling the element’s constructor. Thus, saying that a

container’s value_type is DefaultConstructible is neither necessary nor sufficient for

specifying the requirements on that type. The proposed wording below defines precise

replacements for the terms DefaultConstructible and Destructible in the containers section just

as N3173 did for CopyConstructible and MoveConstructible. The wording also replaces any

incorrect uses of DefaultConstructible and Destructible with the new terms and corrects some

remaining incorrect uses of CopyConstructible.

Proposed Resolution (formal wording)

Note to the Editor: It is probably easiest to apply the PR of LWG 2033 to the WP before

applying these changes, since some of the global search-and-replace will affect text in LWG

2033.

1. Modify the first row of Table 96 in section 23.2.1 [container.requirements.general] as

follows:

Expression Return Type Operational

Semantics

Assertion/note

pre-/post-condition

Complexity

X::value_type T Requires: T is

DestructibleErasable from X
(see [container.requirements.general],

below)

compile time

Note to the Editor: The reference to [container.requirements.general] specifically refers to

paragraph 13, but I understand that paragraph-level references are not used in the standard.

2. Add a thee new bullets to 23.2.1 [container.requirements.general], paragraph 13 as follows:

Given a container type X having an allocator_type identical to A and a value_type identical to T and

given an lvalue m of type A, a pointer p of type T*, an expression v of type (possibly const) T, and an rvalue rv

of type T, the following terms are defined. (If X is not allocator-aware, the terms below are defined as if A were

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf
http://lwg.github.com/issues/lwg-active.html#2033

N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 3 of 6

std::allocator<T>) – no allocator object needs to be created and user specializations of

std::allocator<T> are not instantiated:

— T is DefaultInsertable into X means that the following expression is well formed:

allocator_traits<A>::construct(m, p);

— An element of X is default-inserted if it is initialized by evaluation of the expression

allocator_traits<A>::construct(m, p);

where p is the address of the uninitialized storage for the element allocated within X.

One could argue that the terms ValueInsertable and value-inserted would be more consistent

with the term value-initialized which they replace. However, I think it is easier to understand

the terms DefaultInsertable and default-inserted because they typically invoke the default

constructor.

— T is CopyInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, v);

— T is MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, rv);

— T is EmplaceConstructible into X from args, for zero or more arguments, args, means that the

following expression is well-formed:

allocator_traits<A>::construct(m, p, args);

— T is Erasable from X means that the following expression is well formed:

allocator_traits<A>::destroy(m, p);

[Note: A container calls allocator_traits<A>::construct(m, p, args) to construct an element

at p using args. The default of construct in std::allocator will call ::new((void*) p)

T(args) but specialized allocators may choose a different definition. – end note]

There are no incorrect uses of DefaultConstructible, CopyConstructible,

MoveConstructible, or constructible from in section 23.2, including Tables 96 through Tables

103.

3. In section 23.2.4 [associative.reqmts], table 102, modify the top rows as follows:

Expression Return Type Assertion/note

pre-/post-condition

Complexity

X::key_type Key Requires: Key is Destructible compile time

X::mapped_type

(map and multimap

only)

T Requires: T is Destructible compile time

X::value_type

(set and multiset

only)

Key Requires: value_type is

Erasable from X

compile time

X::value_type

(map and multimap

only)

pair<const Key,

T>

Requires: value_type is

Erasable from X

compile time

N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 4 of 6

4. In section 23.2.5 [unord.req], table 103, modify the top rows as follows:

Expression Return Type Assertion/note

pre-/post-condition

Complexity

X::key_type Key Requires: Key shall be Destructible compile time

X::mapped_type

(unordered_map and

unordered_multimap

only)

T Requires: T is Destructible compile time

X::value_type

(unordered_set and
unordered_multiset

only)

Key Requires: value_type is

Erasable from X

compile time

X::value_type

(unordered_map and

unordered_multimap

only)

pair<const Key,

T>

Requires: value_type is

Erasable from X

compile time

5. In sections 23.3.3 [deque] through 23.5 [unord], make the following text replacements:

Original text, in FDIS Replacement text

T shall be
DefaultConstructible

T shall be DefaultInsertable into *this

value-initialized elements default-inserted elements

key_type shall be
CopyConstructible

key_type shall be CopyInsertable into
*this

mapped_type shall be
DefaultConstructible

mapped_type shall be DefaultInsertable

into *this

mapped_type shall be
CopyConstructible

mapped_type shall be CopyInsertable into
*this

mapped_type shall be
MoveConstructible

mapped_type shall be MoveInsertable into
*this

Key shall be CopyConstructible Key shall be CopyInsertable into *this

value_type is constructible from value_type is EmplaceConstructible into

*this from

Notes to the editor: The above are carefully selected phrases that can be used for global

search-and-replace within the specified sections without accidentally making changes to

correct uses of DefaultConstructible et. al.. Please ensure that the resolution of 2033 is

N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 5 of 6

applied before applying these changes, otherwise, the use of DefaultConstructible in that

resolution will be incorrect.

6. Modify section 23.3.4.5 [forwardlist.modifiers], split paragraphs 27 and 28 into four

paragraphs as follows:

void resize(size_type sz);

void resize(size_type sz, const value_type& c);

Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end())

- sz elements from the list. Otherwise, inserts sz - distance(begin(), end()) default-

inserted elements at the end of the list. For the first signature the inserted elements are value-initialized,

and for the second signature they are copies of c.

Requires: T shall be DefaultInsertable into *this. DefaultConstructible for the first

form and it shall be CopyInsertable into *this for the second form.

void resize(size_type sz, const value_type& c);

Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end())

- sz elements from the list. Otherwise, inserts sz - distance(begin(), end()) such that

each new element, e, is initialized by a method equivalent to calling
allocator_traits<allocator_type>::construct(get_allocator(),

std::addressof(e), c).

Requires: T shall be CopyInsertable into *this.

7. Fix section 23.3.6.3 [vector.capacity] paragraph 10 as shown:

void resize(size_type sz);

9 Effects: If sz <= size(), equivalent to erase(begin() + sz, end());. If size() < sz,

appends sz - size() value-initializeddefault-inserted elements to the sequence.

10 Requires: T shall be CopyMoveInsertable into *this and DefaultInsertable into *this.

Note to the editor: The change to paragraph 10 supersedes a similar change proposed in the

resolution of LWG 2033. The change to paragraph 9 is orthogonal to a separate change to the

same paragraph in LWG 2033.

Separable issue: In 23.4.4.2 map constructor map(first, last), has an incomplete requires

clause. It describes what the requirement is if *first is pair<key_type,mapped_type>

but doesn’t say what requirement is otherwise. What should the requirement be? Does

*this have to be a pair, or merely pair-like? What are the actual requirements on first-

>first and first->second? I believe that the requirement should be fairly broad but

complex: the iterator’s value type must have members first and second, where key_type

is EmplaceConstructible into *this from first->first and mapped_type is

EmplaceConstructible into *this from first->second. However, it might be sufficient and

simplest to say that value_type is EmplaceConstructible into *this from *first. The

same issue applies to the insert member 23.4.4.4 [map.modifiers]. In the latter case, the

range insert version should probably be separated from the other two and each one’s

N3346=12-0036: Defect Report: Terminology for Container Element Requirements - Rev 1Page 6 of 6

requirements precisely described (some use of forward<> might be needed). It is also

confusing that the requirements for insert describes things that are not required. Same issue

for multimap (23.4.5.3).

Separable issue: operator[](key_type&&) is missing a requirement that key_type be

MoveInsertable into *this.

Acknowledgements

Thanks for Daniel Krugler for pointing out omissions and errors in N3301 and for helping me

revise it.

References

N3301: Defect Report: Terminology for Container Element Requirements

N3290: Final Draft International Standard: Programming Languages C++, 2011-04-11

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

N3173: Terminology for constructing container elements

LWG 2033: Preconditions of reserve, shrink_to_fit, and resize functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3301.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3290.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3102.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/N3173.pdf
http://lwg.github.com/issues/lwg-active.html#2033

