
Document No: WG21 N3289
INCITS / PL22.16 11-0059

Date: 2011-04-07
Project: Programming Language C++
References: WG21 N3092, SC 22 N4512: ISO/IEC FCD 14882
Reply to: Barry Hedquist

INCITS/PL22.16 IR
 Email: beh@peren.com

ISO/IEC FCD 14882, C++0X
Responses to National Body Comments

Attached are the ISO/IEC JTC1 SC22/WG21 responses to the National Body Comments
submitted to JTC1 SC22 in response to the SC22 Letter Ballot for ISO/IEC FCD 14882,
Final Committee Draft of the revision of ISO/IEC 14882:2003, aka C++0X.

Comments that were originally submitted without numbering were numbered manually in
the exact order of the NB's official ballot response. The comments were then organized
per the hierarchy of the balloted document, SC22 N4512 (WG21 N3092). No editing of
any kind was done on any of the comments. The responses reflect the consensus position
of SC22/WG21 for each comment.

Where applicable, pointers to publically available documents are used to provide
additional details for the response.

CWG xxx – refers to Core Working Group Issue xxx
LWG xxx – refers to Library Working Group Issue xxx
Nxxxx – refers to SC22/WG21 paper Nxxxx

The following individuals are to be commended for their outstanding work in compiling
these responses:

William 'Mike' Miller - Edison Design Group
Beman Dawes - BoostPro
Pete Becker - Project Editor, Roundhouse Consulting, Ltd.
Alisdair Meredeth - LWG Chair, Bloomberg

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 1 of 157
ISO electronic balloting commenting template/version 2001-10

ITTF
01

General ed The ISO/IEC headers and footers should appear at the
top and bottom of every page.

Insert the ISO/IEC headers and footers at the top
and bottom of every page.

ACCEPTED

US
01

1-30 ge It appears that the C committee could possibly make
some changes for C1X that we may still want to follow for
C++0X to avoid gratuitous incompatibilities.

Make any appropriate changes to avoid
unnecessary incompatibilities with C1X resulting
from changes to the WG14 C standard draft.

ACCEPTED

US
02

1-30 ge The active issues identified in the CWG and LWG issues
lists as if the date that the FCD was published (N3083 and
N3087) must be addressed and appropriate action taken.

Appropriate action would include making changes
to the FCD, identifying an issue as not requiring a
change to the FCD, or deferring an issue to a later
draft or a later standard.

ACCEPTED

DE
1

1 through 15 te Consider applying the resolutions of the active core issues
in Ready status (see WG21 N3083).

 ACCEPTED

CH
1

all ge/te The issues on the issues lists (WG21 N3083 and N3087)
shall be addressed before the standard becomes final.

 ACCEPTED

US
03

1 - 29 te The threading model does not make basic guarantees
needed to write correct programs. We should not repeat
the error that POSIX made in early standards (and later
corrected).

Add requirements that all no-blocked threads will
(however slowly) make progress and that all
visible side effects will (eventually) be seen by
other threads. Possibly use the word “should” if
an absolute requirement is impossible.

ACCEPTED

See paper N3209

US
04

all all ed Many identifiers are hyphenated and broken across line
boundaries. As a consequence, searching for the
identifier fails.

Protect all identifiers against hyphenation. ACCEPTED

US
05

all all ed The word "object" often copies as "ob ject". REJECTED

Some PDF viewers do this.
Don't know why, or how to
avoid it.

US
06

various various ed ~ (U+007E) is sometimes replaced with ~ (U+223C),
causing cut and paste from the standard to fail, notably in
2.14.5.

Use U+007E consistently ACCEPTED

US
07

various various ed ' (U+0027) is consistently replaced with ’ (U+2019),
causing cut and paste to fail. This is also an issue with

Use U+0027 consistently in code samples (i.e.
monospace font)

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 2 of 157
ISO electronic balloting commenting template/version 2001-10

the 1998 standard.

GB
1

1.1 2 Ed The C99 standard supports inline functions, so this should
not be listed as a distinguishing feature of C++.

strike "inline functions" from the list of C++
'additional facilities'

ACCEPTED

GB
2

1.2 Ge In [intro.refs] the spec references ISO/IEC 9945:2003
even though a later revision, ISO/IEC 9945:2008 has
already been released:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50
516

The section should be updated to reference the
latest version.
In addition, since POSIX is a registered trademark
of the IEEE, the spec should use the registered
trademark (R) symbol wherever it references it.
Alternatively, it can refer to ISO/IEC 9945.

REJECTED
The current regex
specification reflects the
2003 version of POSIX;
changing the reference to the
newer revision could have
normative impact. There
was no consensus for this
change.

ITTF
02

1.2 ed The introductory text to the Normative references is not
correct.

Delete the current introductory text to the
Normative references and replace with the
following:

“The following referenced documents are
indispensable for the application of this document.
For dated references, only the edition cited
applies. For undated references, the latest edition
of the referenced document (including any
amendments) applies.”

ACCEPTED

ITTF
03

1.3 ed The title to the subclause does not accurately reflect the
content.

Change the title to “Terms and definitions”. ACCEPTED

ITTF
04

1.3 ed 3.1 of the ISO/IEC Directives, Part 2, states that the
following introductory wording shall be used where all
terms and definitions are given the document itself:

“For the purposes of this document, the following terms
and definitions apply.”

Change the introductory text to:

“For the purposes of this document, the following
terms and definitions apply.”

ACCEPTED

ITTF 1.3 ed D.1.5.3 of the ISO/IEC Directives, Part 2 states that the
form of a definition shall be such that it can replace the

Delete the definite or indefinite article at the ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 3 of 157
ISO electronic balloting commenting template/version 2001-10

05 term in context. beginning of each definition.

Redraft definitions 1.3.11 and 1.3.13 so that they
can replace the term in context (i.e. they should
not be more than one sentence).

ITTF
06

1.3 ed D.3.1 of the ISO/IEC Directives, Part 2, states that the
definition shall not be followed by a full stop.

Remove the full stops at the end of the definitions. ACCEPTED

ITTF
07

1.3 ed D.3.9 of the ISO/IEC Directives, Part 2, provides
examples on how to present examples and notes to terms
and definitions. The examples and notes to the terms and
definitions are not presented in accordance with D.3.9 of
the ISO/IEC Directives, Part 2.

Redraft the notes and examples to the terms and
definitions in accordance with D.3.9 of the
ISO/IEC Directives, Part 2.

REJECTED

The current style has been
accepted for the previous two
C++ Standards. It is
designed for large, complex
documents; the ISO rules are
impractical in a document of
this size.

GB
3

1.3 1 Ed The library stretches out to clause 30 now, and the terms
in 17.3 should cover them too.

Update reference to clause 27 to say clause 30. ACCEPTED

JP
15

1.3 1 E There is a description, "17.3 defines additional terms that
are used only in Clauses 17 through 27 and Annex D.",
but the terms defined in 17.3 are also used in Clauses 28
through 30, which are added recently. So the scope
should be expanded to include them.

17.3 defines additional terms that are used only in
Clauses 17 through 30 and Annex D.

ACCEPTED

GB
4

1.3.10 Ed The phrase "catch clause" in the 2003 standard has
become "catch Clause"

Change back the "catch clause" ACCEPTED

RU
1

1.7 p.5, line 5
from end

ed Reference missed Insert reference "(2.3)" after "basic execution
character set"

ACCEPTED

GB
5

1.9 3 Ed The evaluation of function arguments are now
indeterminately sequenced, rather than left completely
unspecified, as part of the new language describing the

[Need to identify a better example to propose] ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 4 of 157
ISO electronic balloting commenting template/version 2001-10

memory model. A clearer example of unspecified behavior
should be used here.

GB
6

1.9 4 Ed There are core issues surrounding the undefined behavior
of dereferencing a null pointer. It appears the intent is that
dereferencing *is* well defined, but using the result of the
dereference will yield undefined behavior. This topic is too
confused to be the reference example of undefined
behavior, or should be stated more precisely if it is to be
retained.

[Identify a better example of undefined behavior to
propose]

ACCEPTED

CH
2

1.9 and 1.10 te It's not clear whether relaxed atomic operations are
observable behaviour.

Clarify it. REJECTED

Normatively, the behavior is
well-defined by 1.9p8. If the
atomic object is volatile, then
all operations on it are
observable, otherwise not.
Note that “observable”
means “observable outside
of the program.”

See paper N3196

GB
7

1.9.6 p6 Te From a naive, first-time reader's point of view, 1.9.6 made
me double take, as it seemed it could imply any signal
would leave the program in an unspecified state after
completing. I believe I understand the intent, but to clarify
it, I'd change it to make it clear that the unspecified state
applies only for the duration of the signal handler.

Change:

6 When the processing of the abstract machine is
interrupted by receipt of a signal, the values of
objects which are neither
— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)
are unspecified, and the value of any object not in
either of these two categories that is modified by
the handler becomes undefined.

to:

6 When the processing of the abstract machine is

ACCEPTED

The reference should be 1.9
paragraph 6, not 1.9.6 (which
does not exist).

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 5 of 157
ISO electronic balloting commenting template/version 2001-10

interrupted by receipt of a signal, the values of
objects which are neither
— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)
are unspecified for the duration of the signal
handler, and the value of any object not in either
of these two categories that is modified by the
handler becomes undefined.

US
08

1.9 footnote 7 te The footnote "Overloaded operators are never assumed
to be associative or commutative." is either meaningless
or overly restrictive.

Change the footnote to "Overloaded operators are
assumed to be non-associative and non-
commutative until proven otherwise.".

REJECTED

The statement involved is
non-normative and is, in
general, correct. An
implementation can treat
overloaded operators as
associative or commutative
only under the “as-if” rule, so
the statement is clear
enough.

CA
23

1.10, 29 1.10, 29 Te C1x has added new atomics
C1x has added new atomics syntax, and in some cases
new semantics and operations. C++0x needs to consider
aligning with the new C1x atomics

Add back compatibility between C++0x and C1x
atomics

ACCEPTED with
MODIFICATIONS

See paper N3193

CA
14

1.10p4 1.10p4 ed Initialisation of atomics

Add the following to 1.10p4:

[Note: There may be non-atomic writes to atomic

objects, for example on initialization and re-

initialization. - end note]

Add the following to 1.10p4:

[Note: There may be non-atomic

writes to atomic objects, for example

on initialization and renitialization. - end note]

ACCEPTED with
MODIFICATIONS

The suggested update from
US 168 was adopted.

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 6 of 157
ISO electronic balloting commenting template/version 2001-10

Rationale: We believe the intent is that for any atomic
there is a distinguished initialisation write, but that this
need not happens-before all the other operations on that
atomic - specifically so that the initialisation write might be
non-atomic and hence give rise to a data race, and hence
undefined behaviour, in examples such as this (from
Hans):
 atomic< atomic<int> * > p
 f() |
 { atomic<int>x; | W_na x
 p.store(&x,mo_rlx); | W_rlx p=&x
 } |

 (where na is nonatomic and rlx is relaxed). We suspect
also that no other mixed atomic/nonatomic access to the
same location is intended to be permitted. The possibility
of non-atomic writes on atomic objects is not mentioned in
1.10, and (before talking with Hans) we didn't realise it
was intended, so we suggest adding the note above to
clarify things.

CA
12

1.10p6 1.10p6 te The use of maximal in the definition of release sequence

(proposed edit seems reasonable to Clark)

We suggest that 1.10p6 be changed to:

A release sequence from a release operation A on an

atomic object M is a maximal contiguous sub-sequence

of side effects in the modification order of M, where

the first operation is A, and every subsequent

operation

We suggest that 1.10p6 be changed to:

A release sequence from a release

operation A on an atomic object M is

a maximal contiguous sub-sequence

of side effects in the modification

order of M, where the first

operation is A, and every subsequent

operation

ACCEPTED
See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 7 of 157
ISO electronic balloting commenting template/version 2001-10

- is performed by the same thread that performed

the release, or

- is an atomic read-modify-write operation.

Rationale: The current wording of the standard suggests
that release sequences are maximal with respect to
sequence inclusion, i.e. that if there are two release
operations in the modification order,

 mod mod
 rel1----->rel2----->w

then [rel1;rel2;w] is the only release sequence, as the
other candidate [rel2;w] is included in it. This interpretation
precludes synchronizing with releases which have other
releases sequenced-before them. We believe that the
intention is actually to define the maximal release
sequence from a particular release operation, which would
admit both [rel1;rel2;w] and [rel2;w].

- is performed by the same thread

that performed the release, or

- is an atomic read-modify-write

operation.

US
09

1.10 para 4 te The "operations on locks" do not provide synchronization,
as locks are defined in Clause 30.

Change "operations on locks" to "locking
operations".

ACCEPTED

See paper N3196

CA
20

1.10p1 1.10p1 Te Reading from the last element in a vsse?

Paul wrote:

> If every element in a vsse happens-before a given value

> computation, then that value computation must return

Please clarify. ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 8 of 157
ISO electronic balloting commenting template/version 2001-10

> the value stored by the last element in the vsse.

We wrote:

We're not sure about that. Consider the following, with two
relaxed writes to x on one thread that are not sequenced-
before related to each other (eg in different arguments to
the same function), but are followed by a release/acquire
on a different variable y to another thread that then reads
x. We think the final read (e) could read from either (a) or
(b), regardless of how (a) and (b) are related in
modification order.

a:Wrlx x=1 b:Wrlx x=2
 \ /
 sb\ /sb
 \ /
 c:Wrel y-----------
 \sw
 \
 d:Racq y
 |
 |sb
 |
 e:Rrlx x=?

|

Paul> In that case IIRC, the standard does not specify

Paul> the order, but the code will be generated in some

Paul> order, and that arbitrary choice on the part of the

Paul> compiler will determine the modification order.

We agree that in a normal implementation (eg where the

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 9 of 157
ISO electronic balloting commenting template/version 2001-10

argument evaluations are not spawned off to new threads
- is that intended to be forbidden?), the two writes will
indeed be ordered according to the generated-code order
(and before the release fence), and hardware coherence
will ensure that (e) reads the later one.

But in the draft standard as written, that execution is
allowed - the draft doesn't currently impose that aspect of
coherence. To make the example more concrete, if there
were another thread with

c --sw--> f:Racq y --sb--> g:Rrlx x

then e and g could read different values.

Paul notes:

> But 1.10p1 says:

>

> A thread of execution (also known as a thread) is a

> single flow of control within a program, including

> the initial invocation of a specific top-level

> function, and recursively including every function

> invocation subsequently executed by the thread.

>

> This excludes the possibility of the implementation

> spawing off a new thread -unless- the implementation

> can make things appear as if there was only one thread.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 10 of 157
ISO electronic balloting commenting template/version 2001-10

> From this viewpoint, your example shows just how

> careful an implementation must be if it is to fully

> comply with this as-if rule.

We replied

>ok, thanks

to this, but in fact the situation is still unclear.

1.10p1 does indeed rule out the hypothetical
implementation that we mentioned, but even if (a) and (b)
would be ordered by any reasonable implementation, in
terms of the concepts of the standard, that doesn't
introduce a sequenced-before edge between (a) and (b).

It seems that Paul is assuming the individual memory
accesses in function arguments are indeterminately
sequenced rather than unsequenced?

CA
19

1.10p5

1.10p13

1.10p5

1.10p13
Te Alternative definition of the value read by an atomic

operation

Here's an interesting example involving a
release/consume pair. We believe that in a direct
implementation on hardware, this would be forbidden by
coherence, but that the current text allows it. We don't
know whether it should be allowed or not.

 hb
 do
 rf
 Wx_release ----> Rx_consume
 ^ |
 \ |sb,hb

Please clarify. ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 11 of 157
ISO electronic balloting commenting template/version 2001-10

 mo \ v
 --- Wx_release

Paul claims this is forbidden by 1.10p5, but we don't see
how that can be the case. We don't see much room in
1.10p5 for any other interpretation - it says:

- "All modifications to a particular atomic object M occur in
some particular total order, called the modification order of
M"

- "If A and B are modifications of an atomic object M and
A happens before (as defined below) B, then A shall
precede B in the modification order of M, which is defined
below."

Both of which seem very clear. The only wiggle room is in
the Note

- "[Note: This states that the modification orders must
respect the "happens before" relationship]"

We took that "must respect" to be a gloss rather than to
add any additional constraint.

Earlier we suggested a change, to the constraint on the
value read by an atomic operation, that would forbid this
example:

The standard introduces visible side effects, which are
used first to define the values read by non-atomic
operations. They are then re-used to constrain the value
read by atomic operations: 1.10p13 says that an atomic
operation must read from somewhere in "the" visible
sequence of side effects, which must start from *a* visible
side effect, i.e. a side effect that (a) happens before the
read, and (b) is not happens-before-hidden. We suspect
that this re-use of the notion of visible side effect may be a

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 12 of 157
ISO electronic balloting commenting template/version 2001-10

drafting artifact, in which case one might remove the
requirement that there is a vse for atomics, and replacing
the first two sentences of 1.10p13 by

"An atomic operation must read from somewhere in the

modification order that is not happens-before-hidden

and does not follow (in modification order) any side

effect that happens-after the read."

Now we're not sure how this would fit in with initialisation
and reading of indeterminate values; we need to think
about it more.

CA
22

1.10p8 1.10p8 Te Control dependencies for atomics

Given the examples of compilers interchanging data and
control dependencies, and that control dependencies are
architecturally respected on Power/ARM for load->store
(and on Power for load->load with a relatively cheap
isync), we're not sure why carries-a-dependency-to does
not include control dependencies between atomics.

Please clarify. REJECTED

At the time that the memory
model was formulated, there
was considerable uncertainty
as to what architectures
respect control
dependencies, and to what
extent. It appears that this
uncertainty is being cleared
up, and our hope is that it will
be ripe for standardization in
a later TR.

See paper N3196

CA
15

1.10p9 1.10p9 Ed Intra-thread dependency-ordered-before

The current draft has release/acquire synchronize-with
edges only between a release on one thread and an
acquire on a *different* thread, whereas the definition of
dependency-ordered-before permits the release and
consume to be on the same thread; it seems odd to permit

We suggest changing the definition of
dependency-ordered-before in 1.10p9 to the
following:

An evaluation A is dependency-

ordered before an evaluation B if

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 13 of 157
ISO electronic balloting commenting template/version 2001-10

the latter. (At the moment function arguments can't race or
sync with each other, but they can be dependency
ordered before each other.)

We don't currently have an example in which this makes a
real difference, but for symmetry could suggest changing
the definition of dependency-ordered-before in 1.10p9 to
the following:

An evaluation A is dependency-ordered before an

evaluation B if

- A performs a release operation on an atomic object

M, and on another thread, B performs a consume

operation on M and reads a value written by any

side effect in the release sequence headed by A,

or

- for some evaluation X, A is dependency-ordered

before X and X carries a dependency to B.

- A performs a release operation

on an atomic object M, and on

another thread, B performs a

consume operation on M and reads

a value written by any side

effect in the release sequence

headed by A, or

- for some evaluation X, A is

dependency-ordered before X and

X carries a dependency to B.

CA
11

1.10p12 1.10p12 te "Subsequent" in vsse definition

Remove the word "subsequent" from the definition of
visible sequence of side effects in 1.10p12.

(as suggested by Hans)

Rationale: if every element in a vsse happens-before a
read, the read should not take the value of the visible side
effect.

Remove the word "subsequent" from the definition
of visible sequence of side effects in 1.10p12.

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 14 of 157
ISO electronic balloting commenting template/version 2001-10

CA
17

1.10p12 1.10p12 Ed 1.10p12 phrasing

1.10p12 last note:

"...as defined here..." should be

"...as defined below...".

1.10p12 last note:

"...as defined here..." should be

"...as defined below...".

REJECTED

The reference really should
be to "data races as defined
in this International
Standard", because the note
compares this definition with
the generally-understood
meaning of data races in
sequentially-consistent
executions. That's far too
stilted, and "as defined here"
seems like a reasonable way
to phrase it in the less formal
context of a note.

CA
13

1.10p13 1.10p13 ed Wording of the read-read coherence condition

In 1.10p13 a coherence condition is stated on the values
of atomic reads:

"Furthermore, if a value computation A of an atomic

object M happens before a value computation B of M,

and the value computed by A corresponds to the value

stored by side effect X, then the value computed by B

shall either equal the value computed by A, or be the

value stored by side effect Y, where Y follows X in

the modification order of M."

We suggest that this be replaced with the following:

In 1.10p13 a coherence condition is stated on the
values of atomic reads:

"Furthermore, if a value

computation A of an atomic object M

happens before a value computation

B of M, and the value computed by A

corresponds to the value stored by

side effect X, then the value

computed by B shall either equal

the value computed by A, or be the

value stored by side effect Y,

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 15 of 157
ISO electronic balloting commenting template/version 2001-10

"Furthermore, if a value computation A of an atomic

object M happens before a value computation B of M,

and A takes its value from the side effect X, then

the value computed by B shall either be the value

stored by X, or the value stored by a side effect Y,

where Y follows X in the modification order of M."

Rationale: The words "corresponds to" are not used
elsewhere in the standard, as far as we can see, and it is
unclear whether they have a special meaning here. In
addition taking the value of the read B from the value read
by A seems unnecessarily indirect. B could take its value
from X instead.

where Y follows X in the

modification order of M."

We suggest that this be replaced with the
following:

"Furthermore, if a value

computation A of an atomic object M

happens before a value computation

B of M, and A takes its value from

the side effect X, then the value

computed by B shall either be the

value stored by X, or the value

stored by a side effect Y, where Y

follows X in the modification order

of M."

CA
18

1.10p13 1.10p13 Te Non-unique visible sequences of side effects and
happens-before ordering

In 1.10p13, replace

"The visible sequence of side effects on..." by

"A visible sequence of side effects on..."

and

In 1.10p13, replace

"The visible sequence of side

effects on..."

by

"A visible sequence of side effects

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 16 of 157
ISO electronic balloting commenting template/version 2001-10

"in the visible sequence of M with respect to B" by

"in a visible sequence of M with respect to B"

Rationale: the current standard allows multiple visible
sequences of side effects (vsse's) for a given read
(despite the use of "The" at the start of 1.10p13). We
demonstrate this by constructing an execution with two
vsse's. The following execution has five memory
operations, four of which are read modify writes (RMW's).
There are two threads, one with four operations each
ordered by sequenced before (sb), the other with a single
RMW release.
RMW1 +---RMW3_release
| /
|sb do/
v /
R_consume<---+
|
|sb
v
RMW2
|
|sb
v
RMW4

The modification order in this example is as
follows:

 mod mod mod
 RMW1----->RMW2----->RMW3_release----->RMW4

With the modification order we give above, the
happens-before relation
has exactly these edges, according to 1.10p10:

 From sequenced-before:

on..."

and

"in the visible sequence of M with

respect to B"

by

"in a visible sequence of M with

respect to B"

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 17 of 157
ISO electronic balloting commenting template/version 2001-10

 RMW1 -> R_consume, RMW2, RMW4
 R_consume -> RMW2, RMW4
 RMW2 -> RMW4

 From ithb:
 From dependency-ordered-before:
 RMW3_release -> R_consume

In particular, there are no edges

RMW3_release -> RMW2 or RMW4.

As we understand it, this is the intended
absence of transitivity from dependency-ordered-
before to sequenced-before.

1.10p5 says that if A happens-before B then A precedes B
in the modification order, which is true for all the happens-
before edges and the modification order above.

RMW1 and RMW3_release are visible side effects

RMW2 and RMW4 follow R_consume in happens-before,
so cannot be in a visible sequence of side effects.

Hence the two visible sequences of side effects are
[RMW1] and [RMW3].

The R_consume here must read from the later vsse in
modification order for the dependency_ordered edge to
exist. The existence of two vsse's relies on the lack of
transitivity of happens before (which only occurs in the
presence of consume operations).

US
10

1.10 Paragraph
14

te The definition of a data race does not take into account
two overlapping atomic operations

Augment the first sentence:

The execution of a program contains a data race if
it contains two conflicting actions in different
threads, at least one of which is not atomic (or
both are atomic and operate on overlapping, but

REJECTED

The premise is incorrect;
atomic objects may not
overlap. The type argument
to the atomic template must

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 18 of 157
ISO electronic balloting commenting template/version 2001-10

not-identical, memory locations), and neither
happens before the other.

be a trivially-copyable type
(29.5.3p1) and atomic
objects are not trivially
copyable. The atomic types
provide no means to obtain a
reference to internal
members; all atomic
operations are copy-in/copy-
out. In short, any attempt to
generate a pair of atomic
variables whose memory
overlaps results in undefined
behavior.

See paper N3196

US
11

1.10 para7 te There is some confusion between locks and mutexes.

Change "lock" when used as a noun to "mutex". ACCEPTED

See paper N3196

US
12

1.10 P4,p14,
p6,p12,p13

te Adapt N3074:

http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3074.html

Proposed change in N3074:

http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3074.ht
ml

ACCEPTED

See paper N3196

CA
2

various various variou
s

Canada agrees with US 12, 14, 142, 145, 159 Resolve as suggested in these comments ACCEPTED

GB
8

1.10 4, 7 Te The text says that the library "provides ... operations on
locks". It should say "operations on mutexes", since it is
the mutexes that provide the synchronization. A lock is
just an abstract concept (though the library types
unique_lock and lock_guard model ownership of locks)
and as such cannot have operations performed on it. This
mistake is carried through in the notes in that paragraph
and in 1.10p7

Change 1.10p4 as follows:

"The library defines a number of atomic
operations (Clause 29) and operations on
mutexes (Clause 30) that are specially identified
as synchronization operations. These operations
play a special role in making assignments in one
thread visible to another. A synchronization
operation on one or more memory locations
is either a consume operation, an acquire
operation, a release operation, or both an acquire

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 19 of 157
ISO electronic balloting commenting template/version 2001-10

and release operation. A synchronization
operation without an associated memory location
is a fence and can be either an acquire fence, a
release fence, or both an acquire and release
fence. In addition, there are relaxed atomic
operations, which are not synchronization
operations, and atomic read-modify-write
operations, which have special characteristics. [
Note: For example, a call that acquires a lock on a
mutex will perform an acquire operation on the
locations comprising the mutex. Correspondingly,
a call that releases the same lock will perform a
release operation on those same locations.
Informally, performing a release operation on A
forces prior side effects on other memory
locations to become visible to other threads that
later perform a consume or an acquire operation
on A. “Relaxed” atomic operations are not
synchronization operations even though, like
synchronization operations, they cannot contribute
to data races. — end note]"

Change 1.10p7 as follows:

"Certain library calls synchronize with other library
calls performed by another thread. In particular,
an atomic operation A that performs a release
operation on an atomic object M synchronizes
with an atomic operation B that performs an
acquire operation on M and reads a value written
by any side effect in the release sequence headed
by A. [Note: Except in the specified cases,
reading a later value does not necessarily ensure
visibility as described below. Such a requirement
would sometimes interfere with efficient
implementation. — end note] [Note: The
specifications of the synchronization operations

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 20 of 157
ISO electronic balloting commenting template/version 2001-10

define when one reads the value written by
another. For atomic objects, the definition is clear.
All operations on a given mutex occur in a single
total order. Each lock acquisition “reads the value
written” by the last lock release on the same
mutex. — end note]"

GB
9

1.10 6 Te See (B) in attachment Appendix 1 - Additional Details Request the concurrency working group to
determine if changes are needed

ACCEPTED

See paper N3196
GB
10

1.10 10 Te See (C) in attachment Appendix 1 - Additional Details
The GB would like WG21 to confirm there is no issue
related to this.
GB adds:
We agree that if the read from x reads the value written by
the write to
x the write to x inter-thread-happens-before the write to y.
However, the read from y is sequenced before the write to
x, so if the
read from x reads the value written by the write to x, then
the read
from y also inter-thread-happens-before the write to y.
Consequently,
the read from y cannot see the value written by the write
to y.
The reciprocal ordering also applies, but they cannot both
apply in the
same execution since if the write to x happens-before the
read from x
then the read from y happens-before the write to y, and
vice-versa.
There is thus no contradiction.
[see comment below for proper formatting]

Request the concurrency working group to
determine if changes are needed

ACCEPTED

See paper N3196

CA
8

1.10p10 1.10p10 te
Rationale: Without this the standard
permits executions with a cyclic
happens-before relation that it seems

1.10p10, before the Note, add: ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 21 of 157
ISO electronic balloting commenting template/version 2001-10

clear should be forbidden, e.g.

 Rx_consume<--+ +-->Ry_consume
 | rf\ /rf |
 |sb X |sb
 v / \ v
 Wy_release---+ +---Wx_release

One could instead impose acyclicity on
happens-before; that would be
equivalent.

 "The inter-thread happens-before relation of an
execution must be acyclic"

GB
11

1.10 12 Te See (E) in attachment Appendix 1 - Additional Details
The GB would like WG21 to confirm there is no issue
related to this.
GB adds:
[see comment below for proper formatting]
The variable in question has a single modification order,
which is any of
(a) RMW3, RMW1, RMW2, RMW4.
(b) RMW1, RMW3, RMW2, RMW4.
(c) RMW1, RMW2, RMW3, RMW4.
(d) RMW1, RMW2, RMW4, RMW3.
since RMW1, RMW2 and RMW4 occur in a single thread
in that sequence, and
RMW3 occurs in a separate thread with no other ordering
constraints.
Since the R_consume lies between RMW1 and RMW2 in
that thread, it must
either read the value written by RMW1 (which could
happen if it
immediately follows RMW1 in any of the sequences), or
RMW3 (which could
happen with sequence (b)).
The visible sequence of side effects for R_consume is

Request the concurrency working group to
determine if changes are needed

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 22 of 157
ISO electronic balloting commenting template/version 2001-10

thus either RMW3,
RMW1 (from (a)), RMW1 (from (b), (c) or (d)), or RMW1,
RMW3 (from (b)).
Which sequence applies in practice may vary from
execution to execution.
There is however only a single sequence on any given
execution.

GB
12

1.10 13 Te See (F) in attachment Appendix 1 - Additional Details
The GB would like WG21 to confirm there is no issue
related to this.
GB adds:
The cycle given is clearly forbidden by the current text.
The read is sequenced-before the write in the same
thread. If the read sees the value written by the other
thread then that write is dependency-ordered-before the
read, and thus happens-before the read,
and happens-before the write from the reading thread.
The write from the left-hand thread thus must occur before
the write from the right-hand thread in the modification
order of the object by 1.10p5.

Request the concurrency working group to
determine if changes are needed

ACCEPTED

See paper N3196

GB
13

1.10 13 Te See (G) in attachment Appendix 1 - Additional Details
GB suggests alternative wording to that in the attached
paper:
"Furthermore, if a value computation A of an atomic object
M happens before a value computation B of M, and A
uses the value of M from the side effect X, then the value
computed by B shall either be the value stored by X, or
the value stored by a side effect Y, where Y follows X in
the modification order of M."

Request the concurrency working group to
determine if changes are needed

ACCEPTED WITH
MODIFICATIONS

See paper N3196

GB
14

1.10 8 Te See (I) in attachment Appendix 1 - Additional Details
GB adds:
If an implementation can't guarantee the ordering it should
refrain from performing the optimisation

Request the concurrency working group to
determine if changes are needed.

REJECTED

We agree that the
implementation needs to
address this, and it can. No

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 23 of 157
ISO electronic balloting commenting template/version 2001-10

changes are needed.
GB
15

1.10 Te See (J) in attachment Appendix 1 - Additional Details Request the concurrency working group to
determine if changes are needed.

REJECTED

At the time that the memory
model was formulated, there
was considerable uncertainty
as to what architectures
respect control
dependencies, and to what
extent. It appears that this
uncertainty is being cleared
up, and our hope is that it will
be ripe for standardization in
a later TR.

See paper N3196

GB
16

1.10 12 Ed See (L) in attachment Appendix 1 - Additional Details "...as defined here..." should be "...as defined
below...".

REJECTED

"As defined here" refers to
this standard, which is the
intention. If it were normative
text the correct phrase would
be "in this International
Standard", but for a note, the
text as written is sufficient.

US
13

2.2 1 te “Raw” strings are still only Pittsburgh-rare strings: the
reversion in phase 3 only applies to an r-char-sequence.

Make the reversion apply to the entire raw-string. ACCEPTED

US
14

2.2

2.3

2.5

P1 te Precedence of reversal and tokenization

The current paper implies that determination of the
characters forming an r-char-sequence occurs while the

In 2.14.5 [lex.string] paragraph 2: Remove
footnote 24:

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 24 of 157
ISO electronic balloting commenting template/version 2001-10

2.14.5 transformations done in phase 1 and phase 2 are still in
effect.

Consider these cases:

• Line splicing occurred in translation phase 2; the
backslash is not there on entry to phase 3 when
we try to tokenize:

const char str[] = R"a()\a")a";

• Trigraph replacement occurred in phase 1. The
right parenthesis is not there on entry to phase 3:

const char str[] = R"(??)";

• Trigraph replacement (again). In [lex.string]
paragraph 2, there is a footnote 24 in N3092.
Note that this provides fuel for anti-trigraph
sentiment:

const char str[] = R"#()??=")#";

Change in [lex.string] from N3077:
Escape sequences and universal-character-
names in non-raw string literals have the same
meaning as in character literals

should be reflected in [lex.phases] paragraph 1, phase 5
(CD2 wording):

Each source character set member and universal-
character-name in a character literal or a string literal, as
well as each escape sequence in a character literal or a
non-raw string literal, is converted to the corresponding
member of the execution character set (2.14.3, 2.14.5); if
there is no corresponding member, it is converted to an
implementation-defined member other than the null (wide)

In 2.2 [lex.phases] paragraph 1, phase 1; insert
exception:

Physical source file characters are
mapped, in an implementation-defined
manner, to the basic source character
set (introducing new-line characters for
end-of-line indicators) if necessary. The
set of physical source file characters
accepted is implementation-defined.
Trigraph sequences (2.4) are replaced by
corresponding single-character internal
representations. Any source file
character not in the basic source
character set (2.3) is replaced by the
universal-character-name that
designates that character. (An
implementation may use any internal
encoding, so long as an actual extended
character encountered in the source file,
and the same extended character
expressed in the source file as a
universal-character-name (i.e., using the
\uXXXX notation), are handled
equivalently except where this
replacement is reverted.)

In 2.2 [lex.phases] paragraph 1, phase 3:
The source file is decomposed into
preprocessing tokens (2.5) and
sequences of white-space characters
(including comments). A source file shall
not end in a partial preprocessing token
or in a partial comment. Each comment
is replaced by one space character.
New-line characters are retained.
Whether each nonempty sequence of

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 25 of 157
ISO electronic balloting commenting template/version 2001-10

character

and [lex.charset] paragraph 2 (CD2 wording):

Additionally, if the hexadecimal value for a universal-
character-name outside the c-char-sequence, s-char-
sequence, or r-char-sequence of a character or string
literal corresponds to a control character (in either of the
ranges 0x00–0x1F or 0x7F–0x9F, both inclusive) or to a
character in the basic source character set, the program is
ill-formed.

UCNs simply do not occur in the grammar for r-char-
sequence anyway.

white-space characters other than new-
line is retained or replaced by one space
character is unspecified. The process of
dividing a source file's characters into
preprocessing tokens is context-
dependent. [Example: see the handling
of < within a #include preprocessing
directive. —end example]

In 2.2 [lex.phases] paragraph 1, phase 5:
Each source character set member in a
character literal or a string literal, as well
as each escape sequence and universal-
character-name in a character literal or a
non-raw string literal, is converted to the
corresponding member of the execution
character set (2.14.3, 2.14.5); if there is
no corresponding member, it is
converted to an implementation-defined
member other than the null (wide)
character.

In 2.3 [lex.charset] paragraph 2:
.... Additionally, if the hexadecimal value
for a universal-character-name outside
the c-char-sequence or s-char-sequence
of a character or string literal
corresponds to a control character (in
either of the ranges 0x00–0x1F or 0x7F–
0x9F, both inclusive) or to a character in
the basic source character set, the
program is ill-formed. [Footnote: A
sequence of characters resembling a
universal-character-name in an r-char-
sequence (2.14.5 [lex.string]) does not
form a universal-character-name.]

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 26 of 157
ISO electronic balloting commenting template/version 2001-10

In 2.5 [lex.pptoken] paragraph 3:
If the input stream has been parsed into
preprocessing tokens up to a given
character:

• if the next character begins a
sequence of characters that
could be the prefix and initial
double quote of a raw string
literal, such as R", the next
preprocessing token shall be a
raw string literal and any
transformations performed in
phases 1 and 2 on this input
stream (trigraphs, universal-
character-names, and line
splicing) are reverted for the
remainder of the stream until
said raw string literal (2.14.5) is
matched; [Footnote: A raw
string literal formed through
token concatenation (16.3.3) is
not parsed from an input stream
and is not subject to this
reverting. Destringization (16.9)
involves an alternate input
stream, thus there are no phase
1 or phase 2 transformations to
revert.]

• otherwise, the next
preprocessing token is the
longest sequence of characters
that could constitute a
preprocessing token, even if
that would cause further lexical

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 27 of 157
ISO electronic balloting commenting template/version 2001-10

analysis to fail.

US
15

2.6 para 2 te The <: digraph causes problem with users unfamiliar with
digraphs when passing global objects as template
arguments.

Add a special hack for <:: much like the special
hack for >>.

ACCEPTED

CA
24

2.11 Various Te A list of issues related TR 10176:2003

1)
"Combining characters should not appear as the first
character of an identifier."
Reference: ISO/IEC TR 10176:2003 (Annex A)
This is not reflected in FCD.

2)
Restrictions on the first character of an identifier are not
observed as
recommended in TR 10176:2003. The inclusion of digits
(outside of those in
the basic character set) under identifer-nondigit is implied
by FCD.

3)
It is implied that only the "main listing" from Annex A is
included for C++.
That is, the list ends with the Special Characters section.
This is not made
explicit in FCD. Existing practice in C++03 as well as WG
14 (C, as of N1425)
and WG 4 (COBOL, as of N4315) is to include a list in a
normative Annex.

4)
Specify width sensitivity as implied by C++03: \uFF21 is
not the same as A
Case sensitivity is already stated in [lex.name].

Please clarify. ACCEPTED

See paper N3146

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 28 of 157
ISO electronic balloting commenting template/version 2001-10

GB
17

2.14.2 Table 5 Ed [lex.icon] 2.14.2/2 Table 5 - 'Types of integer constants' In
the penultimate row for this table (for suffix `ll or LL') it
gives the `Octal or hexadecimal constant' in the third
column as one of: long long int unsigned long int Unless I
am misunderstanding something fundamental, this second
should be: unsigned long long int

Replace the entry for "ll or LL" and "Octal or
hexadecimal constant" in table 5 with "long long
int unsigned long long int"

ACCEPTED

JP
16

2.14.3 2 Note E Typo, "wide-charater" should be "wide-character".

Correct typo.
[Note: the type wchar_t is able to represent all
members of the execution wide-character set (see
3.9.1).

ACCEPTED

RU
2

2.14.3 p.23, par.3,
line 1

ed Reference missed Insert reference "(3.9.1)" after "extended integer
type"

ACCEPTED

DE
2

2.14.4 te C++ does not support hexadecimal floating-point literals,
although they are useful to specify exact floating-point
constants.

Consider supporting the C99 syntax for
hexadecimal floating-point literals.

REJECTED

There was no consensus to
adopt this feature at this
point in the standardization
process.

US
16

2.14.5
[lex.string]

 ge Raw string literals have no implementation experience. Either demonstrate a complete implementation of
this feature or remove N2146 from the working
paper prior the FDIS.

ACCEPTED

The feature has been
implemented. No change to
the Standard.

DE
3

2.14.7 te It is not sufficiently clear that std::nullptr_t is a distinct type
and neither a pointer type nor a pointer-to-member type.

Add a note in 2.14.7 stating that, preferably with
cross-references to the normative statements in
3.9.

ACCEPTED

RU
5

2.14.7 p. 28 ed Page layout bug Move footnote 24 from page 28 to page 27

ACCEPTED

US
17

2.14.8 6 te In general, the parameter type of a literal operator must be
the same as the argument passed to it. That is not the
case for a user-defined-character-literal, where the

Add the following phrase to the description in
paragraph 6:

S shall contain a literal operator whose parameter

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 29 of 157
ISO electronic balloting commenting template/version 2001-10

argument could inadvertently match a literal operator
intended for use with user-defined-integer-literals:

typedef unsigned long long ULL;
int operator "" X(ULL);
int i = 'c'X; // operator"" X(ULL('c'))

type is the same as the type of ch.

JP
17

2.14.8 3 E Typo, missing ",".
If S contains a raw literal operator the literal L is treated as

Correct typo.
If S contains a raw literal operator, the literal L is
treated as

ACCEPTED

JP
18

2.14.8 4 E Typo, missing ",".
If S contains a raw literal operator the literal L is treated as

Correct typo.
If S contains a raw literal operator, the literal L is
treated as

ACCEPTED

US
18

2.24.8
[lex.ext]

 ge User-defined literals have no implementation experience. Either demonstrate a complete implementation of
this feature or remove N2750 from the working
paper prior the FDIS.

REJECTED
There was no consensus to
adopt this change.

(Reference should be to
2.14.8, not 2.24.8.)

US
19

3 4 te It is not always clear when the term "use" is intended as a
reference to the definition in 3.2 and when it has its
normal English meaning. For example, 3 paragraph 4
reads, "A name is a use of an identifier..."

Replace all occurrences of the word "use" that are
not intended as references to 3.2 with some other
term, such as "occurrence" or "appearance" or
"reference to".

ACCEPTED

See paper N3214

US
20

3.1 para 1 bullet
4

ed Grammatical number mismatch in "an assignment
expressions".

 ACCEPTED

US
21

3.1 2 ed using N::d; does not declare N::d. using N::d; // declares d ACCEPTED

US
22

3.2 4 te The type of the expression of a decltype-specifier is
apparently required to be complete.

Make an exception so that a template
specialization type is not instantiated merely
because it’s the type of the expression in

ACCEPTED with
MODIFICATIONS

The premise is incorrect: it is

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 30 of 157
ISO electronic balloting commenting template/version 2001-10

decltype(expression) the function call, not
decltype, that requires a
complete type.

See paper N3276

JP
19

3.2 4 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(10)" to "(Clause 10)".

ACCEPTED

JP
20

3.3.2 7 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(9)" to "(Clause 9)".

ACCEPTED

US
23

3.4.5 para 1 te Global class templates should not hide member
templates.

Strike the end of para 1 starting with "If the lookup
in the class of the object expression finds a
template,". See Appendix 1 - Additional Details

ACCEPTED

US
24

3.5 3 te One of the critieria for giving a name internal linkage is "a
variable that is explicitly declared const and neither
explicitly declared extern nor previously declared to have
external linkage." This should presumably apply to
variables declared constexpr as well.

Add parallel wording for the constexpr specifier. ACCEPTED

DE
4

3.5 te It is odd that "N" has no linkage and "g" has external
linkage in this example:

 ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 31 of 157
ISO electronic balloting commenting template/version 2001-10

namespace {
 namespace N // has no linkage
 {
 void g(); // has external linkage
 } }

DE
5

3.7.3 te The term "local" was changed globally to "block-scope",
but this section still contains the term "local" (see also
core issue 642).

Change "local" to "block-scope" in the first
paragraph.

ACCEPTED

RU
3

 3.7.4.3 p.65, line 7 ed Reference missed Insert reference "(5.7)" after "well-define pointer
arithmetic"

ACCEPTED

RU
4

3.7.4.3 p. 65, line 8 ed Reference missed Insert references "(4.10, 5.4)" after "well-define
pointer conversion"

ACCEPTED

GB
18

3.8 9 Te It isn't clear that the comment in the example actually
reflects the result of the placement new.
If the intended placement operator new is supposed to be
the one given by the standard library
,by including , the example is ill-formed as the placement-
new expression &b is const B*
which doesn't implicitly convert to void*.

Replace:
new (&b) const B;
With:
new (const_cast<B*>(&b)) const B;

ACCEPTED

US
25

3.11 Te C/C++ compatibility problems defined in WG21/N3093. Make the changes proposed in WG21/N3093 ACCEPTED

See paper N3190
US
26

3.7.4, 5.3.5,
12.5, 17.6.3.6,
18.6

 te Programmers may define a static member function
operator delete that takes a size parameter indicating the
size of the object to be deleted. The equivalent global
operator delete is not available. This omission has
unfortunate performance consequences.

Permit implementations and programmers to
define sized versions of the global operator delete
for use in preference to the unsized version. See
Appendix 1 - Additional Details

REJECTED

There was no consensus for
making the suggested
change at this point in the
standardization process.

US
27

3.8 4 te Related to core issue 1027, consider:

 int f() {
 union U { double d; } u1, u2;
 (int&)u1.d = 1;
 u2 = u1;

Clarify that this testcase is undefined, but that
adding an array of unsigned char to union U would
make it well-defined--if a storage location is
allocated with a particular type, it should be
undefined to create an object in that storage if it
would be undefined to access the stored value of

REJECTED. There was no
consensus to adopt this
proposed change for this
revision. However, an issue
on this item has been
opened for future

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 32 of 157
ISO electronic balloting commenting template/version 2001-10

 return (int&)u2.d;
 }

Does this involve undefined behavior? 3.8/4 seems to say
that it's OK to clobber u1 with an int object. Then union
assignment copies the object representation, possibly
creating an int object in u2 and making the return
statement well-defined. If this is well-defined, compilers
are significantly limited in the assumptions they can make
about type aliasing. On the other hand, the variant where
U has an array of unsigned char member must be well-
defined in order to support std::aligned_storage.

the object through the allocated type. comsideration.

US
28

4.4 para 3 te A const member function pointer could safely be applied
to a non-const object without violating const correctness.

Add an implicit conversion. See Appendix 1 -
Additional Details

REJECTED

There was no consensus for
adding this feature at this
point in the standardization
process.

FI 7 4.11
[conv.mem],
5.2.9
[expr.static.ca
st]

 te The CD1 comment CH1 should be reconsidered. The
request for being able to cast a pointer to member to a
pointer to a base class (or any other implicitly convertible
type) of the member is a bugfix rather than an extension.
It's a safe conversion, thus it should be allowed. There are
valid use cases for such conversions that are currently
forbidden.

The standard should allow implicit conversions
from “pointer to member of T of type cv D'' to
“pointer to member of T of type cv B'', where D is
of class type and B is a public base of D, It should
allow explicit conversion the other way around.

REJECTED

There was no consensus for
adding this feature at this
point in the standardization
process.

CH
3

4.11 and 5.2.9 te With respect to the target type, pointer to members should
behave like normal pointers. The current situation creates
an inconsistency in the C++ type system and is therefore
a defect in the Standard.

The standard should allow implicit conversions
from ``pointer to member of T of type cv D'' to
``pointer to member of T of type cv B'', where D is
of class type and B is a public base of D. It should
allow explicit conversion in the other direction.

REJECTED

There was no consensus for
adding this feature at this
point in the standardization
process.

JP
21

4.13 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not

Change "(5)" to "(Clause 5)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 33 of 157
ISO electronic balloting commenting template/version 2001-10

depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

JP 1

5 Paragraph 6 TL The first half of the Note(before "In general") indicates
that the expression "E1.E2" produces xvalue if E1 is
xvalue regardless of E2's type. It will be true even if E2 is
of reference type. On the other hand, according to 5.2.5
paragraph 4, if E2 is of reference type, the result of
"E1.E2" is lvalue regardless of E1's type. These two
descriptions contradict each other. As 5.2.5 paragraph 4
seems correct, 5 paragraph 6 should be corrected.

Modify 5 paragraph 6 so that the result of E1.E2 is
lvalue instead of xvalue when E2 is of reference
type.

ACCEPTED

FI 8 5.1.2
[expr.prim.lam
bda]

 te As requested in JP 9 on CD, capturing by moving should
be allowed for lambdas. Roshan Naik presents a very
compelling use case in the Core Reflector message
c++std-core-16341.

Allow specifying capture by move.

REJECTED

There was no consensus for
making the suggested
change at this point in the
standardization process.

CH
4

5.1.2 p1 ed Document N3067 changed the position of attribute
specifiers in various places. However, it left out lambda
expressions as an oversight, so that the position of
attribute-specifier opt in a lambda-declarator is
inconsistent with a function declarator

change the rule for lambda-declarator to
lambda-declarator:
 (parameter-declaration-clause) mutableopt
exception-specificationopt attribute-specifieropt
trailing-return-typeopt

ACCEPTED

CH
5

5.1.2 p4 first bullet ed typo Change second 'if' to 'is'. ACCEPTED

US
29

5.1.2 5 te default arguments should be allowed in lambdas (core
issue 974)

See Appendix 1 - Additional Details REJECTED

There was no consensus for
making the suggested
change at this point in the
standardization process.
However, core language
issue 974 remains open for
consideration in a future

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 34 of 157
ISO electronic balloting commenting template/version 2001-10

revision.
US
30

5.1.2 4 te lambda return type deduction should allow arbitrary
function structure (core issue 975)

See Appendix 1 - Additional Details REJECTED

There was no consensus for
making the suggested
change at this point in the
standardization process.
However, core language
issue 975 remains open for
consideration in a future
revision.

JP
22

5.1.2 7 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(5)" to "(Clause 5)".

ACCEPTED

CH
6

5.1.2 p8 and p10 te The current capturing rules seem too restrictive. Consider to make those rules less restrictive. REJECTED

The comment made no
specific suggestions for
change.

GB
19

5.1.2 16 Ed [expr.prim.lambda] 5.1.2/16 has text which begins "If a
lambda-expression m1 captures an entity and that entity is
captured by an immediately enclosing lambda expression
m2..." - that is, it describes a situation with m2 enclosing
m1, and then describes the capture transformation in
these terms.
The example given to support this, however, turns this all
around and shows m1 enclosing m2. This doesn't make
either the text or the example incorrect in any sense, but I
would suggest that it adds a level of confusion that is

All references to m1 from the beginning of
5.1.2/16 up to the last occurrence before
'[Example ' to be replaced by m2, and vice versa.
Rationale for suggested wording: all other
examples that use the 'mN' notation for lambda
expressions and which involve nesting apply
increasing N (by 1, from 1) to indicate increasing
nesting depth.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 35 of 157
ISO electronic balloting commenting template/version 2001-10

easily avoided.
GB
20

5.1.2 12 Ed [expr.prim.lambda] 5.1.2/12. In the example code given
the local struct s1 has a member function with signature
int s1::work(int n) whose definition does not include an
appropriate return statement; neither does it include the
conventional "// ..." to indicate that the example is
intended to be incomplete.

Suggested change: change the signature of this
member function to void s1::work(int n), as the
return of int does not contribute to the example.

ACCEPTED

GB
21

5.1.2 Te A lambda-capture can be &, which indicates it captures
everything by reference (unless otherwise specified), or &
/identifier/, which indicates it captures the /identifier/ by
reference. It can also be =, to capture everything by value,
or /identifier/, for a single thing. Why is = /identifier/ not
allowed, for consistency?

Add "= identifier" to the grammar in 5.1.2p1. (The
wording already covers the semantics of this,
since it refers to captures that "are preceded by &"
or "do not contain &")

REJECTED

There was no consensus for
making the suggested
change.

FI
19

5.1.2
[expr.prim.lam
bda]

21 te “When the lambda-expression is evaluated, the entities
that are captured by copy are used to direct-initialize each
corresponding non-static data member of the resulting
closure object. “ This apparently means that if the capture-
default is to copy, entities captured by default, implicitly,
are copied even in cases where the copy constructors of
such entities are explicit.

Don't implicitly copy entities that have explicit copy
constructors declared. Require that such entities
be captured explicitly, by enumerating them in the
capture list. This seems related to Core Issue
1020, so I'd like that issue to be resolved as well.

See Appendix 1 - Additional Details

REJECTED

There was no consensus for
making the suggested
change.

GB
23

5.2.2 4 Ed Order of initialization of arguments in a function is
fundamental to the memory model of C++, and the
obvious place to look for the definition is in the clause
defining function call operators - which currently says
nothing. The rules covering this are buried in paragraph
15 of [1.9]. A cross-reference to these words would be
most helpful. In particular, it should be made clear that
such initialization is indeterminately sequenced (and not
unsequenced.)

Add a non-normative note with cross-reference
after the first sentance of paragraph 4: "[Note -
such initializations are indeterminately sequenced
with respect to each other [1.9] - end note]"

ACCEPTED

US
31

5.2.9;7.2 10 te it is unclear from the text in 7.2 and 5.2.9 that the "values
of the enumeration" term does not exclude a prvalue of an
enumeration type from having other values representable

clarify this. "The value is unchanged if it is in the
range of enumeration values of the enumeration
type; otherwise the resulting enumeration value is

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 36 of 157
ISO electronic balloting commenting template/version 2001-10

in its underlying type (c++std-core-15652). unspecified (and might not be in that range)."
Also add a note after paragraph 7 "[Footnote: this
set of values is used to define promotion and
conversion semantics for the enumeration type; it
does not exclude an expression of enumeration
type from having a value that falls outside this
range.]"

US
32

5.2.5 5 te The description of ambiguity ("...if the class of which E2 is
directly a member is an ambiguous base (10.2) of the
naming class (11.2) of E2") does not cover the following
case:

 struct A { int i; };
 struct B: A { };
 struct C: A, B { };
 void f(C* p) {
 p->i; // Should be ambiguous
 }

Change the wording to apply also to the case
when the naming class is an ambiguous base of
the class of the object expression.

ACCEPTED

JP
64

5.2.8 5 E In some code examples, ellipsis(…) is used in ill-formed.
In these cases, "…" represents omission of some codes
like this:
class A { /* ... */ } ;
But in some cases, it is used without commented-out as
below:
class A { ... } ;
It is an inconsistent usage. They all should be enclosed in
a comment.

Change to:
class D { /* ... */ };

ACCEPTED

GB
22

5.2.10 Te It is not legal to use reinterpret_cast<> with pointers to
void.

Here's an additional paragraph to add to §5.2.10
that would fix this:
* A pointer to an object type can be explicitly
converted to a pointer to void, and vice versa.[1]
The result of such a pointer conversion will have
the same result as the standard pointer
conversion described in §4.10. A value of type
“pointer to object” converted to “pointer to void”

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 37 of 157
ISO electronic balloting commenting template/version 2001-10

and back, possibly with different cv-qualification,
shall have its original value.
[1] The types may have different cv-qualifiers,
subject to the overall restriction that a
reinterpret_cast cannot cast away constness.

US
33

5.3.1 3 te The resolution of issue 983 added an error for finding the
named member in an ambiguous base. This is an
unnecessary special case, since the value of the
expression is pointer to member of base. If this value is
then converted to pointer to member of derived, an error
will be given at that point.

Revert the change for issue 983 (and in the issues
list, add a link to issue 203).

ACCEPTED

GB
24

5.3.3 6 Te The return type of the sizeof operator is defined as being
of type std::size_t, defined in library clause 18.2. This, in
turn, says that size_t is defined in the C standard, which in
turn says that size_t is defined as the type of the result of
the sizeof operator!
The C definition of sizeof returns an implementation-
defined unsigned integer type, recommended not to have
"an integer conversion rank greater than signed long int,
unless the implementation supports objects large enough
to make this necessary."

The result type of the sizeof operator should
explicitly be implementation defined in clause
5.3.3.

ACCEPTED

US
34

5.3.4, 5.3.5 te Allocations functions are missing happens-before
requirements and guarantees.

Add requirements. See Appendix 1 - Additional
Details

ACCEPTED with
MODIFICATIONS

See LWG 1524

US
35

5.3.7
[expr.unary.no
except], 15.4
[except.spec]

 ge noexcept has no implementation experience. Either demonstrate a complete implementation of
this feature or remove N3050 from the working
paper prior the FDIS.

REJECTED
The feature has been
implemented.

FI
17

5.3.7
[expr.unary.no
except]

 te Destructors should by default be noexcept. Such a rule
should, I think, be obeyed even for cases where a
destructor is defaulted. Then a throwing destructor would
need to be declared noexcept(false), and I think the
resulting code breakage is acceptable.

Clarify the implicit generation rules and defaulting
rules so that destructors are noexcept unless
explicitly declared noexcept(false).

ACCEPTED with
MODIFICATIONS

The rule that was adopted
makes destructors noexcept
if all the base and member
destructors are.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 38 of 157
ISO electronic balloting commenting template/version 2001-10

See paper N3204
JP 2 5.5 6 TL Should be corrected because it contradicts with rules in

5.2.5 paragraph 4.
Add the condition that a type of e2 is not a
reference type

REJECTED

There are no pointers to
members of reference type
(8.3.3p3).

US
36

5.19
[expr.const]

 ge Generalized constant expressions have no
implementation experience.

Either demonstrate a complete implementation of
this feature or remove N2235 from the working
paper prior the FDIS.

REJECTED

An implementation is in
progress and is expected to
be complete before the
publication of the FDIS. Also,
this feature is needed in the
Standard library, thus should
not be removed, and there
was no consensus to do so.

DE
6

5.19 te Paragraph 1 is interpreted by some readers to restrict the
following definition of a "constant expression" to apply
only where a constant expression is required.

Replace the first two normative sentences of
paragraph 1 by "This sub-section defines constant
expressions."

ACCEPT WITH
MODIFICATIONS
Changed to read:

Certain contexts require
expressions that satisfy
additional requirements as
detailed in this sub-clause;
other contexts have different
semantics depending on
whether or not an expression
satisfies these requirements.
Expressions that satisfy
these requirements are
called constant expressions.
[Note: Constant
expressions can be
evaluated during translation.
-- end note]

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 39 of 157
ISO electronic balloting commenting template/version 2001-10

DE
7

5.19 4, note te The note in paragraph 4 alludes to the possibility that
compile-time and run-time evaluations of floating-point
expressions might yield different results. There is no clear
normative statement (other than the absence of a
restriction) that gives such permission.

Move the second sentence of the note into
normative text.

REJECTED

The possibility of differing
results of calculations is
implicit in the absence of
normative statements
constraining their accuracy,
so no normative change is
needed; the existing note is
sufficient to point out this
implication.

DE
8

5.19 6 te In the definition of "potential constant expression" in
paragraph 6, it is unclear how "arbitrary" the substitution
of the function parameters is. Does it mean "there exists a
value for which the result is a constant expression" or
does it mean "for all possible values, the result needs to
be a constant expression"? Example:

constexpr int f(int x){return x + 1; }
is a constant expression under the first interpretation, but
not under the second (because overflow occurs for x ==
INT_MAX, cf. 5.19p2 bullet 5). The answer also affects
expressions such as:
constexpr int f2(bool v) { return v ? throw 0 : 0; }
constexpr int f3(bool v) { return v && (throw 0, 0); }

 ACCEPTED

See paper N3218

GB
25

5.19 Te In trying to pin down the behaviour of constexpr functions,
it became apparent that there is disagreement over
whether or not the following example is well-formed.

constexpr int f() { return 42 + 84; }
const int sz = f();
int a[sz];

This should have the same effect as

const int sz = 42 + 84;

Update the wording in 5.19 to make it clear that
both the examples are valid.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 40 of 157
ISO electronic balloting commenting template/version 2001-10

int a[sz];

otherwise constexpr functions are broken.

GB
26

5.19 Te It is not clear how overload resolution applies within a
constexpr function. In particular, if an expression in the
function body yields an integral value of 0 for some
parameter values, and not for others, is it usable as a null
pointer constant when evaluated as a constant
expression.

typedef char (&One)[1];
typedef char (&Two)[2];
One f(void*); // #1
Two f(...); // #2

constexpr int test(int n) { return sizeof f(n); }
constexpr int test2(int n) { return sizeof f(n*0); }

int q = 0;

#include

int main() {
char a[test(0)];
std::cout << sizeof(a) << std::endl; // #3
std::cout << test(q) << std::endl; // #4

char b[test2(0)];
std::cout << sizeof(b) << std::endl; // #5
std::cout << test2(q) << std::endl; // #6
}

#3 and #4 should print 2, since n is not an integral
constant expression with value 0 in the body of test() ---
though it is a constant expression when test() is evaluated
as a constant expression, it's value is dependent on the
invocation. Permitting different results of overload

Updated 5.19 to make it clear that overload
resolution in a constexpr function is not dependent
on the context of use, or the value of the
arguments.

ACCEPTED
See paper N3218

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 41 of 157
ISO electronic balloting commenting template/version 2001-10

resolution within the same function body in different calling
contexts would violate ODR.

On the other hand, in test2(), the answer is no longer
dependent on the value of n, since "n*0" always evaluates
to 0. However, it is not clear from the FCD whether "n*0"
is thus a constant expression (and therefore a valid null
pointer constant) inside the body of test2. Either way both
#5 and #6 should print the same value; it would violate
ODR for #5 to print "1" (indicating that "n*0" was a valid
null pointer constant when test2() is evaluated in a
constant expression context) whilst #6 prints "2" (since
n*0 is not a constant expression if n is not constant). #5
and #6 should thus both print "1", or both print "2".

US
37

6.5 te "for (auto e : range)" creates copies of elements. This
seems like a gotcha for new users. Not only are copies
inefficient for reading, but writing to copies won't modify
the original elements.

Permitting "for (identifier : expression)" and giving it the
same meaning as "for (auto& identifier : expression)"
would make the range-based for statement easier to teach
and to use, and should be trivial to specify and to
implement.

Permit "for (identifier : expression)" or similar,
with the same meaning as "for (auto& identifier :
expression)".

REJECTED

There was no consensus for
making the suggested
change at this point in the
standardization process.

CA
3

Various various variou
s

Canada agrees with US 37, 44, 47, 85, 77, 92, 97, 102,
105, 109 Resolve as suggested in these comments ACCEPTED with

MODIFICATIONS

US 37, US 92, and US 105
were rejected. US 44, US 77,
US 97, US 102, and US 109
were accepted. US 47 and
US 85 were accepted with
modifications.

US
38

6.5 5 te The statement that certain infinite loops may be assumed
to terminate should also apply to go-to loops and possibly
infinite recursion. We expect that compiler analyses that

As a strawman, replace the paragraph with

"The implementation may assume that any

ACCEPTED
See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 42 of 157
ISO electronic balloting commenting template/version 2001-10

would take advantage of this can often no longer identify
the origin of such a loop.

program will eventually do one of the following:

- terminate,

- make a call to a library I/O function,

- access or modify a volatile object, or

- perform a synchronization operation (1.10) or
atomic operation (Clause 29)."

Possibly move this and the attached note to
section 1.9, after p8.

JP
69

6.35.1 2 E Constant width font should be used for 3 "while"s in the
paragraph as described in Syntax notation (1.6).

Change the font for "while" to constant width type.
When the condition of a while statement is a
declaration, the scope of the variable that is
declared extends
from its point of declaration (3.3.2) to the end of
the while statement. A while statement of the
form

ACCEPTED

GB
27

6.5.4p1 Te 6.5.4/1 requires that range-based for loops behave as if
they had "{ auto&& __range = (expression); for (auto
__begin = begin_expr, __end = end_expr; ..." which
implies that __begin and __end must have the same type.
However, this prevents stateful iterators with an end
sentinel of a different type. Since range-based for loops'
equivalent code already introduces a block (for the
__range variable), could __begin and __end be placed
there, as "auto __begin = begin_expr; auto __end =
end_expr;"?

Example of what this change would allow, only the
relevant details shown with ctors, op*, op++, etc. omitted:
(apologies if the formatting is lost)
struct End {}; struct Counter { Counter& begin() { return
*this; } // used by begin_expr End end() { return End(); } //

Change the "as if" for a range-based for-loop in
6.5.4p1 to move the initialization of __begin and
__end outside the loop into the enclosing block:
"{ auto&& __range = (expression);
auto __begin = begin_expr; auto __end =
end_expr;
for (; ..."

REJECTED

There was no consensus for
making the suggested
change. Use of iterators of
different types is
incompatible with the
Standard library containers
and with the earlier concepts-
based specification.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 43 of 157
ISO electronic balloting commenting template/version 2001-10

used by end_expr bool operator!=(End) const { return
_current != _end; }

Counter(int begin, int end) : _current(begin), _end(end) {}
int _current, _end; };

void use_example() { for (auto n : Counter(0, 10)) { // n
takes values from 0..9 } }

CH
7

6.5.4 p1 te The phrasing "is equivalent to" is too restrictive and might
constrain future improvements.

Make clear that the specification is not necessarily
the implementation, i.e. that the expressions in the
specification are not necessarily called at all and
that the order in which the statement is executed
for different values of for-range-declaration is not
necessarily the same as if the for loop would have
been written the way in the specification.

REJECTED

There was no consensus for
making the suggested
change. The Standard needs
to specify the meaning of the
statement; removing the
“equivalent to” phrasing
would leave the feature
underspecified.
Implementations have a
good deal of latitude under
the “as-if” rule.

GB
28

7 1 Ed "Attributes" is misspelled Replace "Atrributes" with "Attributes" ACCEPTED

US
39

7.1 1 te The current wording is, "The optional attribute-specifier in
a decl-specifier-seq appertains to the type determined by
the decl-specifier-seq." However, the rule for decl-
specifier-seq in the grammar is recursive, and the intent is
for the attribute-specifier to appertain to the top decl-
specifier-seq, not the one in which the attribute-specifier
directly appears.

Change the wording to indicate that the complete
or outermost decl-specifier-seq is intended.

ACCEPTED

GB
29

7.1.5 Te A constexpr function is not permitted to return via an
exception. This should be recognised, and a function
declared 'constexpr' without an explicit exception
specification should be treated as if declared
'noexcept(true)' rather than the usual 'noexcept(false)'. For
a function template declared constexpr without an explicit

Give constexpr functions an implicit non-throwing
exception specification.

ACCEPTED with
MODIFICATIONS

The premise is not correct:
an exception is forbidden
only when a constexpr

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 44 of 157
ISO electronic balloting commenting template/version 2001-10

exception specification, it should be considered
'noexcept(true)' if and only if the constexpr keyword is
respected on a given instantiation.

function is invoked in a
context that requires a
constant expression. Used
as an ordinary function, it can
throw. Instead of changing
the default exception
specification, the result of the
noexcept operator was
changed, based on whether
the invocation of the function
is a constant expression or
not.

US
40

7.1.6.2 4 te The description of decltype does not specify whether the
type of a parameter is the declared type or the type as
adjusted in 8.3.5¶5:

auto f(int a[])->decltype(a);
 // ill-formed or int*?
auto g(const int i)->decltype(i);
 // int or const int?

Clarify the wording to indicate that the type of a
parameter is after the array- and function-to-
pointer decay but before the removal of cv-
qualification.

ACCEPTED

DE
9

7.1.6.2 p4 te decltype applied to a function call expression requires a
complete type (5.2.2 paragraph 3 and 3.2 paragraph 4),
even though decltype's result might be used in a way that
does not actually require a complete type. This might
cause undesired and excessive template instantiations.

When immediately applying decltype, do not
require a complete type, for example for the return
type of a function call.

ACCEPTED with
MODIFICATIONS

The change was applied only
to the return type of a
function call operand of
decltype.

See paper N3276

US
41

7.1.6.3 2 te The current wording disallows use of typedef-names in
elaborated-type-specifiers. This prohibition should also
apply to template aliases:

 struct A { };
 template<typename T> using X = A;
 struct X<int>* p2; // ill-formed

Add the necessary wording to prohibit a
specialization of a template alias in an elaborated-
type-specifier.

ACCEPTED

US 7.1.6.4 te The overloaded meaning of the auto specifier is confusing Choose another keyword to indicate a late- REJECTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 45 of 157
ISO electronic balloting commenting template/version 2001-10

42 and prevents possible future language enhancements. specified return type. The identifiers lateret and
postret have no Google code search hits. The
identifiers late, latetype, and posttype have 30-40
hits.

There was no consensus to
make the suggested change.

US
43

7.6 4 ed The contexts in which an attribute-specifier can appear
include statements, described in clause 6, but the cross-
references to clauses describing those contexts do not
include clause 6.

Add clause 6 to the list of cross-references in the
first sentence.

ACCEPTED

GB
30

7.6.1 6 Te Making the use of [[illegal except where introducing an
attribute specifier is just reintroducing the problem we had
with >> for closing nested templates, albeit in a minor and
less common form.
As Jason Merrill commented in c++std-core-16046, there
is no ambiguity in practice because code couldn't actually
be well-formed under interpretation as both an attribute
specifier and a lambda introducer. A small amount of
lookahead would be required to differentiate the cases,
but this should not be a problem.
This restriction also means that lambdas in macros must
be enclosed in parentheses to avoid accidental
interpretation as an illegal attribute specifier if used as an
array index.

Delete 7.6.1 paragraph 6. REJECTED

There was no consensus to
make the suggested change.

JP
23

7.6.1 4 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(clause 7, clause 8)" to "(Clause 7,
Clause 8)".

ACCEPTED

GB
31

7.6.2 Te After reviewing the case for attributes, wg14 has opted not
to adopt this feature, and is instead using keywords for the
few important cases identified in the attributes proposal.

Revert the changes in the initial alignment
proposal that changed the 'alignas' keyword into
an attribute.

ACCEPTED
See paper N3190

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 46 of 157
ISO electronic balloting commenting template/version 2001-10

For compatibility with C, the change of the 'alignas'
keyword to the '[[align]]' attribute should be reversed.

GB
32

7.6.3 Ge C has rejected the notion of attributes, and introduced the
noreturn facility as a keyword. To continue writing clean,
portable code we should replace the [[noreturn]] attribute
with a 'noreturn' keyword, following the usual convention
that while C obfuscates new keywords with _Capital and
adds a macro to map to the comfortable spelling, C++
simply adopts the all-lowercase spelling.

Replace the [[noreturn]] attribute with a new
keyword, 'noreturn', with identical semantics. Note
that this implies the keyword will not be something
that a function can be overloaded upon.

REJECTED

There was no consensus to
make the suggested change.

US
44

7.6.5 te Even if attributes continue to be standardized over
continued objections from both of the two vendors who
are cited as the principal prior art, we can live with them
with the exception of the virtual override controls. This
result is just awful, as already shown in the example in
7.6.5 (excerpted):

 class D [[base_check]] : public B {

 void sone_func [[override]] ();

 virtual void h [[hiding]] (char*);

 };

Here we have six keywords (not counting void and char)
— three normal keywords, and three [[decorated]]
keywords. There has already been public ridicule of
C++0x about this ugliness. This is just a poor language
design, even in the face of backward compatibility
concerns (e.g., that some existing code may already use
those words as identifiers) because those concerns have
already been resolved in other ways in existing practice
(see below).

More importantly, this is exactly the abuse of attributes as
disguised keywords that was objected to and was
explicitly promised not to happen in order to get this
proposal passed. The use of attributes for the virtual
control keywords is the most egregious abuse of the
attribute syntax, and at least that use of attributes must be

Change the syntax for virtual override control to
not use attributes.

ACCEPTED

See paper N3272

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 47 of 157
ISO electronic balloting commenting template/version 2001-10

fixed by replacing them with non-attribute syntax.

These virtual override controls are language features, not
annotations.

It is possible to have nice names and no conflicts with
existing code by using contextual keywords, such as
recognizing the word as having the special meaning when
it appears in a grammar position where no user identifier
can appear, as demonstrated in C++/CLI which has five
years of actual field experience with a large number of
customers (and exactly no name conflict or programmer
confusion problems reported in the field during the five
years this has been available):

 class D : public B {

 void sone_func() override; // same meaning as
[[override]] – explicit override

 virtual void h (char*) new; // same meaning as
[[hiding]] – a new function, not an override

 };

 int override = 42; // ok, override is not a
reserved keyword

The above forms are implementable, have been
implemented, have years of practical field experience, and
work. Developers love them. Whether the answer is to
follow this existing practice or something else, there needs
to be a more natural replacement for the currently
[[attributed]] keywords for virtual override control which is
an ugly novelty that has no field experience and that
developers have already ridiculed.

US
45

7.6.5 6 ed The example includes a line reading

class D [[base_check]] : public B {

However, the current syntax in 9¶1 places the attribute-

Change the example to read

class [[base_check]] D : public B {

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 48 of 157
ISO electronic balloting commenting template/version 2001-10

specifier before the class name.

CH
8

8.1 p1 (syntax) ed 'noptr-abstract-declarator:' rule misses 'opt' subscript from
the constant expression within the array brackets. This
seems to be an editorial oversight

change: "noptr-abstract-declaratoropt [constant-
expression] attribute-specifieropt" to "noptr-
abstract-declaratoropt [constant-expressionopt]
attribute-specifieropt"

ACCEPTED
See paper N3262

US
46

8.3.2

20.7.6.2

all

Table 49

te There is no way to create a prvalue of array type, so there
ought to be no way create a (nonsensical) rvalue
reference to array type.

In [dcl.ref]/2, disallow declarations of T (&&A)[].

In [dec.ref]/6 add a sentence: If a typedef, a type
template-parameter, or a decltype-specifier
denotes a type A that is an array type (of known or
unknown size), an attempt to create the type
“rvalue reference to cv A” creates the type A&.

In [meta.trans.ref]/Table 49 change the third row
as follows:

If T names an array type, then the member
typedef type shall name T&, otherwise if T names
an object or function type...

REJECTED

It is possible to create an
array prvalue: an array
member of a class prvalue is
an array prvalue.

GB
33

8.3.5 5 Ed The register keyword is deprecated, so does not make for
a good example. Suggest substituting the new storage
class specifier, 'thread_local', instead.

Use 'thread_local' in place of 'register' in the
following sentance: "[Example: register char*
becomes char* —end example]"

ACCEPTED with
MODIFICATIONS

thread_local cannot be used
for a parameter. However,
storage class specifiers do
not affect the type, so
mentioning storage class
specifiers was incorrect and
has been removed.

US
47

8.4.2 te 8.4.2 [dcl.fct.def.default]/4 says: "A special member
function is user-provided if it is user-declared and not
explicitly defaulted on its first declaration. A user-provided
explicitly-defaulted function is..." The second sentence
here should say "A user-declared explicitly-defaulted
function is...".

Change

“A user-provided explicitly-defaulted function is..."

to

“A user-declared explicitly-defaulted function is...".

ACCEPTED with
MODIFICATIONS
See CWG 1134

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 49 of 157
ISO electronic balloting commenting template/version 2001-10

GB
34

8.4.2 p2 Ed It is confusing when a normative paragraph starts with a
note. The note starting this paragraph, with its reference
to 'this' relating to the previous paragraph and not the
content that follows, should be moved into the first
paragraph, or the rest of this paragraph after the note
should start a new numbered paragraph.

The note starting this paragraph should be moved
into the first paragraph, or the rest of this
paragraph after the note should start a new
numbered paragraph.

ACCEPTED

FI 1 8.4.2
[dcl.fct.def.def
ault]

Paragraph 2 te It should be allowed to explicitly default a non-public
special member function on its first declaration. It is very
likely that users will want to default protected/private
constructors and copy constructors without having to write
such defaulting outside the class.

Strike the “it shall be public” bullet. ACCEPTED

FI 2 8.4.2
[dcl.fct.def.def
ault]

Paragraph 2 te It should be allowed to explicitly default an explicit special
member function on its first declaration. It is very likely
that users will want to default explicit copy constructors
without having to write such defaulting outside of the
class.

Strike the “it shall not be explicit” bullet.

See Appendix 1 - Additional Details

ACCEPTED

FI 3 8.4.2
[dcl.fct.def.def
ault]

Paragraph 2 te It should be allowed to explicitly default a virtual special
member function on its first declaration. It is very likely
that users will want to default virtual copy assignment
operators and destructors without having to write such
defaulting outside of the class.

Strike the “it shall not be virtual” bullet.

See Appendix 1 - Additional Details

ACCEPTED

GB
35

8.5.1 7 Te With the removal of the deprecated string-literal-to-non-
const-char* conversion, member 'b' of struct S should be
declared as a 'const' char *.

Fix struct S as: "struct S { int a; const char* b; int
c; };"

ACCEPTED

JP
71

8.5.1 7 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
struct S { int a; const char* b; int c; };
S ss = { 1, "asdf" };

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 50 of 157
ISO electronic balloting commenting template/version 2001-10

JP
72

8.5.1 15 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
union u { int a; const char* b; };
u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

ACCEPTED

GB
36

8.5.1 17 Ed The 'b' member of union u should be declared const char *
to better illustrate the expected cause of failures.

Update union u as: "union u { int a; const char* b;
};"

ACCEPTED

US
48

8.5.3 5 te The rule "...or the reference shall be an rvalue reference
and the initializer expression shall be an rvalue or have a
function type" is stated in terms of the rvalue-ness of the
expression rather than the eventual target of the
reference; this leads to some undesirable results, such as

struct A { };
struct B {
 operator A&();
};

A&& aref = B(); // binds to lvalue

(c++std-core-16305)

Correct the formulation to deal with the rvalue-
ness of the initializer after conversion to the
appropriate type.

ACCEPTED

US
49

8.5.3 5 te The FCD does not specify direct binding for this example:

int i;
int main()
{
 int&& ir = static_cast<int&&>(i);
 ir = 42;
 return (i != 42);
}
(c++std-core-16181)

See Appendix 1 - Additional Details

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 51 of 157
ISO electronic balloting commenting template/version 2001-10

GB
37

8.5.3 Te It seems that lvalues of any sort don't bind to non-const
rvalue ref args, even if an intermediate temporary would
be created.

See the discussion at
http://stackoverflow.com/questions/2748866/c0x-rvalue-
references-and-temporaries.

I'll summarise that here: Assume that std::vector has
push_back overloads declared as follows, with SFINAE
omitted for clarity:

void push_back(const T &);
//Copies the const T & into the vector's storage

void push_back(T &&);
//Moves the T && into the vector's storage

Then this code appears to behave as commented, as of
N3090:

const char * cchar = "Hello, world"; std::vector<std::string>
v;
v.push_back(cchar);
//makes a temporary string, copies the string
into vector storage using push_back(const T&)

v.push_back(std::string(cchar));
//makes a temporary string, moves the string into vector
storage using push_back(T&&)

v.push_back(std::move(cchar));
//makes a temporary string, moves the string into the
vector using push_back(T&&)

Johannes Schaub (litb) convincingly argued that the
reason for this is clause 8.5.3/5 describing reference

Possible wording: amend the second list
item in 8.5.3/5:

Otherwise, the reference shall be an lvalue
reference to a non-volatile const type (i.e., cv1
shall be const), or the reference shall be an rvalue
reference [deleted the rest of the sentence].

[The last example would also need to be deleted.]

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 52 of 157
ISO electronic balloting commenting template/version 2001-10

binding - it allows direct binding of lvalues, bindings that
require conversion sequences to const lvalue refs, and
rvalues to rvalue refs. But it doesn't allow for lvalues to
ever bind to rvalue refs, even if an intermediate temporary
would otherwise need to be created.

This isn't what I (as a user of std::vector) expect to
happen. I expect all of these push_back calls to do the
same thing, namely, select the push_back(T&&) overload,
create a temporary string object from 'cchar', bind the
temporary string to the argument, and hence move (not
copy) the temporary string into vector's storage.

It seems particularly strange that v.push_back(cchar)
"requires" an extra copy, but
v.push_back(std::move(cchar)) does not. It almost
seems like indicating that 'cchar' is potentially-movable (by
casting it to an rvalue ref using std::move) allows moving
from a completely different object - the temporary string.

I suggest extending the rules for initializing const lvalue
refs via implicit conversions (8.5.3/5), to also apply to
rvalue refs.

This also raises an additional question of whether lvalues
of _copyable_ types should be copied into a temporary
object so that they may bind to an rvalue ref. Allowing this
would not affect const T&/T&& overload pairs. But
it could be potentially useful when writing functions that
wish to accept a number of rvalue refs to copyable-but-
not-movable types (such as all C++03 classes with user-
defined copy constructors), or when writing functions that
"take apart" a number their arguments in a way that is
different from a straightforward move (perhaps some
tree operations would want to do this).

Conversely, it might seem odd that declarations such as:

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 53 of 157
ISO electronic balloting commenting template/version 2001-10

string && s = string_lvalue;
string && s = string_rvalue_ref_variable;
//mistake, std::move(string_rvalue_ref_variable) was
intended

...would both

silently copy their arguments and bind to the copy, instead
of being invalid as they are now.

We believe this is core issue 953

DE
10

8.5.3 te Reference binding rules for rvalue references should
consider temporaries generated from lvalues by implicit
conversions. Consider to postpone the lvalue/rvalue
analysis of an expression to after the implicit conversion
chain has been deduced. Example:

 void f(std::string&&);
 void g() {
 f(std::string("hello")); // #1, ok
 f("hello"); // #2, error,
 // but should be the same as #1
 }

 ACCEPTED

US
50

9 9 te the class "struct A { const int i; };" was a POD in C++98,
but is not a POD under the FCD rules because it does not
have a trivial default constructor; I believe that C++0x
POD was intended to be a superset of C++98 POD.

change POD to be standard layout and trivially
copyable?

ACCEPTED

FI
16

9

9

9

3.9

5 trivial

6 std-layout

9 POD

10 literal
type

ge There are definitions for these types in the text, yet it is left
unclear what use these classifications have. The types are
very close to each other, which makes them confusing. If
the reader must rely on external references, then these
references should be specified (which is undesirable, or
even disallowed by ISO(?)). As it stands, there is an
example for using standard-layout classes (with other
programming languages). There are also uses specified
for literal types. One can imagine many uses for these
four/five types, so it is important to have a clear

It is necessary to have detailed information on the
expected uses of standard-layout, trivial, trivially
copyable, literal and POD types.

REJECTED

The current wording is clear
enough. The Standard is
correct as written.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 54 of 157
ISO electronic balloting commenting template/version 2001-10

specification of the intent as to where each of these types
is expected to be used.

JP
81

9 9 E Missing description of acronym "POD", which existed in
C++03: The acronym POD stands for "plain old data."

Add "The acronym POD stands for "plain old
data." as an annotation.

ACCEPTED

US
51

9.2
[class.mem]

 ge Non-static data member initializers have no
implementation experience.

Either demonstrate a complete implementation of
this feature or remove N2756 from the working
paper prior the FDIS.

REJECTED

C++/CLI has a very similar
feature that has been
implemented.

US
52

9.3 7 te The current wording allows friend declarations to name
member functions "after their class has been defined."
This appears to prohibit a friend declaration in a nested
class defined inside its containing class that names a
member function of the containing class, because the
containing class is still considered to be incomplete at that
point.

Change the wording to allow a friend declaration
of a "previously-declared member function."

ACCEPTED

US
53

9.3.1
[class.mfct.no
n-static]

 ge Move semantics for *this have no implementation
experience.

Either demonstrate a complete implementation of
this feature or remove N1821 from the working
paper prior the FDIS.

REJECTED. The Committee
found no consensus for
adopting this change.

JP
73

9.3.1 3 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(const char*, tnode* l, tnode* r);
};
void tnode::set(const char* w, tnode* l, tnode* r) {
count = strlen(w)+1;
if (sizeof(tword)<=count)
perror("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 55 of 157
ISO electronic balloting commenting template/version 2001-10

}
void f(tnode n1, tnode n2) {
n1.set("abc",&n2,0);
n2.set("def",0,0);
}

US
54

9.5
[class.union]

 ge Unrestricted unions have no implementation experience. Either demonstrate a complete implementation of
this feature or remove N2544 from the working
paper prior the FDIS.

ACCEPTED

The feature has been
implemented,no change is
needed.

JP
74

9.5 6 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
void f() {
union { int a; const char* p; };
a = 1;
p = "Jennifer";
}

ACCEPTED

GB
38

9.6 Te The signedness of bit-fields is the only time when 'signed
int' is any different to just 'int'.

In C it is possible to remember whether a typedef uses
'signed' but in C++ it doesn't make sense and will result in
ODR violations if A<long> and A<signed long> are not
exactly equivalent.

This also causes portability problems because it is not
specified whether typedefs such as int32_t are defined
with 'signed' so using the <cstdint> types in bitfields is
problematic.

It is common to want to guarantee a bit-field has a
minimum number of bits, for which the <cstdint> types are

'signed int' should always be equivalent to 'int' in
all contexts.

A possible alternative would be to specify that
signed types in <cstdint> are declared with
'signed' so that using them for bit-fields has
predictable results, but this doesn't address the
ODR issue with A<long> and A<signed long>

REJECTED

Resolving this question was
not deemed essential for this
revision of the Standard, but
core language issue 675
remains open for possible
consideration in a future
revision.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 56 of 157
ISO electronic balloting commenting template/version 2001-10

useful, except that the signedness of a bit-field using
int32_t might depend on both unspecified and
implementation-defined behaviour.

US
55

10.3 Paragraph 5 te The following code not only does not compile on the
compilers I’ve tested, but cannot be fixed through any
combinations of forward references

class B {
public:
 virtual B *f() = 0;
};
class D1 : public B {
public:
 virtual D2 *f();
};
class D2 : public B {
public:
 virtual D1 *f();
};

In the core mailing list, Daniel Krugler points out
that the current wording is ambiguous as to
whether this is legal (although an editorial
example suggests otherwise), and observes that it
should be OK as long as D2 is complete at the
point of definition of D1::f. The standard should
resolve the ambiguity by saying that D2 only
needs to be complete at the point of definition of
D1::f.

The core mailing list message text is below:
I would be happy, if the standard would just allow
this, but IMO the
current wording seems to be readable in different
ways (e.g.
Comeau rejects the code). I think the reason is
that [class.virtual]/5
just says:

"The return type of an overriding function shall be
either identical to
the return type of the overridden function or
covariant with the
classes of the functions.[..]"

This restriction is IMO only necessary for the
definition of D::f.
Secondly p. 6 says:

"If the return type of D::f differs from the return
type of B::f, the class
type in the return type of D::f shall be complete at
the point of

REJECTED

It is necessary to be able to
calculate the offsets applied
to covariant return values
when only the class definition
is available.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 57 of 157
ISO electronic balloting commenting template/version 2001-10

declaration of D::f or shall be the class type D.[..]"

and shows the following example that explicitly
forbids that (simplified):

struct Base {
 virtual B* vf5();
};

class A;

struct Derived : public Base {
 A* vf5(); // error: returns pointer to incomplete
class
};

US
56

11.3
[class.access.
decl]

 te Access declarations were deprecated in the 1998
standard and have no benefits over using declarations.

Remove access declarations from the working
paper.

ACCEPTED

FI 4 12.1
[class.ctor]

Paragraph 5 te What effect does defaulting have on triviality? Related to
FI 1, non-public special members defaulted on their first
declaration should retain triviality, because they shouldn't
be considered user-provided. Related to FI 3, defaulted
member functions that are virtual should not be
considered trivial, but there's no reason why non-virtuals
could not be.

Furthermore, a class with a non-public explicitly-defaulted
constructor isn't ever trivially constructible under the
current rules. If such a class is used as a subobject, the
constructor of the aggregating class should be trivial if it
can access the non-public explicitly defaulted constructor
of a subobject.

Change the triviality rules so that a class can have
a trivial default constructor if the class has access
to the default constructors of its subobjects and
the default constructors of the subobjects are
explicitly defaulted on first declaration, even if said
defaulted constructors are non-public.

See Appendix 1 - Additional Details

ACCEPTED

FI
15

12.3.1 2 ge 12.3.1. 2: "A default constructor may be an explicit
constructor; such a constructor will be used to perform
default-initialization or value-initialization (8.5)."

The difference between a no argument default
constructor and an explicit no argument default
constructor should be explained in the standard.

REJECTED

The current wording is clear

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 58 of 157
ISO electronic balloting commenting template/version 2001-10

12.3. 1 also says that an explicit ctor is different from a
non-explicit ctor in that it is only invoked when

 direct-initialization (T a(1); T a{1}. presumably also T a;)
or casting is used.

What are the scenarios for the default ctor where explicit
actually matters? Temporaries, arrays, ???

When, if ever, is an explicit default ctor different from a
non-explicit ctor?

 If there is no difference, this should be explicitly
specified.

enough.

US
57

12.3.2
[class.conv.fct
]

 ge Explicit conversion operators have no implementation
experience.

Either demonstrate a complete implementation of
this feature or remove N2437 from the working
paper prior the FDIS.

ACCEPTED

The feature has been
implemented.

GB
39

12.4 4 Te Contradiction between the note and normative language
describing when defaulted function definitions might have
an exception specification. (See 8.4.2p2 for requirement
to provide the exception specification)

Either strike the second sentance of this note, or
update it to reflect under which conditions a
defaulted definition might have an exception
specification.

ACCEPTED

GB
40

12.4 Te It is very difficult to write correct programs that do not call
'terminate' in the presence of destructors that can throw
exceptions, and this practice has long been discouraged.
Many implicitly declared destructors already carry
noexcept declarations (mostly types with trivial
destructors) and it is anticipated it will become common
practice to want a user-declared destructor to be declared
noexcept. This becomes important evaluating the
noexcept operator, where any of the unevaluated sub-
expressions may produce a temporary object. As this is
expected to be the overwhelmingly common case, a user-
declared destructor that does not supply an exception
specification should be considered as if declared
noexcept(true) rather than noexcept(false), the default for
every other function.

a user-declared destructor that does not supply an
exception specification should be considered as if
declared noexcept(true) rather than
noexcept(false), the default for every other
function

ACCEPTED with
MODIFICATIONS

The rule that was adopted
makes destructors noexcept
if all the base and member
destructors are.

See paper N3204

CH 12.4 and 15.4 te Destructors should generally not throw exceptions.
Consider giving an explicit rule for this.

Add in 12.4 or 15.4 a paragraph to the effect that
all destructors not having an exception

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 59 of 157
ISO electronic balloting commenting template/version 2001-10

9 soecification are considered noexcept(true).
The rule that was adopted
makes destructors noexcept
if all the base and member
destructors are.

See paper N3204

US
58

12.5 foot 117 ed Missing comma in "is not virtual the size might". Add the comma.

REJECTED

Because of the comma later
in the sentence, a comma
here would be wrong.

US
59

12.6.2
[class.base.ini
t]

 ge Delegating constructors have no implementation
experience.

Either demonstrate a complete implementation of
this feature or remove N1986 from the working
paper prior the FDIS.

ACCEPTED

The feature has been
implemented, no changes
are needed.

US
60

12.8
[class.copy]

 ge Implicitly-defined move constructors and move
assignment operators have no implementation
experience.

Either demonstrate a complete implementation of
this feature or remove N3053 from the working
paper prior the FDIS.

ACCEPTED

The feature has been
implemented, no changes
are needed.

DE
11

12.8 te It is unclear whether copy elision can or cannot apply to a
case like C f(C c) { return c; }, i.e. where a parameter of
class type is returned. Furthermore, if copy elision cannot
apply there, it should still be possible to move (instead of
copy) the return value.

Amend paragraph 34 to explicitly exclude function
parameters from copy elision. Amend paragraph
35 to include function parameters as eligible for
move-construction.

ACCEPTED

FI 5 12.8
[class.copy]

Paragraph
13,
paragraph
27

te Same as FI 4, the parts involving copy constructors and
copy assignment operators.

A class with a non-public explicitly-defaulted copy
constructor isn't ever trivially copyable under the current
rules. If such a class is used as a subobject, the copy
constructor of the aggregating class should be trivial if it
can access the non-public explicitly defaulted copy
constructor of a subobject.

Change the triviality rules so that a class can
have a trivial copy constructor if the class has
access to the copy constructors of its subobjects
and the copy constructors of the subobjects are
explicitly defaulted on first declaration, even if said
defaulted copy constructors are non-public.

See Appendix 1 - Additional Details

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 60 of 157
ISO electronic balloting commenting template/version 2001-10

GB
41

12.8 15, 29 Te Contradiction between the notes claiming that defaulted
definitions to not have exception specifications, and the
normative language in 8.4.2 which declares that they
might.

Either strike the second sentance of each note, or
update it to reflect under which conditions a
defaulted definition might have an exception
specification.

ACCEPTED

US
61

12.8;20.2.5 17,31;table
42

ed static_cast is broken across two lines do not hyphenate static_cast ACCEPTED

US
62

12.8 16 te The new wording describing generated copy constructors
does not describe the initialization of members of
reference type. (Core issue 1051 in N3083.)

Add the required description. ACCEPTED

US
63

12.8 16-18 te The new wording specifies the behavior of an implicitly-
defined copy constructor for a non-union class (¶16), an
implicitly-defined move constructor for a non-union class
(¶17), and an implicitly-defined copy constructor for a
union (¶18), but not an implicitly-defined move constructor
for a union. (Core issue 1064 in N3083.)

Add the required description. ACCEPTED

US
64

12.8 28 te The current wording reads, "A copy/move assignment
operator that is defaulted and not defined as deleted is
implicitly defined when an object of its class type is
assigned a value of its class type or a value of a class
type derived from its class type or when it is explicitly
defaulted after its first declaration." This sounds as if any
assignment to a class object, regardless of whether it is a
copy or a move assignment, defines both the copy and
move operators. Presumably an assignment should only
define the assignment operator chosen by overload
resolution for the operation. (Compare the corresponding
wording in ¶14 for the copy/move constructors:
"...implicitly defined if it is used to initialize an object of its
class type..." (Core issue 1066 in N3083.)

Clarify the wording so that only the operator
needed for the operation is implicitly defined.

ACCEPTED

US
65

12.9
[class.inhctor]

 ge Inheriting constructors have no implementation
experience.

Either demonstrate a complete implementation of
this feature or remove N2540 from the working
paper prior the FDIS.

REJECTED

There was no consensus for
this change.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 61 of 157
ISO electronic balloting commenting template/version 2001-10

JP
65

13.1 3 E In some code examples, ellipsis(…) is used in ill-formed.
In these cases, "…" represents omission of some codes
like this:
class A { /* ... */ } ;
But in some cases, it is used without commented-out as
below:
class A { ... } ;
It is an inconsistent usage. They all should be enclosed in
a comment.

Change to:
int f (int) { /* ... */ } // definition of f(int)
int f (cInt) { /* ... */ } // error: redefinition of f(int)

ACCEPTED

US
66

13.3.1.7 1 te overload resolution should first look for a viable list
constructor, then look for a non-list constructor if no list
constructor is viable

See Appendix 1 - Additional Details ACCEPTED
See paper N3262

US
67

13.3.2 3 ge To determine whether there is an ICS, 13.3.2 uses
13.3.3.1 instead of just saying “there is an ICS if-and-only-
if a copy init would be well-formed.” Apparently this is
desired, but to a casual reader or an implementor reading
these rules for the first time for a new implementation, it’s
not clear why that’s desired.

Insert a note or annex explaining why 13.3.2 does
things as it does.

ACCEPTED with
MODIFICATIONS

The resolution for core
language issue 1152 fixes a
related problem, but a
rationale was not deemed
necessary at this time.

JP
75

13.2 1 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
struct B {
int f(int);
};
struct D : B {
int f(const char*);
};

ACCEPTED

JP
76

13.2 2 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)

Change to:
void f(const char*);
void g() {
extern void f(int);
f("asdf"); // error: f(int) hides f(const char*)

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 62 of 157
ISO electronic balloting commenting template/version 2001-10

char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

// so there is no f(const char*) in this scope
}

JP
77

13.3.1.2 1 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
struct String {
String (const String&);
String (const char*);
operator char* ();
};
String operator + (const String&, const String&);
void f(void) {
char* p= "one" + "two"; // ill-formed because
neither
// operand has user-defined type
int I = 1 + 1; // Always evaluates to 2 even if
// user-defined types exist which
// would perform the operation.
}

ACCEPTED

US
68

13.4 1 te Overload resolution within the operand of a unary &
operator is done by selecting the function "whose type
matches the target type required in the context." The
criterion for determining whether the types match,
however, is not defined. At least three possibilities
suggest themselves:

1. The types are identical.

2. The source type can be implicitly converted to
the target type.

3. The expression would be well-formed if the
function under consideration were not
overloaded.

This question arises for pointer-to-member types, where
there is an implicit conversion from a pointer-to-base-

Specify the intended criterion for determining
whether the types match.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 63 of 157
ISO electronic balloting commenting template/version 2001-10

member to a pointer-to-derived-member, as well as when
the context is an explicit type conversion (which allows for
static_cast a conversion from pointer-to-derived-member
to a pointer-to-base-member and, in the reinterpret_cast
interpretation of functional and old-style casts, essentially
any conversion).

JP
82

13.5.8 8 E Typo, "lteral" should be "literal".
// error: invalid lteral suffix identifier

Correct typo.
// error: invalid literal suffix identifier

ACCEPTED

US
69

14.3.2 para 1 te The standard permits the address of thread_local variable
as a non-type template parameter. The addresses of
these variables are not constant, however.

Require static storage duration for non-type
parameters.

ACCEPTED

DE
12

14.3.2 te Now that local classes can be used as template
arguments, it seems odd that there are "external linkage"
restrictions on non-type template parameters.

Permit addresses of objects and functions with
internal linkage as arguments for non-type
template parameters.

ACCEPTED

JP
78

14.3.2 2 E "char*" should be "const char *".
If not corrected, type mismatch is another cause of error in
the example below, which is not appropriate for an
example here.
template<class T, char* p> class X {
X();
X(const char* q) { / ... / }
};
X<int, "Studebaker"> x1; // error: string literal as template-
argument
char p[] = "Vivisectionist";
X<int,p> x2; // OK

template<class T, const char* p> class X {

ACCEPTED

JP
83

14.3.2 2 E Constructors in template declaration are not essential for
this example to explain string literal error use.

template<class T, char* p> class X {
X();
X(const char* q) { /* ... */ }
};

Delete two constructors in template declaration as
follows.

template<class T, const char* p> class X {
 /* ... */
};
X<int, "Studebaker"> x1; // error: string literal as

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 64 of 157
ISO electronic balloting commenting template/version 2001-10

X<int, "Studebaker"> x1; // error: string literal as template-
argument
char p[] = "Vivisectionist";
X<int,p> x2; // OK

template-argument
char p[] = "Vivisectionist";
X<int,p> x2; // OK

GB
42

14.5.3 1 Ed The name "eror" should probably be "error". Replace:
Tuple<0> eror;
With:
Tuple<0> error;

ACCEPTED

JP
24

14.5.3 4 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(10)" to "(Clause 10)".

ACCEPTED

US
70

14.5.6.2 2, 4 te 14.8.2.4¶3 specifies that the deduction used in partial
ordering in a non-call context is based on the complete
function type of the function templates. The wording in
14.5.6.2¶2 (and echoed in ¶4) reflects an earlier
specification, however, saying that the deduction uses
only "the function parameter types, or in the case of a
conversion function the return type." This is a
contradiction.

Update the wording in 14.5.6.2 to say only that
deduction is performed as described in 14.8.2.4
and not to specify which types are used.

ACCEPTED

US
71

unused unused unused NA

CA
7

14.5.6.2p3 P3 te r country In FCD sub-clause 14.5.6.2 [temp.func.order]
paragraph 3, we are told to synthesize, "for each type,
non-type, or template template parameter... a unique type,
value, or class template respectively."

These are then substituted for each occurrence of the
respective parameter in the function type of the function

This is a test of the interpretation of the resolution
to Issue 214. In particular, we would like for the
committee to spell out how properties of the
synthetics produced for partial ordering are
determined

REJECTED

Resolving this issue was not
deemed essential for this
revision of the Standard.
Core language issue 1157
was opened, however, to

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 65 of 157
ISO electronic balloting commenting template/version 2001-10

template.

It is not specified what the properties of said synthetics
are, for example, members of a dependent type referred
to in non-deduced contexts are not specified to exist,
although the transformed function type would be invalid if
they do not exist.

We may assume, for example, that each synthetic will be
given minimal properties such that the transformed
function type is valid at the point of definition of the
template.

Example 1:

template <typename T, typename U> struct A; template
<typename T> void foo(A<T, typename T::u> *) { } // #1 //
synthetic T1 has member T1::u template <typename T>
void foo(A<T, typename T::u::v> *) { } // #2 // synthetic T2
has member T2::u and member T2::u::v // T in #1 deduces
to synthetic T2 in partial ordering; // deduced A for the
parameter is A<T2, T2::u> *--this is not necessarily
compatible // with A<T2, T2::u::v> * and it does not need
to be. See Note 1. The effect is that // (in the call below)
the compatibility of B::u and B::u::v is respected. // T in #2
cannot be successfully deduced in partial ordering from
A<T1, T1::u> *; // invalid type T1::u::v will be formed when
T1 is substituted into non-deduced contexts. struct B {
struct u { typedef u v; }; }; int main() { foo((A<B, B::u> *)0);
// calls #2 } *Note 1: Template argument deduction is an
attempt to match a P and to a deduced A; however,
template argument deduction is not specified to fail if the
P and the deduced A are incompatible. This may occur in
the presence of non-deduced contexts. Notwithstanding
the parenthetical statement in [temp.deduct.partial]
paragraph 9, template argument deduction may succeed
in determining a template argument for every template
parameter while producing a deduced A that is not

allow for possible
consideration for a future
revision.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 66 of 157
ISO electronic balloting commenting template/version 2001-10

compatible with the corresponding P.

Example 2:

template <typename T, typename U, typename V> struct
A; template <typename T> void foo(A<T, struct T::u, struct
T::u::u> *); #2.1 // synthetic T1 has member non-union
class T1::u template <typename T, typename U> void
foo(A<T, U , U> *); #2.2 // synthetic T2 and U2 has no
required properties // T in #2.1 cannot be deduced in
partial ordering from A<T2, U2, U2> *;// invalid types T2::u
and T2::u::u will be formed when T2 is substituted in non-
deduced contexts. // T and U in #2.2 deduces to,
respectively, T1 and T1::u from A<T1, T1::u, struct
T1::u::u> * unless // struct T1::u::u does not refer to the
injected-class-name of the class T1::u (if that is possible).
struct B { struct u { }; }; int main() { foo((A<B, B::u, struct
B::u::u> *)0); // calls #2.1 } It is however unclear to what
extent an implementation will have to go to determine
these minimal properties.

US
72

14.5.7
[temp.alias]

 ge Template aliases have no implementation experience. Either demonstrate a complete implementation of
this feature or remove N2258 from the working
paper prior the FDIS.

REJECTED

The feature has been
implemented, no changes ed
needed.

US
73

14.5.7 1 te The current wording of 7.1.3¶2 requires that the identifier
in an alias-declaration "...shall not appear in the type-id."
With template aliases, however, the name of the alias can
be used indirectly:

template<typename T> struct A;
template<typename T> using B=typename A<T>::U;
template<typename T> struct A {
 typedef B<T> U;
};
B<short> b;

Add wording to indicate that such usages in
template aliases are ill-formed.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 67 of 157
ISO electronic balloting commenting template/version 2001-10

Here the instantiation of B<short> causes the instantiation
of A<short>, and the typedef in A<short> ends up
attempting to use B<short>, which is still in the process of
being instantiated.

US
74

14.5.7 1 te An alias-declaration allows a class or enumeration type to
be defined in its type-id (7.1.6¶3). However, it's not clear
that this is desirable when the alias-declaration is part of a
template alias:

template<typename T> using A =
 struct { void f(T) { } };

Either prohibit the definition of classes and
enumerations in template aliases, or prohibit the
use of template parameters in such definitions, or
add an example illustrating this usage.

ACCEPTED

Definition of a class or
enumeration is now
prohibited in a template alias.

FI
10

14.5.7
[temp.alias]

 te Can template aliases be declared in class scope? Allow declaring template aliases in class scope, if
not allowed by the current grammar.

ACCEPTED

FI
11

14.5.7
[temp.alias]

 te We have class templates and function templates,
shouldn't we call template aliases alias templates for
consistency?

Change “template alias” -> “alias template”
everywhere.

ACCEPTED

JP
25

14.5.7 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(clause 7)" to "(Clause 7)". ACCEPTED

JP
26

14.6.2.1

1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only

Change "(9)" to "(Clause 9)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 68 of 157
ISO electronic balloting commenting template/version 2001-10

a number Z in parentheses to confer Clause or Table
number Z.

GB
43

14.6.2.1p3 Te If I’m not missing something, 14.6.2.1/3 says that in the
definition of a class template or member of a class
template, the injected-class-name refers to the current
instantiation. The template name followed by the
argument list enclosed in “<..>“ also refers to the current
instantiation, but only in the definition of a primary class
template. That results in an odd situation:

template<typename T> struct A { typedef int type; void
f(type); }; // here we are outside the definition of “A”

template<typename T> void A::f(A::type) { } // OK: “A” is
the injected-class-name

template<typename T> void A::f(A<T>::type) { } // ill-
formed: “A<T>“ is not the injected-class-name. Needs
“typename “!

If you would define the member-function within the
primary class template, bullet 2 would apply:

template<typename T> struct A {
 typedef int type; void f(A<T>::type) { } // OK: name of A
followed by arguments enclosed in <..>
};

I think that this state of affairs isn’t any good.

-> Suggested solution: Change 14.6.2.1/1 bullet2 to apply
also to members of the primary class template. The same
for bullet4 talking about partial specializations. Since
partial specializations are also class templates, i wonder
whether one could also smelt together bullet2 and bullet4
and only talk about “class template”.

Updated 14.6.2.1 [temp.dep.type] p1 bullet 2:
"— in the definition of a primary class template or
a member of a class template, the name of the
class template followed by the template argument
list of the primary template (as described below)
enclosed in <>,"

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 69 of 157
ISO electronic balloting commenting template/version 2001-10

GB
44

14.6p5 Te C++0x does not allow this code

template<typename T> struct id { typedef T type; };
template<typename T> void f() { int id<T>::type::*p = 0; }
struct A { };

int main() { f<A>(); }

The reason is that it requires “typename” before
“id<T>::type”, but “typename” is not allowed at that place
by the syntax. Ultimately, current compilers accept this.

Change 14.6/5 to
A qualified name used as the name in a mem-
initializer-id, a base-specifier, an elaborated-type-
specifier or the nested-name-specifier of a pointer-
to-member declarator is implicitly assumed to
name a type, without the use of the typename
keyword.

ACCEPTED

CA
6

14.6p5 P5 te Given the change in N1376=02-0034 to [temp.res], found
in FCD in [temp.res] paragraph 5:

A qualified name used as the name in a mem-
initializer-id, a base-specifier, or an elaborated-
type-specifier is implicitly assumed to name a
type, without the use of the typename keyword

the following appears to be well-formed, with templates
foo() being distinct since any type T will produce an invalid
type for the second parameter for at least one foo() when
T is replaced within the non-deduced context:

template <typename T>

bool *foo(T *, enum T::u_type * = 0) { return 0; }

template <typename T> char *foo(T *, struct T::u_type * =
0) { return 0; }

struct A { enum u_type { I }; }; int main(void) { foo((A*)0); }

In particular, while determining the signature (1.3.11
[defns.signature]) for the function templates foo(), an
elaborated-type-specifier qualifies as part of the decl-

Please clarify as the following case appears to be
expensive to implement with little functional value
to the language.

REJECTED

The specification is as
intended; compilers should
handle cases like these.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 70 of 157
ISO electronic balloting commenting template/version 2001-10

specifier-seq under 8.3.5 [dcl.fct] paragraph 5 in
determining the type of a parameter in the parameter-
type-list (absent additional wording).

Also, the return type is included in the signature of a
function template.

A portion of the GCC 4.5.0 output:

Internal compiler error: Error reporting routines re-entered.
Please submit a full bug report, with preprocessed source
if appropriate. See < http://gcc.gnu.org/bugs.html > for
instructions.

Implementations do not appear to support this case and
the ability to do so brings little value since type traits such
as is_enum and is_class cannot be defined using this and
equivalent functionality can be achieved using the
aforementioned type traits.

 template <typename T> struct MY_is_enum :
std::false_type { };

template <typename T> struct MY_is_enum<enum T> :
std::true_type { }; // ill-formed,

elaborated-type-specifier resolves to typedef-name

US
75

14.7 TE As described in c++std-core-16425 and its followup
messages, writing metaprograms is needlessly hard
because specializing template members inside a class is
(inadvertently?) not permitted. In addition, this surprising
restriction makes C++ less simple and more arbitrary-
seeming.

Accept the code like that in c++std-core-16425,
like Visual C++ does already

REJECTED

There was no consensus for
making the suggested
change.

JP
79

14.7.1 10 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.

Change to:
namespace N {
template<class T> class List {
public:
T* get();
};

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 71 of 157
ISO electronic balloting commenting template/version 2001-10

There are many code fragments depending on the
removed rule. They are ill-formed.

}
template<class K, class V> class Map {
public:
N::List<V> lt;
V get(K);
};
void g(Map<const char*,int>& m) {
int i = m.get("Nicholas");
}
a call of lt.get() from Map<const char*,int>::get()
would place List<int>::get() in the namespace N
rather
than in the global namespace. ―end example]

FI 9 14.7.3

[temp.expl.sp
ec]

Paragraph 2 te Explicit specializations in class scope inside class
templates should be allowed. It's weird, confusing and
inconsistent that they can be declared/defined in some
scopes but not in others.

Allow explicit specialization of member templates
inside class templates.

REJECTED

There was no consensus for
making the suggested
change.

JP
80

14.8.1 5 E "char*" should be "const char *".
The special rule to convert character literal to pointer has
been removed from "4.2 Array-to-pointer conversion
[conv.array]".
char * p1 = "..." ; // ill-formed.(removing const'ness)
char const *p2 = "..." ;// well-formed.
There are many code fragments depending on the
removed rule. They are ill-formed.

Change to:
template<class X, class Y, class Z> X f(Y,Z);
template<class ... Args> void f2();
void g() {
f<int,const char*,double>("aa",3.0);
f<int,const char*>("aa",3.0); // Z is deduced to be
double
f<int>("aa",3.0); // Y is deduced to be const char*,
and
// Z is deduced to be double
f("aa",3.0); // error: X cannot be deduced
f2<char, short, int, long>(); // OK
}

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 72 of 157
ISO electronic balloting commenting template/version 2001-10

US
76

14.8.2 para 9 te "extern template" prevents inlining functions not marked
inline.

Remove wording about "suppressing the implicit
instantiation". See Appendix 1 - Additional Details

REJECTED

Section reference should be
14.7.2. The suggested
change could result in a
silent change of meaning
between implementations if
speculative instantiation for
inlining is allowed. THere
was no consensus to adopt
this change.

US
77

14.8.2.1 te Core Issue 1014 claims that calling f(const T&) and f(T&&)
with a const int lvalue is ambiguous. It's unambiguous
because the partial ordering rules consider f(const T&) to
be more specialized than f(T&&), for the same reasons
that they consider h(const T&) to be more specialized than
h(T&).

However, calling z(T&) and z(T&&) with an int lvalue is
ambiguous. Because z(T&) accepts a strict subset of the
things that z(T&&) accepts, it seems that the partial
ordering rules should be modified to consider z(T&) to be
more specialized than z(T&&). There may be additional
subtleties.

Modify the partial ordering rules to consider z(T&)
to be more specialized than z(T&&).

ACCEPTED

US
78

15.2 2 te This paragraph says that "An object that is... partially
destroyed will have destructors executed... for subobjects
for which the principal constructor (12.6.2) has completed
execution and the destructor has not yet begun
execution." This would presumably apply to an example
like

 struct S { ~S(); } s[10];

If the destructor for s[5] throws an exception, elements 0-4
should still be destroyed. However, the wording
specifically refers to "fully constructed base classes and

Clarify the intent with respect to array elements
and storage duration.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 73 of 157
ISO electronic balloting commenting template/version 2001-10

non-variant members," even though array elements are
subobjects of the array (1.8¶2). This is presumably the
effect of stack unwinding (¶1), which applies to "all
automatic objects constructed since the try block was
entered," but whether that should also be expected for
arrays of static, thread, and dynamic storage duration is
not clear.

GB
45

15.3 16 Te The phrasing of this clause suggests all exception-
declarations produce objects. There should be some
additional wording to clarify that exception-declarations
that declare references bind to the exception object by
appropriate initialization, and *are* allowed to be
references to abstract classes. Likewise, the elipsis form
does not initialize any object or temporary.

Distinguish between initializing objects, initializing
references, and initializing nothing in the case of
an elipsis.

ACCEPTED

CA
5

15.3p8,
15.1p7

P8, p7 te There is an issue with the definition of "currently handled
exception" in 15.3 [except.handle] paragraph 8:

The exception with the most recently activated
handler that is still active is called the currently
handled exception.

This wording implies that the currently handled exception
may be changed by another thread. Thus, by 15.1
[except.throw] paragraph 7,

A throw-expression with no operand rethrows the
currently handled exception (15.3).

the following may throw an exception that is not of type
int. try { throw 0; } catch (...) { throw; } Any solution should
also specify what the currently handled exception will be
for a thread that is spawned during the handling of an
exception by its parent.

Clarify and fix as suggested. ACCEPTED

US
79

15.4 ¶1 te Because C has no exception mechanism, functions
having “C” language linkage should implicitly be declared

Insert a sentence such as:

Any function declared to have “C” linkage shall be

REJECTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 74 of 157
ISO electronic balloting commenting template/version 2001-10

noexcept. treated as if declared noexcept even if the
declaration lacks the noexcept keyword.

There was no consensus for
making the suggested
change.

GB
46

15.4 Te It is not entirely clear that a function-try-block on a
destructor will catch exceptions for a base or member
destructor destructor; whether such exceptions might be
swallowed with a simple return statement rather than
being rethrown; and whether such a clause might be
entered multiple times if multiple bases/members throw, or
if that is an automatic terminate call.

[Add words to 15.4 clarifying the problem cases.] ACCEPTED

CH
10

15.4 p9 te In case of incorrect program specification, the general rule
is that the behaviour is undefined. This should be true for
noexcept as well.

Change the second bullet of p9 to "otherwise, the
behaviour is undefined.

REJECTED

There was no consensus for
making the suggested
change.

GB
47

15.5.1 1 Te 15.5.1:1 [except.terminate] lists the situations in which
"exception handling must be abandoned for less subtle
error handling techniques".

The list seems to omit some new situations added by
other c++0x features.

The list should be augmented with the following:
* when function
std::nested_exception::rethrow_nested is called
for an object that stores a null exception pointer.
* when execution of a function registered with
std::at_quick_exit
exits using an exception.

Also, after the list, add the following sentence:

Function std::terminate is also called by the
implementation, when the
destrductor or a copy constructor of a class
std::thread is called for
the object that is joinable.

ACCEPTED

GB
48

15.5.2 1-4 Te This subclause is dealing exclusively with dynamic
exception specifications, and should clearly say so.

Replace each italicised occurrence of 'exception-
specification' with 'dynamic-exception-
specification' in clause 15.5.2,
[except.unexpected]

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 75 of 157
ISO electronic balloting commenting template/version 2001-10

GB
49

15.5.2 all Ge Dynamic exception specifications are deprecated, so
clause 15.5.2 that describes how they work should move
to Annex D.

Move 15.5.2 [except.unexpected] to Annex D. REJECTED

The convention in the core
clauses is to note the
deprecation but leave the
specification in situ.

CH
11

16.1 p3 ed constant-expression as given by C++'s grammar allows
far more syntactical constructs than those that are allowed
in preprocessor context. The footnote 145 provides some
hints on the limitations, but in our opinion it should be
made more clear that the "constant-expression" allows
less than a lookup of the corresponding grammar rule
suggests

Add a note or extend footnote 145 with "Note that
constant-expression is much more limited than the
C++ grammar rule would suggest. See the
following paragraphs how it is limited in the
context of conditional inclusion."

REJECTED

The current wording is the
same as in C++03, and
hasn't caused confusion.

CH
12

16.3.5 p5 ed missing space between '~' and '5' in expansion line "f(2 * (2+(3,4)-0,1)) | f(2 *
(~5)) & f(2 * (0,1))^m(0,1);" should
read "f(2 * (2+(3,4)-0,1)) | f(2 * (~
5)) & f(2 * (0,1))^m(0,1);"

ACCEPTED

CH
13

16.3.5 p7 ed superfluous braces in source change "int j[] = { t(1,2,3), t(,4,5),
t(6,{,}7), t(8,9,)," to "int j[] = {
t(1,2,3), t(,4,5), t(6,,7), t(8,9,),"

ACCEPTED

CH
14

16.3.5 p9 ed superfluous spaces after/before parentheses change
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and
third items.");

 to
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third
items.");

ACCEPTED

DE
13

16.8 te Committee Draft comment DE 18 has only been partially
addressed, and the record of response ignores the
missing item, namely the absence of a macro

Add the macro to the list of predefined macros in
16.8.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 76 of 157
ISO electronic balloting commenting template/version 2001-10

__STDCPP_STRICT_POINTER_SAFETY__ that
indicates that a given implementation has strict pointer
safety (see 3.7.4.3).

US
80

[library]

17 - 30

 te Consider applying noexcept to all of the std::lib. ACCEPTED with
MODIFICATIONS

See paper N3155

GB
60

17-30 Ge Dyanamic exception specifications are deprecated; the
library should recognise this by replacing all non-throwing
exception specifications of the form 'throw()' with the
'noexcept' form.

Replace all non-throwing exception specifications
of the form 'throw()' with the 'noexcept' form.

ACCEPTED with
MODIFICATIONS

See documents N3148,
N3150, N3195, N3155,
N3156, N3199, and N3180.

See paper N3148

GB
61

17-30 Te All library types should have non-throwing move
constructors and move-assignment operators unless
wrapping a type with a potentially throwing move-
operation. When such a type is a class-template, these
operations should have a conditional noexcept
specification.
There are many other places where a noexcept
specification may be considered, but the move operations
are a special case that must be called out, to effectively
support the move_if_noexcept function template.

Review every class and class template in the
library. If noexcept move constructor/assignment
operators can be implicitly declared, then they
should be implicitly declared, or explicitly
defaulted. Otherwise, a move constructor/move-
assingment operator with a 'noexcept' exception
specification should be provided.

ACCEPTED with
MODIFICATIONS

See paper N3279

GB
62

17-30 Te Issues with efficiency and unsatisfactory semantics mean
many library functions document they do not throw
exceptions with a Throws: Nothing clause, but do not
advertise it with an exception specification. The semantic
issues are largely resolved with the new 'noexcept'
specifications, and the noexcept operator means we will
want to detect these guarantees programatically in order
to construct programs taking advantage of the guarantee.

Add a 'noexcept' exception specification on each
libary API that offers an unconditional Throws:
Nothing guarantee. Where the guarantee is
conditional, add the appropriate
noexcept(constant-expression) if an appropriate
constant expression exists.

ACCEPTED with
MODIFICATIONS

See paper N3195

GB
63

17-30 Ge Since the newly introduced operator noexcept makes it
easy (easier than previously) to detect whether or not a

Review the whole library, and apply the noexcept
specification where it is appropriate.

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 77 of 157
ISO electronic balloting commenting template/version 2001-10

function has been declared with the empty exception
specification (including noexcept) library functions that
cannot throw should be decorated with the empty
exception specification. Failing to do so and leaving it as a
matter of QoI would be detrimental to portability and
efficiency.

See paper N3155

GB
64

17-30 Ge There are a number of unspecified types used throughout
the library, such as the container iterators. Many of these
unspecified types have restrictions or expectations on
their behaviour in terms of exceptions. Are they permitted
or required to use exception specifications, more
specifically the new noexcept specification? For example,
if vector<T>::iterator is implemented as a native pointer,
all its operations will have an (effective) nothrow
specification. If the implementation uses a class type to
implement this iterator, is it permitted or required to
support that same guarantee?

Clearly state the requirements for exception
specifications on all unspecified library types. For
example, all container iterator operations should
be conditionally noexcept, with the condition
matching the same operation applied to the
allocator pointer_type, a certain subset of which
are already required not to throw.

REJECTED
The Standard is correct as
written.

GB
65

17-30 Te Nothrowing swap operations are key to many C++ idioms,
notably the common copy/swap idiom to provide the
strong exception safety guarantee.

Where possible, all library types should provide a
swap operation with an exception specification
guaranteeing no exception shall propagate.
Where noexcept(true) cannot be guaranteed to
not terminate the program, and the swap in
questions is a template, an exception specification
with the appropriate conditional expression could
be specified.

ACCEPTED with
MODIFICATIONS

See LWG 1349

GB
66

17-30 Ed The syntax for attributes was altered specifically to make it
legal do declare attributes on functions by making the
attribute the first token in the declaration, rather than
inserting it between the function name and the opening
paren of the parameter list. This is much more readable,
and should be the preferred style throughout the library.
For example, prefer:
[[noreturn]] void exit(int status);
to
void exit [[noreturn]] (int status);

Update all function declarations throughout the
library to use the preferred placement of function-
level attributes.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 78 of 157
ISO electronic balloting commenting template/version 2001-10

CH
15

Library
clauses

 te Due to the new rules about implicit copy and move
constructors some library facilities are now move-only.

Make them copyable again. ACCEPTED with
MODIFICATIONS

See paper N3266

CH
16

Library
clauses

 te Dynamic exception specifications are deprecated.
Deprecated features shouldn't be used in the Standard.

Replace dynamic exception specifications with
noexcept.

ACCEPTED with
MODIFICATIONS

See documents N3148,
N3150, N3195, N3155,
N3156, N3199, and N3180.

See paper N3148

CH
17

Library
clauses

 te The introduction of noexcept makes "Throws: Nothing"
clauses looking strange.

Consider replacing "Throws: Nothing." clause by
the respective noexcept specification.

ACCEPTED with
MODIFICATIONS

See paper N3195

CH
18

17 te The general approach on moving is that a library object
after moving out is in a "valid but unspecified state". But
this is stated at the single object specifications, which is
error prone (especially if the move operations are implicit)
and unnecessary duplication.

Consider putting a general statement to the same
effect into clause 17.

ACCEPTED with
MODIFICATIONS

See paper N3264

JP
27

17.1 9 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(25)" to "(Clause 25)".

ACCEPTED

GB
52

17.3.7 Te The definition of deadlock in 17.3.7 excludes cases
involving a single thread making it incorrect.

The definition should be corrected. ACCEPTED with
MODIFICATIONS
See LWG 1354

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 79 of 157
ISO electronic balloting commenting template/version 2001-10

GB
50

17.3.13 Te This definition of move-assignment operator redundant
and confusing now that the term move-assignment
operator is defined by the core language in subclause
12.8p21.

Strike suclause 17.3.13 [defns.move.assign.op].
Add a cross-reference to (12.8) to 17.3.12.

ACCEPTED with
MODIFICATIONS

See paper N3142

GB
51

17.3.14 Te This definition of move-constructor redundant and
confusing now that the term constructor is defined by the
core language in subclause 12.8p3.

Strike subclause 17.3.14, [defns.move.ctor] ACCEPTED with
MODIFICATIONS

See paper N3142

JP
67

17.5.2.1.2 2 E In some code examples, ellipsis(…) is used in ill-formed.
In these cases, "…" represents omission of some codes
like this:
class A { /* ... */ } ;
But in some cases, it is used without commented-out as
below:
class A { ... } ;
It is an inconsistent usage. They all should be enclosed in
a comment.
In addition, the number of period should be 3 rather than
5.

Change to:
enum bitmask {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 <<
3, ...
};
static const bitmask C3 (V3);
/* ... */

REJECTED

This is pseudo-code; okay as
written.

GB
53

17.5.2.1.3 Te The bitmask types defined in 27.5.2 and 28.5 contradict
the bitmask type requirements in 17.5.2.1.3, and have
missing or incorrectly defined operators.

See Appendix 1 - Additional Details ACCEPTED with
MODIFICATIONS

See paper N3110

GB
54

17.5.2.1.4.x Ge The defined terms NTC16S, NTC32S, NTWCS, char16-
character sequence, null-terminated char16-character
string, char32-character sequence, null-terminated
char32-character string, wide-character sequence and
null-terminated wide-character string do not occur at any
point in the standard outside their definitional subclauses
and associated footnotes.

Strike 17.5.2.1.4.3, 17.5.2.1.4.4, 17.5.2.1.4.5 and
associated footnotes 170, 171, 172, 173, 174 and
175.

ACCEPTED

GB
55

17.6.1.3 Table 15 Te The thread header uses duration types, found in the
<chrono> header, and which rely on the ratio types
declared in the <ratio> header.

Add the <chrono> and <ratio> headers to the
freestanding requirements.
It might be necessary to address scaled-down
expectations of clock support in a freestanding

REJECTED

There was no consensus to
make this change. We are

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 80 of 157
ISO electronic balloting commenting template/version 2001-10

environment, much like <thread>.

not adding new headers to
freestanding at this point.

GB
56

17.6.1.3 Table 15 Ge The <utility> header provides support for several
important C++ idioms with move, forward and swap.
Likewise, declval will be frequently used like a type trait.
In order to complete cycles introduced by std::pair, the
<tuple> header should also be made available. This is a
similarly primitive set of functionality, with no dependency
of a hosted environment, but does go beyond the minimal
set of functionality otherwise suggested by the
freestanding libraries.
Alternatively, split the move/forward/swap/declval
functions out of <utility> and into a new primitive header,
requiring only that of freestanding implementation.

Add <utility> and <tuple> to table 15, headers
required for a free-standing implementation.

REJECTED

No consensus for a change
at this time.

GB
57

17.6.1.3 Table 15 Te The atomic operations facility is closely tied to clause 1
and the memory model. It is not easily supplied as an
after-market extension, and should be trivial to implement
of a single-threaded serial machine. The consequence of
not having this facility will be poor interoperability with
future C++ libraries that memory model concerns
seriously, and attempt to treat them in a portable way.

Add <atomic> to table 15, headers required for a
free-standing implementation.

ACCEPTED

GB
58

17.6.2 Te It is not clear whether a library header specified in terms
of a typedef name makes that same typedef name
available for use, or if it simply requires that the specified
type is an alias of the same type, and so the typedef name
cannot be used without including the specific header that
defines it. For example, is the following code required to
be accepted:
#include <vector>
std::size_t x = 0;
Most often, this question concerns the typedefs defined in
header <cstddef>

Add a paragraph under 17.6.2 clarifying whether
or not headers specified in terms of std::size_t can
be used to access the typedef size_t, or whether
the header <cstddef> must be included to reliably
use this name.

REJECTED

The standard is correct as
written.

GB
59

17.6.3.6 2 Ed The replaceable functions in header <new> are all
described in clause 18.6 [support.dynamic], where it can
be seen that all the listed functions have an exception

Narrow the reference to (Clause 18) to (Clause
18.6).
Add the missing exception specification on each

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 81 of 157
ISO electronic balloting commenting template/version 2001-10

specification which must be compatible with any
replacement function.

function signature:
void* operator new(std::size_t size)
throw(std::bad_alloc);
void* operator new(std::size_t size, const
std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr, const
std::nothrow_t&) throw();
void* operator new[](std::size_t size)
throw(std::bad_alloc);
void* operator new[](std::size_t size, const
std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const
std::nothrow_t&) throw();
(note that other comments might further want to
replace 'throw()' with 'noexcept')

Cross-reference changed as
requested. Additions to name
mentions not done: these are
not declarations.

US
81

17.6.3.9 ¶1 ed International Standards do not make “statements”; they
“specify” or “require” instead.

s/statements/ specifications/ ACCEPTED with
MODIFICATIONS

Removed the offending word.

US
82

17.6.3.9 ¶1, bullet 3 te The second Note can benefit by adopting recent
nomenclature.

Rephrase the Note in terms of xvalue. ACCEPTED with
MODIFICATIONS
See LWG 1362

US
83

17.6.3.10 ¶2, first sent. ed The word “constructor” is misspelled. s/contructor/constructor/ ACCEPTED

GB
68

18.2 4 Te There is no reason for the offsetof macro to invoke
potentially throwing operations, so the result of
noexcept(offsetof(type,member-designator)) should be
true.

Add to the end of 18.2p4:
"No operation invoked by the offsetof macro shall
throw an exception, and
noexcept(offsetof(type,member-designator)) shall
be true."

ACCEPTED

JP
68

18.3.1.5 2 E In some code examples, ellipsis(…) is used in ill-formed.
In these cases, "…" represents omission of some codes
like this:

Change to:
inline static constexpr float infinity() throw() {
return /* ... */; }

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 82 of 157
ISO electronic balloting commenting template/version 2001-10

class A { /* ... */ } ;
But in some cases, it is used without commented-out as
below:
class A { ... } ;
It is an inconsistent usage. They all should be enclosed in
a comment.
More over, in this case, "implementation-defined" would
be better than "…".

inline static constexpr float quiet_NaN() throw() {
return /* ... */; }
inline static constexpr float signaling_NaN()
throw() { return /* ... */; }

Replaced "..." by "value".

JP
84

18.5 5
note

E Note in paragraph 5 says "the atexit() functions shall not
introduce a data race" and Note in paragraph 10 says "the
at_quick_exit() functions do not introduce ...".
Such different expressions in similar functions are
confusing.
If these notes are written for unspecified behaviors just
before the sentence, "do" would be preferred.

Replace "shall" with "do".

ACCEPTED

GB
69

18.5 14 Ed ("The function quick_exit() never returns to its caller.")
should be removed as redundant. The function is already
attributed
with [[noreturn]].

Remove paragraph 14 ACCEPTED

CH
19

18.8.5 te It's not clear how exception_ptr is synchronized. Make clear that accessing in different threads
multiple exception_ptr objects that all refer to the
same exception introduce a race.

ACCEPTED with
MODIFICATIONS

See paper N3278

GB
70

18.6 Te std::nothrow_t is a literal type (being an empty POD) so
the preferred form of declaration for std::nothrow is as a
constexpr literal, rather than an extern symbol.

Replace:
extern const nothrow_t nothrow;
with
constexpr nothrow_t nothrow{};

REJECTED

There was no consensus to
adopt this change for this
revision.

GB
71

18.6.2.4 /
18.8.2.2 /
18.8.3.2

 Te The thread safety of std::set_new_handler(),
std::set_unexpected(), std::set_terminate(), is unspecified
making the the functions impossible to use in a thread
safe manner.

The thread safety guarantees for the functions
must be specified and new interfaces should be
provided to make it possible to query and install
handlers in a thread safe way.

ACCEPTED with
MODIFICATIONS

See paper N3189

DE 18.6.1.4 te It is unclear how a user replacement function can Offer a non-mutating interface to query the current ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 83 of 157
ISO electronic balloting commenting template/version 2001-10

14 simultaneously satisfy the race-free conditions imposed in
this clause and query the new-handler in case of a failed
allocation with the only available, mutating interface
std::set_new_handler.

new-handler.
See paper N3189

GB
72

18.8.2 Ge Dynamic exception specifications are deprecated, so
clause 18.8.2 that describes library support for this facility
should move to Annex D, with the exception of the
bad_exception class which is retained to indicate other
failures in the exception dispatch mechanism (e.g. calling
current_exception()).

With the exception of 18.8.2.1 [bad.exception],
move clause 18.8.2 diectly to Annex D.
[bad.exception] should simply become the new
18.8.2.

ACCEPTED

GB
73

18.8.4 Te The thread safety std::uncaught_exception() and the
result of the function when multiple threads throw
exceptions at the same time are unspecified. To make the
function safe to use in the presence of exceptions in
multiple threads the specification needs to be updated.

Update this clause to support safe calls from
multiple threads without placing synchronization
requirements on the user.

ACCEPTED with
MODIFICATIONS

Change 18.8.4 [uncaught] p.
1 as follows:

Returns: true after the
current thread has initialized
initializing an exception
object (15.1) until a handler
for the exception (including
unexpected() or terminate())
is activated (15.3). [Note:
This includes stack
unwinding (15.2). — end
note]

GB
74

18.8.5 10 Te One idea for the exception_ptr type was that a reference-
counted implementation could simply 'reactivate' the same
exception object in the context of a call to
'rethrow_exception'. Such an implementation would allow
the same exception object to be active in multiple threads
(such as when multiple threads join on a shared_future)
and introduce potential data races in any exception
handler that catches exceptions by reference - notably
existing library code written before this capability was

Throws: a copy of the exception object to which p
refers.

REJECTED

There was no consensus to
adopt the proposed change.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 84 of 157
ISO electronic balloting commenting template/version 2001-10

added. 'rethrow_exception' should *always* make a copy
of the target exception object.

US
84

18.8.6
[except.neste
d]

6-7 te The throw_with_nested spec passes in its argument as
T&& (perfect forwarding pattern), but then discusses
requirements on T without taking into account that T may
be an lvalue-reference type. It is also not clear in the
spec that t is intended to be perfectly forwarded.

Patch 6-7 to match the intent with regards to
requirements on T and the use of
std::forward<T>(t).

ACCEPTED with
MODIFICATIONS

See LWG 1370
Change 18.8.7
nested_exception
[except.nested] as indicated:
[[noreturn]] template <class
T> void
throw_with_nested(T&& t);
Let U be
remove_reference<T>::type
6 Requires: T U shall be
CopyConstructible.
7 Throws: If T U is a non-
union class type not derived
from nested_exception, an
exception of unspecified type
that is publicly derived from
both T U and
nested_exception and
constructed from
std::forward<T>(t), otherwise
throws std::forward<T>(t).

GB
75

19 Te None of the exception types defined in clause 19 are
allowed to throw an exception on copy or move
operations, but there is no clear specification that the
operations have an exception specification to prove it.
Note that the implicitly declared constructors, taking the
exception specification from their base class (ultimately
std::exception) will implicitly generate a noexcept
exception specification if all of their data members
similarly declare noexcept operations. As the

Add a global guarantee that all exception types
defined in clause 19 that rely on implicitly declared
operations have a non-throwing exception
specification on those operations.

REJECTED

The standard is correct as
written. See 18.8.1
[exception], p2

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 85 of 157
ISO electronic balloting commenting template/version 2001-10

representation is unspecified, we cannot assume non-
throwing operations unless we explicitly state this as a
constraint on the implementation.

GB
76

19.5.1.5 Te The C++0x FCD recommends, in a note (see 19.5.1.1/1),
that users
create a single error category object for each user defined
error
category and specifies error_category equality
comparsions based on
equality of addresses (19.5.1.3). The Draft apparently
ignores this
when specifying standard error category objects in section
19.5.1.5,
by allowing the generic_category() and system_category()
functions to
return distinct objects for each invocation.

Append a new sentence to 19.5.1.5
[syserr.errcat.objects]/1, which reads "All calls of
this function return references to the same
object.", and append the same sentence to
19.5.1.5/3.

ACCEPTED

GB
77

19.5.6.2 14 Ed The description for system_error::what (19.5.6.2/14)
changed between
the C++ Working Papers N2914 and N2960. The latter
document indicates
that the Returns clause shall read "Returns: An NTBS
incorporating the
arguments supplied in the constructor.". Instead, in the
FCD it now
reads "Returns: An NTBS incorporating and
code().message() the
arguments supplied in the constructor.".

Remove the extra words from 19.5.6.2
[syserr.syserr.members]/14:
"Returns: A NTBS incorporating the arguments
supplied in the
constructor."

ACCEPTED

GB
78

19.5.6.2 Te The FCD contains a requirement that all standard classes
which are
derived from std::exception have a copy constructor and
copy
assignment operator which essentially copy the stored
what() message
(See 18.8.1/2). In contrast, it is unspecified whether
copies of
system_error return the same error_code on calls to
system_error::code().

Insert a new paragraph after 19.5.6.1
[syserr.syserr.overview]/1 which
reads "The copy constructor and copy assignment
operator of class
system_error both have a strengthened
postcondition which supplements
the basic postcondition for standard library
exception classes copy
construction and copy assigment (18.8.1): If two
objects lhs and rhs

REJECTED

This is already addressed by
17.5.2.2
[functions.within.classes]/1.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 86 of 157
ISO electronic balloting commenting template/version 2001-10

both have type system_error and lhs is a copy of
rhs, then lhs.code()
== rhs.code() shall hold."

GB
79

20, 22, 24, 28 Te The library provides several traits mechanisms intended a
customization points for users. Typically, they are
declared in headers that are growing quite large. This is
not a problem for standard library vendors, who can
manage their internal file structure to avoid large
dependencies, but can be a problem for end users who
have no option but to include these large headers.

Move the following traits classes into their own
headers, and require the existing header to
#include the traits header to support backwards
compatibility:
iterator_traits (plus the iterator tag-types)
allocator_traits
pointer_traits
char_traits
regex_traits

REJECTED

This suggestion is not a
defect, as the likely benefit is
small, if any, compared to the
cost of not just
implementating the feature,
but also explaining/teaching
it. There was no consensus
to make this change.

US
85

20.2.1 Table 34 20.2.1 Table 34 "MoveConstructible requirements" says
"Note: rv remains a valid object. Its state is unspecified".

Some components give stronger guarantees. For
example, moved-from shared_ptrs are guaranteed empty
(20.9.11.2.1/25).

In general, what the standard really should say (preferably
as a global blanket statement) is that moved-from objects
can be destroyed and can be the destination of an
assignment. Anything else is radioactive. For example,
containers can be "emptier than empty". This needs to be
explicit and required generally.

Note: The last time that one of us mentioned "emptier
than empty" (i.e. containers missing sentinel nodes, etc.)
the objection was that containers can store sentinel nodes
inside themselves in order to avoid dynamically allocating
them. This is unacceptable because (a) it forces existing
implementations (i.e. Dinkumware's, Microsoft’s, IBM's,
etc.) to change for no good reason (i.e. permitting more
operations on moved-from objects), and (b) it invalidates
end iterators when swapping containers. (The Working
Paper currently permits end iterator invalidation, which we
consider to be wrong, but that's a separate argument. In

State as a general requirement that moved-from
objects can be destroyed and can be the
destination of an assignment. Any other use is
undefined behavior.

ACCEPTED with
MODIFICATIONS

See paper N3264

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 87 of 157
ISO electronic balloting commenting template/version 2001-10

any event, *mandating* end iterator invalidation is very
different from permitting it.)

GB
80

20.2.3 2 Te See (A) in attachment std_issues.txt as stated in the attached paper REJECTED
There was no consensus to
make this change.

CA
10

20.2.3p2 20.2.3p2 te Reads of indeterminate value result in undefined
behaviour

In 20.2.3p2, NullablePointer requirements
[nullablepointer.requirements], the standard specifies the
behaviour of programs that read indeterminate values:

... A default-initialized object of type P may have

an indeterminate value. [Note: Operations involving

indeterminate values may cause undefined behaviour.

end note]

We suggest changing the note to:

[Note: Operations involving indeterminate values

cause undefined behaviour. end note]

Rationale: The note uses the word "may", but we believe
the intention is that such reads will cause undefined
behaviour, but implementations are not required to
produce an error.

Clark adds:

> Unfortunately, this issue goes deeper than can be

In 20.2.3p2, the standard specifies the behaviour
of programs that read indeterminate values:

... A default-initialized object of

type P may have an indeterminate

value. [Note: Operations involving

We suggest changing the note to:

[Note: Operations involving

indeterminate values cause

undefined behaviour. end note]

REJECTED

It is an accurate statement
because there is at least one
operation, assignment with
the indeterminate value on
the left hand side, that does
not involve undefined
behavior.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 88 of 157
ISO electronic balloting commenting template/version 2001-10

> addressed by deleting the word "may" from a note in

> clause 20. The term "indeterminate value" and its

> meaning were introduced in C99. While the term is

> generally understood to be applicable to C++ (and

> section 20.2.3 reflects that), the term isn't actually

> defined in the C++ WD, and worse yet, there's no

> statement that use of an indeterminate value can result

> in undefined behavior (so the existing note can't be

> deduced from the normative statements of the
standard).

> This is tracked by core issue 616. The wording in

> 20.2.3 should be noted as relating to that issue, and

> should be handled as part thereof.

Further on this, in the current draft standard, we can
construct executions in which an atomic read happens-
before the initialization of the atomic object, so there is no
place to take a read value from. We imagine that such
reads should also be of indeterminate values and result in
undefined behaviour?

US
86

20.2.5 Table 42 ed In the row for
X::propagate_on_container_move_assignment, the note
says “copied” when it should say “moved”

Change the note as follows:
true_type only if an allocator
of type X should be copiedmoved

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 89 of 157
ISO electronic balloting commenting template/version 2001-10

US
87

20.2.5 Table 42 te reference_type should not have been removed from the
allocator requirements. Even if it is always the same as
value_type&, it is an important customization point for
extensions and future features.

Add a row (after value_type) with columns:

Expression: X::reference_type
Return type: T&
Assertion/note...: (empty)
Default: T&

[allocator.traits]: Add reference_type to
allocator_traits template, defaulted to
value_type&.

REJECTED
There was no consensus to
adopt this change.

US
88

20.2.5 Te Allocator interface is not backward compatible. See Appendix 1 - Additional Details REJECTED

Withdrawn by the submitter.

US
89

20.3 [utility] ed make_pair is missing from the <utility> synopsis. Add template <class T1, class T2> pair<V1, V2>
make_pair(T1&&, T2&&); to the synopsis in
[utility].

ACCEPTED

GB
81

20.3 1 Ed make_pair should be declared in the synopsis of <utility> add to 20.3 [utility] paragraph 1:
template
see below make_pair(T1&&, T2&&);

ACCEPTED

GB
82

20.3 1 Ed The <utility> synopsis precedes the tuple_size and
tuple_element declarations with a comment saying "//
20.3.5, tuple-like access to pair:" but the sub-clause
should be 20.3.5.3 and the comment should probably be
below those declarations (since they, like the tuple
declaration above them, are defined in <tuple> and are
not related to pair.)

Also, there should be a comment above
piecewise_construct_t giving the sub-clause 20.3.5.5, and
it should be at the end of the synopsis,

correct the sub-clause reference for tuple-like
access to 20.3.5.3, move the comment after the
tuple_element declaration, and add "// defined in
<tuple>" to the tuple_size and tuple_element
declarations. Move the piecewise_construct_t and
piecewise_constrct declarations to the end of the
synopsis and precede them with "// 20.3.5.5
Piecewise construction"

ACCEPTED

US
90

20.3 3 te In n3090, at variance with previous iterations of the idea
discussed in papers and incorporated in WDs,
std::forward is constrained via std::is_convertible, thus is

 ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 90 of 157
ISO electronic balloting commenting template/version 2001-10

not robust wrt access control. This causes problems in
normal uses as implementation detail of member
functions. For example, the following snippet leads to a
compile time failure, whereas that was not the case for an
implementation along the lines of n2835 (using enable_ifs
instead of concepts for the constraining, of course)

#include <utility>

struct Base { Base(Base&&); };

struct Derived

: private Base

{

 Derived(Derived&& d)

 : Base(std::forward<Base>(d)) { }

};

In other terms, LWG 1054 can be resolved in a better
way, the present status is not acceptable.

See paper N3143

JP
28

20.3.1 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(31)" to "(Clause 31)".

ACCEPTED with
MODIFICATIONS

Changed to "(Table 31)".

JP
29

20.3.1 4, 6, 8 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and

Change "(32)" to "(Clause 32)".

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 91 of 157
ISO electronic balloting commenting template/version 2001-10

subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Changed to "(Table 32)".

JP
30

20.3.2 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(34)" to "(Table 34)".
Change "(36)" to "(Table 36)".

ACCEPTED

US
91

Merged with
US 90

 ACCEPTED with
MODIFICATIONS

See paper N3143

US
92

20.3.3 te std::identity was removed from 20.3.3 [forward],
apparently because std::forward() no longer needs it.
However, std::identity was useful by itself (to disable
template argument deduction, and to provide no
transformation when one is requested).

Restore std::identity, possibly in a different
section.

REJECTED

No consensus to restore at
this time. common_type can
be used for the use case
given.

US
93

20.3.3 6 ge When teaching C++0x, students have consistently found
the name std::move confusing because it doesn’t actually
move the object (it just makes it possible to move). It was
also confusing for me.

Choose a name that expresses the semantics
more clearly. Suggestion: std::unpin

REJECTED

There was no consensus to
adopt this change.

US
94

20.3.3 9 ed Returns clause for move_if_noexcept d refers to a non-
existent symbol, t, which should be x.

Modify the Returns clause:

Returns: std::move(tx).

ACCEPTED

DE 20.3.5.2, te Several function templates of pair and tuple allow for too Consider to add wording to constrain these ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 92 of 157
ISO electronic balloting commenting template/version 2001-10

15 20.4.2.1 many implicit conversions, for example:

#include <tuple>
std::tuple<char*> p(0); // Error?
struct A { explicit A(int){} };
A a = 1; // Error
std::tuple<A> ta = std::make_tuple(1); // OK?

function templates.
See paper N3140

JP
31

20.5.1

2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(section 3.9)" to "(3.9)".

ACCEPTED

GB
84

20.3.5.2 Ed [pairs.pair] defines the class template pair as well as
related non-member functions such as comparison
operators and make_pair. The related non-member
functions should be in a separate sub-clause, otherwise
it's not clear that paragraphs below 17 do not refer to
members of pair.

Create a new "Pair specialized algorithms" section
containing everything below paragraph 17 in
[pairs.pair]

ACCEPTED

US
95

20.3.5.2 9 te Copy-assignment for pair is defaulted and does not work
for pairs with reference members. This is inconsistent with
conversion-assignment, which deliberately succeeds even
if one or both elements are reference types, just as for
tuple. The copy-assignment operator should be
consistent with the conversion-assignment operator and
with tuple’s assignment operators.

Add to pair synopsis:

pair& operator=(const pair& p);

Add before paragraph 9:

pair& operator=(const pair& p);

 Requires: T1 and T2 shall satisfy the
requirements of CopyAssignable.

 Effects: Assigns p.first to first and p.second to
second.

 Returns: *this.

ACCEPTED with
MODIFICATIONS

See paper N3140

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 93 of 157
ISO electronic balloting commenting template/version 2001-10

DE
16

20.3.5.2,
20.4.2.1

 te Several pair and tuple functions in regard to move
operations are incorrectly specified if the member types
are references, because the result of a std::move cannot
be assigned to lvalue-references. In this context the usage
of the requirement sets MoveConstructible and
CopyConstructible also doesn't make sense, because
non-const lvalue-references cannot satisfy these
requirements.

Replace the usage of std::move by that of
std::forward and replace MoveConstructible and
CopyConstructible requirements by other
requirements.

ACCEPTED with
MODIFICATIONS

See paper N3140

GB
85

20.3.5.4 Te While std::pair may happen to hold a pair of iterators
forming a valid range, this is more likely a coincidence
than a feature guaranteed by the semantics of the pair
template. A distinct range-type should be supplied to
enable the new for-loop syntax rather than overloading an
existing type with a different semantic.

Strike 20.3.5.4 and the matching declarations in
20.3 header synopsis.
If a replacement facility is required for C++0x,
consider n2995.

ACCEPTED with
MODIFICATIONS
See LWG 1381

Strike 20.3.5.4 and the
matching declarations in 20.3
header synopsis.

ES
1

20.3.5.4
[pair.range]

 Te Using pair to represent a range of iterators is too general
and does not provide additional useful restrictions (see
N2995 and preceding papers).

Provide a separate template range<Iterator>.

REJECTED

No consensus to make this
change.

US
96

20.3.5.2

20.4.2.1

20.4.2.2

¶ 6-14

¶ 6-20

¶ 6-18

te pair and tuple constructors and assignment operators use
std::move when they should use std::forward. This
causes lvalue references to be erroneously converted to
rvalue references. Related requirements clauses are also
wrong.

See Appendix 1 - Additional Details ACCEPTED with
MODIFICATIONS

See paper N3140

US
97

20.3.5.2
and
20.4.2

 te pair's class definition in N3092 20.3.5.2 [pairs.pair]
contains "pair(const pair&) = default;" and "pair&
operator=(pair&& p);". The latter is described by
20.3.5.2/12-13.

"pair(const pair&) = default;" is a user-declared explicitly-
defaulted copy constructor. According to 12.8
[class.copy]/10, this inhibits the implicitly-declared move
constructor. pair should be move constructible. (12.8/7
explains that "pair(pair<U, V>&& p)" will never be

Either remove "pair(const pair&) = default;" and
"pair& operator=(pair&& p);" from pair's class
definition in 20.3.5.2 and from 20.3.5.2/12-13, or
give pair explicitly-defaulted copy/move
constructors and copy/move assignment
operators.

Change tuple to match.

ACCEPTED with
MODIFICATIONS

See paper N3140

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 94 of 157
ISO electronic balloting commenting template/version 2001-10

instantiated to move pair<T1, T2> to pair<T1, T2>.)

"pair& operator=(pair&& p);" is a user-provided move
assignment operator (according to 8.4.2
[dcl.fct.def.default]/4: "A special member function is user-
provided if it is user-declared and not explicitly defaulted
on its first declaration."). According to 12.8/20, this inhibits
the implicitly-declared copy assignment operator. pair
should be copy assignable, and was in C++98/03. (Again,
12.8/7 explains that "operator=(const pair<U, V>& p)" will
never be instantiated to copy pair<T1, T2> to pair<T1,
T2>.)

Additionally, "pair& operator=(pair&& p);" is
unconditionally defined, whereas according to 12.8/25,
defaulted copy/move assignment operators are defined as
deleted in several situations, such as when non-static data
members of reference type are present.

If "pair(const pair&) = default;" and "pair&
operator=(pair&& p);" were removed from pair's class
definition in 20.3.5.2 and from 20.3.5.2/12-13, pair would
receive implicitly-declared copy/move constructors and
copy/move assignment operators, and 12.8/25 would
apply. The implicitly-declared copy/move constructors
would be trivial when T1 and T2 have trivial copy/move
constructors, according to 12.8/13, and similarly for the
assignment operators, according to 12.8/27. Notes could
be added as a reminder that these functions would be
implicitly-declared, but such notes would not be necessary
(the Standard Library specification already assumes a
high level of familiarity with the Core Language, and
casual readers will simply assume that pair is copyable
and movable).

Alternatively, pair could be given explicitly-defaulted
copy/move constructors and copy/move assignment
operators. This is a matter of style.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 95 of 157
ISO electronic balloting commenting template/version 2001-10

tuple is also affected. tuple's class definition in 20.4.2
[tuple.tuple] contains:

tuple(const tuple&) = default;

tuple(tuple&&);

tuple& operator=(const tuple&);

tuple& operator=(tuple&&);

They should all be removed or all be explicitly-defaulted,
to be consistent with pair. Additionally, 20.4.2.1
[tuple.cnstr]/8-9 specifies the behavior of an explicitly-
defaulted function, which is currently inconsistent with
pair.

GB
86

20.4 Te tuple and pair are essentially two implementations of the
same type, with the same public interface, and their
specification in becoming increasingly intertwined. The
tuple library should be merged into the <utility> header to
reduce library dependencies and simplify user
expectations. The <tuple> header could optionally be
retained as a deprecated alias to the <utility> header.

Merge everything declared in 20.4 into the
<utility> header. Either remove the <tuple> header
entirely, or move it to Annex D as a deprecated
alias of the <utility> header.

REJECTED

There was no consensus to
make this change.

US
98

20.4.2.4 Paragraph 4 te/ed pack_arguments is poorly named. It does not reflect the
fact that it is a tuple creation function and that it forwards
arguments.

Rename pack_arguments to forward_as_tuple
throughout the standard.

ACCEPTED

GB
88

20.4.2.4 Te The tuple_cat template consists of four overloads and that
can concatenate only two tuples. A single variadic
signature that can concatenate an arbitrary number of
tuples would be preferred.

Adopt a simplified form of the proposal in n2795,
restricted to tuples and neither requiring nor
outlawing support for other tuple-like types.

ACCEPTED with
MODIFICATIONS
See LWG 1385

US
99

20.4.2.4 4 - 6 te pack_arguments is overly complex. This issue resulted from a lack of understanding of
how references are forwarded. The definition of
pack_arguments should be simply:

template <class... Types>
 tuple<ATypes&&>
pack_arguments(Types&&...t);

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 96 of 157
ISO electronic balloting commenting template/version 2001-10

Types:Let Ti be each type in Types....

Effects: ...

Returns:
tuple<ATypes&&...>(std::forward<Types>(t)...)

The synopsis should also change to reflect this
simpler signature.

GB
87

20.4.2.10 Te There is no compelling reason to assume a
heterogeneous tuple of two elements holds a pair of
iterators forming a valid range. Unlike std::pair, there are
no functions in the standard library using this as a return
type with a valid range, so there is even less reason to try
to adapt this type for the new for-loop syntax.

Strike 20.4.2.10 and the matching declarations in
the header synopsis in 20.4.

ACCEPTED

US
100

20.6.1
[ratio.ratio]

 te LWG 1281 was discussed in Pittsburgh, and the decision
there was to accept the typedef as proposed and move to
Review. Unfortunately the issue was accidentally applied
to the FCD, and incorrectly. The FCD version of the
typedef refers to ratio<N, D>, but the typedef is intended
to refer to ratio<num, den> which in general is not the
same type.

Accept the current proposed wording of LWG
1281 which adds:

 typedef ratio<num, den> type;

ACCEPTED

GB
89

20.6.2 Te The alias representations of the ratio arithmetic templates
do not allow implementations to avoid overflow, since they
explicitly specify the form of the aliased template
instantiation. For example
ratio_multiply,ratio<2,LLONG_MAX>> is *required* to
alias ratio<2*LLONG_MAX,LLONG_MAX*2>, which
overflows, so is ill-formed. However, this is trivially equal
to ratio<1,1>. It also contradicts the opening statement of
20.6.2p1 "implementations may use other algorithms to
compute these values".

Change the wording in 20.6.2p2-5 as follows:

template <class R1, class R2> using ratio_add =
see below;

The type ratio_add<R1, R2> shall be a synonym
for
ratio<T1,T2> <ins>ratio<U, V> such
that ratio<U,V>::num and
ratio<U,V>::den are the same as the
corresponding members of
ratio<T1,T2> would be in the absence of
arithmetic overflow</ins>
where T1 has the value R1::num * R2::den +

ACCEPTED with
MODIFICATIONS

See paper N3210

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 97 of 157
ISO electronic balloting commenting template/version 2001-10

R2::num * R1::den and T2
has the value R1::den * R2::den. <ins>If the
required values of
ratio<U,V>::num and ratio<U,V>::den cannot be
represented in intmax_t
then the program is illformed.</ins>

template <class R1, class R2> using
ratio_subtract = see below;

The type ratio_subtract<R1, R2> shall be a
synonym for
ratio<T1,T2> <ins>ratio<U, V> such
that ratio<U,V>::num and
ratio<U,V>::den are the same as the
corresponding members of
ratio<T1,T2> would be in the absence of
arithmetic overflow</ins>
where T1 has the value R1::num * R2::den -
R2::num * R1::den and T2
has the value R1::den * R2::den. <ins>If the
required values of
ratio<U,V>::num and ratio<U,V>::den cannot be
represented in intmax_t
then the program is illformed.</ins>

template <class R1, class R2> using ratio_multiply
= see below;

The type ratio_multiply<R1, R2> shall be a
synonym for
ratio<T1,T2> <ins>ratio<U, V> such
that ratio<U,V>::num and
ratio<U,V>::den are the same as the
corresponding members of
ratio<T1,T2> would be in the absence of
arithmetic overflow</ins>

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 98 of 157
ISO electronic balloting commenting template/version 2001-10

where T1 has the value R1::num * R2::num and
T2 has the value R1::den
* R2::den. <ins>If the required values of
ratio<U,V>::num and
ratio<U,V>::den cannot be represented in
intmax_t then the program is
illformed.</ins>

template <class R1, class R2> using ratio_divide
= see below;

The type ratio_divide<R1, R2> shall be a
synonym for
ratio<T1,T2> <ins>ratio<U, V> such
that ratio<U,V>::num and
ratio<U,V>::den are the same as the
corresponding members of
ratio<T1,T2> would be in the absence of
arithmetic overflow</ins>
where T1 has the value R1::num * R2::den and T2
has the value R1::den
* R2::num. <ins>If the required values of
ratio<U,V>::num and
ratio<U,V>::den cannot be represented in
intmax_t then the program is
illformed.</ins>

US
101

20.7 te Paper n2965 was largely rejected after the last CD on the
grounds there was no associated national body comment,
so I am submitting a national body comment this time.

Consider n2965 in the context of a national body
comment.

REJECTED

There is no consensus to
adopt this proposal at this
time.

GB
90

20.7 Ed type_traits is a core support facility offered by the
compiler, and exposed with a library interface that is
required in a free-standing implementation. It has far more
in common with numeric_limits than the utility components
in clause 20, and should move to clause 18.

Move clause 20.7 into clause 18. REJECTED

Type traits support queries
about all types, not just built-
in types. They do not belong
in Clause 18.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 99 of 157
ISO electronic balloting commenting template/version 2001-10

DE
17

20.7 te Speculative compilation for std::is_constructible and
std::is_convertible should be limited, similar to the core
language (see 14.8.2 paragraph 8).

 ACCEPTED with
MODIFICATIONS
See paper N3142

DE
18

20.7 te Several type traits require compiler support, e.g.
std::is_constructible or std::is_convertible. Their current
specification seems to imply, that the corresponding test
expressions should be well-formed, even in absense of
access:

class X { X(int){} };
constexpr bool test = std::is_constructible<X, int>::value;

The specification does not clarify the context of this test
and because it already goes beyond normal language
rules, it's hard to argue by means of normal language
rules what the context and outcome of the test should be.

Specify that std::is_constructible and
std::is_convertible will return true only for public
constructors/conversion functions.

ACCEPTED with
MODIFICATIONS
See paper N3142

US
102

20.7.4 te Despite Library Issue 520's ("Result_of and pointers to
data members") resolution of CD1, the FCD's result_of
supports neither pointers to member functions nor
pointers to data members. It should.

Ensure result_of supports pointers to member
functions and pointers to data members.

ACCEPTED with
MODIFICATIONS

See paper N3123

GB
91

20.7.4.3 Table 45 Ed It is mildly distasteful to dereference a null pointer as part
of our specification, as we are playing on the edges of
undefined behaviour. With the addition of the declval
function template, already used in these same
expressions, this is no longer necessary.

Replace the sub-expression '*(U*)0' with the sub-
expression 'declval<U&>()' in the specification for
has_nothrow_copy_assign and
has_nothrow_move_assign type traits.

ACCEPTED with
MODIFICATIONS

The wording in question was
removed by document
N3142.

See paper N3142

GB
92

20.7.4.3 Table 45 Te Trivial functions implicitly declare a noexcept exception
specification, so the references to has_trivial_* traits in the
has_nothrow_* traits are redundant, and should be struck
for clarity.

For each of the has_nothrow_something traits,
remove all references to the matching
has_trivial_something traits.

ACCEPTED with
MODIFICATIONS

See paper N3142

FI
18

20.7.4.3,
Table 45

 te Related to the change proposed in FI 17, there should be
a trait for checking whether a destructor throws.

Add the following type predicate:

REJECTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 100 of 157
ISO electronic balloting commenting template/version 2001-10

(Type
property
predicates)

Template

template <typename T> struct
has_nothrow_destructor;

Condition

has_trivial_destructor<T>::value is true or the
expression
noexcept((*(U*)0).~U()) is well-formed and true,
where U is
remove_all_extents<T>::type.

Precondition

T shall be a complete type, (possibly cv-qualified)
void, or an array of
unknown bound.

Reasoning:

With this metafunction the destructor of a class
template can adjust its
noexcept specification depending on whether
destructors of its unbound
members (or unbound base classes) might throw:

template <typename T>
struct C
{
 T t;
 ~C()
noexcept(has_nothrow_destructor<T>::value) {}
};

No consensus to make this
change at this time.

See paper N3142

DE 20.7.4.3 te The fundamental trait is_constructible reports false Remove all false positives from the domain of ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 101 of 157
ISO electronic balloting commenting template/version 2001-10

19 positives, e.g.

is_constructible<char*, void*>::value

evaluates to true, even though a corresponding variable
initialization would be ill-formed.

is_constructible.
See paper N3047

JP
32

20.7.5 2, table 47 Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(10)" to "(Clause 10)".

ACCEPTED

GB
93

20.7.6.2 Table 49 Te The comments for add_rvalue_reference say "this rule
reflects the semantics of reference collapsing", but
reference collapsing is not defined anywhere.

Add a new sentence at the end of 8.3.2p6 "This is
called reference collapsing".
Add a reference to 8.3.2 to the use of "reference
collapsing" in 20.7.6.2/table 49

REJECTED
There is no consensus to
make this change.

US
103

20.7.6.6
[meta.trans.ot
her]

 te The current definition of result_of works for function
pointers but the condition statement outlaws them. There
is even an example in the WP that shows result_of
working for function pointers.

Add “pointer to function” to the list of things that
Fn shall be.

REJECTED

Standard is correct as
written.

US
104

28.8 te std::basic_regex should have an allocator for all the
reasons that a std::string does. For example, I can use
boost::interprocess to put a string or vector in shared
memory, but not a regex.

Add allocators to regexes REJECTED

No consensus for a change
at this time

GB
94

20.8 Ed This subclause has grown large, with many components,
and so should stand alone.

Promote 20.8 and all its contents up to a new
numbered clause.

REJECTED

Clause 20 has been
extensively reorganized.

GB
95

20.8 Ge The adaptable function protocol supported by
unary_function/binary_function has been superceded by
lambda expressions and std::bind. Despite the name, the
protocol is not very adaptable as it requires intrusive

Move clauses 20.8.3, 20.8.9, 20.8.11 and 20.8.12
to Annex D. Remove the requirements to
conditionally derive from unary/binary_function
from function, reference_wrapper, and the results

ACCEPTED with
MODIFICATIONS

See paper N3198

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 102 of 157
ISO electronic balloting commenting template/version 2001-10

support in the adaptable types, rather than offering an
external traits-like adaption mechanism. This protocol and
related support functions should be deprecated, and we
should not make onerous requirements for the
specification to support this protocol for callable types
introduced in this standard revision, including those
adopted from TR1. It is expected that high-quality
implementations will provide such support, but we should
not have to write robust standard specifications mixing this
restricted support with more general components such as
function, bind and reference_wrapper.

of calling mem_fn and bind.

GB
96

20.8 Te The function templates 'hash', 'less' and 'equal_to' are
important customization points for user-defined types to
be supported by several standard containers. These are
accessed through the <functional> header which has
grown significantly larger in C++0x, exposing many more
facilities than a user is likely to need through there own
header, simply to declare the necessary specialization.
There should be a smaller header available for users to
make the necessary customization.

Provide a tiny forwarding header for important
functor types in the <functional> header that a
user may want to specialize. This should contain
the template declaration for 'equal_to', 'hash' and
'less'.

REJECTED

No consensus to make a
change.

GB
97

20.8.10 Te The bind template is intended as a singe, simple to use
replacement for the '98 adaptable function APIs and
machinery. It works well in almost all respects, but lacks
the ability to easily negate a predicate, or equivalently, act
as a replacement for not1 and not2. Two easy ways to
solve this omission would be to add a 'bind_not' function
that produces a binder that negates its result. However,
preference is given to requiring the unspecified bind result
type to overload operator! to produce the same effect.
This is preferred due to (i) its simpler usage, being the
naively expected syntax, but more importantly (ii) some
(limited) field experience.

Require the unspecified result of a bind
expression to support unary operator! to yield
another bind result that, when evaluated, yields
'!res', where 'res' is the result of evaluating the
original function.

REJECTED

There is no consensus to
adopt this change for this
revision.

JP 3 20.8.14.2 TL

explicit default contructor is defined in std::function.
Although it is allowed according to 12.3.1, it seems
unnecessary to qualify the constructor as explicit.

Remove explicit.

namespace std {
template<class> class function;

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 103 of 157
ISO electronic balloting commenting template/version 2001-10

If it is explicit, there will be a limitation in initializer_list. // undefined

template<class R, class... ArgTypes>
class function<R(ArgTypes...)>
: public unary_function<T1, R>
// iff sizeof...(ArgTypes) == 1 and ArgTypes
contains T1

: public binary_function<T1, T2, R>
 // iff sizeof...(ArgTypes) == 2 and ArgTypes
contains T1 andT2
{
public:typedef R result_type;

// 20.8.14.2.1, construct/copy/destroy:function();

JP
33

20.8.15 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(37)" to "(Table 37)".

ACCEPTED

JP
34

20.8.15 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(33)" to "(Table 33)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 104 of 157
ISO electronic balloting commenting template/version 2001-10

JP 4

20.8.14.2.1 1 TL Really does the function require that default constructor is
explicit?

Remove explicit.

function();

template <class A>

 function(allocator_arg_t, const A& a);

ACCEPTED

US
105

20.8.15.2 te unique_ptr and shared_ptr are inconsistent in their
handling of arrays. We can write:

 unique_ptr<int[]> p(new int[10]);

 // handles deletion correctly

But we cannot write:

 shared_ptr<int[]> p(new int[10]);

 // incorrect

This is an inconsistency. It is true that we have the
following workaround:

 std::shared_ptr<int> s(new int[5],

 std::default_delete<int[]>());

But this is still inconsistent, not to mention awkward and
error-prone because the programmer will occasionally
forget the deleter and the code will silently compile and
may appear to work on some platforms.

Support:
 shared_ptr<int[]> p(new int[10]);

to handle deletion correctly by calling delete[] on
the stored pointer.

REJECTED

There is no consensus to
adopt this change.

GB
98

20.9 Ed This subclause has grown large, with many components,
and so should stand alone.

Promote 20.9 and all of its contents to a new, top-
level, numbered clause.

REJECTED

Clause 20 has been
extensively reorganized

GB
99

20.9 1 Te One reason that the unique_ptr constructor taking a
nullptr_t argument is not explicit is to allow conversion of
nullptr to unique_ptr in contexts like equality comparison.
Unfortunately operator== for unique_ptr is a little more

Add the following signatures to 20.9p1, <memory>
header synopsis:

template<typename T, typename D> bool

ACCEPTED with
MODIFICATIONS
See LWG 1401

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 105 of 157
ISO electronic balloting commenting template/version 2001-10

clever than that, deducing template parameters for both
arguments. This means that nullptr does not get deduced
as unique_ptr type, and there are no other comparison
functions to match.

operator==(const unique_ptr<T, D> & lhs,
nullptr_t);

template<typename T, typename D> bool
operator==(nullptr_t, const unique_ptr<T, D> &
rhs);

template<typename T, typename D> bool
operator!=(const unique_ptr<T, D> & lhs,
nullptr_t);

template<typename T, typename D> bool
operator!=(nullptr_t, const unique_ptr<T, D> &
rhs);

GB
100

20.9 Te The unique_ptr and shared_ptr constructors taking
nullptr_t delegate to a constexpr constructor, and could be
constexpr themselves.

In the 20.9.10.2 [unique.ptr.single] synopsis add
"constexpr" to unique_ptr(nullptr_t).
In the 20.9.10.3 [unique.ptr.runtime] synopsis add
"constexpr" to unique_ptr(nullptr_t).
In the 20.9.11.2 [util.smartptr.shared] synopsis
add "constexpr" to shared_ptr(nullptr_t).

ACCEPTED

JP
85

20.9.1 E There are inconsistent definitions for allocator_arg.
In 20.9 [memory] paragraph 1,
constexpr allocator_arg_t allocator_arg =
allocator_arg_t();
and in 20.9.1,
const allocator_arg_t allocator_arg = allocator_arg_t();

Change "const" to "constexpr" in 20.9.1 as
follows.
constexpr allocator_arg_t allocator_arg =
allocator_arg_t();

ACCEPTED

US
106

20.9.3 all te pointer_traits should have a size_type member for
completeness.

Add “typedef see below size_type;” to the generic
pointer_traits template and “typedef size_t
size_type;” to pointer_traits<T*>. Use
pointer_traits::size_type and
pointer_traits::difference_type as the defaults for
allocator_traits::size_type and
allocator_traits::difference_type.

See Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS
See LWG 1404

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 106 of 157
ISO electronic balloting commenting template/version 2001-10

GB
104

20.9.5.1 13 Te The ~ is missing from the invokation of the destructor of
U.

Add the missing ~ : Effects: p->~U() ACCEPTED

GB
105

20.9.6 1 Te There is a missing '_' in the piecewise-construct call for
pair in the class definition.

Fix the declaration:
template <class T1, class T2, class... Args1,
class... Args2> void construct(pair<T1, T2>* p,
piecewise_construct_t, tuple<Args1...> x,
tuple<Args2...> y);

REJECTED

The declaration is identical to
the proposed text.

US
107

20.9.6 Te scoped_allocator_adaptor should have its own header. See Appendix 1 - Additional Details ACCEPTED

GB
101

20.9.10 5 Ed The first sentence of the paragraph says "Each object of a
type U instantiated form the unique_ptr template..." "form"
should be "from"

Replace "form" with "from" in the opening
sentence:
"Each object of a type U instantiated from the
unique_ptr template..."

ACCEPTED

FI
13

20.9.10. 5 ed typo "form the unique_ptr" should be "from the
unique_ptr."

ACCEPTED

GB
102

20.9.10 Ed unique_ptr is a smart pointer so [unique.ptr] should be a
sub-clause of [util.smartptr]

move [unique.ptr] to a sub-clause of [util.smartptr] REJECTED

[util.smartptr] deals with
shared_ptr and weak_ptr,
which work together. Adding
unique_ptr would create a
muddle.

JP
35

20.9.10.2 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(38)" to "(Table 38)".

ACCEPTED

JP
36

20.9.10.2.1 1, 6 Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are

Change "(33)" to "(Table 33)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 107 of 157
ISO electronic balloting commenting template/version 2001-10

in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

JP
37

20.9.10.2.1 18 Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(34)" to "(Table 34)".

ACCEPTED

JP
38

20.9.10.2.3 1 Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(36)" to "(Table 36)".

ACCEPTED

JP 5 20.9.11.2 1 TL Hash support based on ownership sharing should be
supplied for shared_ptr and weak_ptr.

For two shared_ptr objects p and q, two distinct
equivalence relations can be defined. One is based on
equivalence of pointer values, which is derived from the
expression p.get() == q.get() (hereafter called address-
based equivalence relation), the other is based on
equivalence of ownership sharing, which is derived from

Add the following non-static member functions to
shared_ptr and weak_ptr class template;
// 20.9.11.2 paragraph 1
namespace std{
 template<class T> class shared_ptr {
 public:
 ...
 size_t owner_hash() const;
 ...

REJECTED

No consensus to make this
change for this revision.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 108 of 157
ISO electronic balloting commenting template/version 2001-10

the expression !p.owner_before(q) && !q.owner_before(p)
(hereafter called ownership-based equivalence relation).
These two equivalence relations are independent in
general. For example, a shared_ptr object created by the
constructor of the signature shared_ptr(shared_ptr<U>
const &, T *) could reveal a difference between these two
relations. Therefore, hash support based on each
equivalence relation should be supplied for shared_ptr.
However, while the standard library provides the hash
support for address-based one (20.9.11.6 paragraph 2), it
lacks the hash support for ownership-based one. In
addition, associative containers work well in combination
with the shared_ptr's ownership-based comparison but
unordered associative containers don't. This is
inconsistent.
For the case of weak_ptr, hash support for the ownership-
based equivalence relation can be safely defined on
weak_ptrs, and even on expired ones. The absence of
hash support for the ownership-based equivalence
relation is fatal, especially for expired weak_ptrs. And the
absence of such hash support precludes some quite
effective use-cases, e.g. erasing the unordered_map entry
of an expired weak_ptr key from a customized deleter
supplied to shared_ptrs.
Hash support for the ownership-based equivalence
relation cannot be provided by any user-defined manner
because information about ownership sharing is not
available to users at all. Therefore, the only way to provide
ownership-based hash support is to offer it intrusively by
the standard library.
As far as we know, such hash support is implementable.
Typical implementation of such hash function could return
the hash value of the pointer of the counter object that is
internally managed by shared_ptr and weak_ptr.

 };
}
// 20.9.11.3 paragraph 1
namespace std{
 template<class T> class weak_ptr {
 public:
 ...
 size_t owner_hash() const;
 ...
 };
}
These functions satisfy the following
requirements. Let p and q be objects of either
shared_ptr or weak_ptr, H be a hypothetical
function object type that satisfies the hash
requirements (20.2.4) and h be an object of the
type H. The expression p.owner_hash() behaves
as if it were equivalent to the expression h(p). In
addition, h(p) == h(q) must become true if p and q
share ownership.

CH 20.9.11.2 p4 te Requiring shared_ptr and weak_ptr to always synchronize
the use count makes it potentially slow and is inconsistent

Strike 'not' from 'Changes in use_count() do not
reflect modifications that can introduce data

REJECTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 109 of 157
ISO electronic balloting commenting template/version 2001-10

20 with the general approach to leave the synchronization to
the user of a facility.

races.' Possibly add additional synchronized
constructors and assignments.

No consensus to make this
change for this revision.

US
108

20.9.11.2.1
[util.smartptr.s
hared.const]

 te shared_ptr should have the same policy for constructing
from auto_ptr as unique_ptr. Currently it does not.

Add “template <class Y> explicit
shared_ptr(auto_ptr<Y>&); to
[util.smartptr.shared.const] (and to the synopsis).

ACCEPTED with
MODIFICATIONS

See paper N3109

US
109

20.9.11.2.6 te 20.9.11.2.6 [util.smartptr.shared.create]/2 says: "the
placement new expression ::new (pv) T() or ::new (pv)
T(std::forward<Args>(args)...)". It should simply say "the
placement new expression ::new (pv)
T(std::forward<Args>(args)...)", because empty parameter
packs expand to nothing. This would be consistent with
the requirements in paragraph 1.

Change

"the placement new expression ::new (pv) T() or
::new (pv) T(std::forward<Args>(args)...)"

to

"the placement new expression ::new (pv)
T(std::forward<Args>(args)...)"

ACCEPTED

GB
103

20.9.12 12 Te The precondition to calling declare_no_pointers is that no
bytes in the range "have been previously registered" with
this call. As written, this precondition includes bytes in
ranges, even after they have been explicitly unregistered
with a later call to 'undeclare_no_pointers'.

Replace "have been previously registered" with
"are currently registered"

ACCEPTED

GB
106

20.10.3 Te duration is an arithmetic type, unlike time_point, and so
should provide a specialization of numeric_limits.

Add a declaration of a partial specialization of
numeric_limits for duration to the header synopsis
in 20.10.
Add 20.3.8 [time.duration.limits]
"duration is an arithmetic type, and so provides an
appropriate specialization of numeric_limits."

REJECTED

No consensus to adopt this
change.

US
110

20.10.5 te Significant parts of the clock section are "unspecified",
rather than "implementation-defined".

Make those parts "implementation-defined". REJECTED

There is no consensus to
adopt this change.

US
111

20.10.5.2 para 1 te What it means for monotonic_clock to be a synonym is
undefined. If it may or may not be a typedef, then certain
classes of programs become unportable.

Require that it be a distinct class type. ACCEPTED with
MODIFICATIONS

See paper N3191

GB
107

20.10.5.2 2 Te 1.4p9 states that which conditionally supported constructs
are available should be provided in the documentation for

Provide feature test macro for determining the
presence of std::chrono::monotonic_clock. Add

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 110 of 157
ISO electronic balloting commenting template/version 2001-10

the implementation. This doesn't help programmers trying
to write portable code, as they must then rely on
implementation-specific means to determine the
availability of such constructs. In particular, the presence
or absence of std::chrono::monotonic_clock may require
different code paths to be selected. This is the only
conditionally-supported library facility, and differs from the
conditionally-supported language facilities in that it has
standard-defined semantics rather than implementation-
defined semantics.

_STDCPP_HAS_MONOTONIC_CLOCK to the
<chrono> header, which is defined if
monotonic_clock is present, and not defined if it is
not present.

See paper N3191

DE
20

20.10.5.2 te The library component monotonic_clock is conditionally
supported, but no compile-time flag exists that allows
user-code to query its existence. Further-on there exist no
portable means to simulate such a query. (To do so, user
code would be required to add types to namespace
std::chrono.)

Provide a compile-time flag (preferably a macro)
that can be used to query the existence of
monotonic_clock.

ACCEPTED with
MODIFICATIONS

See paper N3191

CH
21

20.10.5.2 p2 te Monotonic clocks are generally easy to provide on all
systems and are implicitely required by some of the library
facilities anyway.

Make monotonic clocks mandatory, i.e. remove
p2. Also change 30.2.4p2 accordingly.

ACCEPTED with
MODIFICATIONS

See paper N3191

US
112

20.10.5.3 para 1 te What it means for high_resolution_clock to be a synonym
is undefined. If it may or may not be a typedef, then
certain classes of programs become unportable.

Require that it be a distinct class type. REJECTED

The standard is correct as
written. This is not a defect.
Threre are a number of
places in the standard where
we allow implentations to
choose their preferred
technique, the most obvious
example being the
iterator/const_iterator types
of set. Typically, this means it
is not portable to declare
function overloads that differ
only in their use of these
types.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 111 of 157
ISO electronic balloting commenting template/version 2001-10

JP
39

21.2.2 4 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(35)" to "(Table 35)".

ACCEPTED

GB
108

21.2.3.1 2,3 Te The definition of streamoff/streampos defers to the
definition of off_type and pos_type in 21.2.2, which defers
back to 27.2.2 for the definition of streamoff/streampos.
The actual definition appears to be supplied in 27.3, the
synopsis of <iosfwd>.

Update the reference in 21.2.3.1 to refer forward
to 27.2.2, rather than back to 21.2.2.
Add a cross-reference to from 27.2.2 to 27.3.

ACCEPTED

GB
109

21.2.3.2/3/4 Te It is not clear what the specification means for
u16streampos, u32streampos or wstreampos when they
refer to the requirements for POS_T in 21.2.2, as there
are no longer any such requirements. Similarly the annex
D.7 refers to the requirements of type POS_T in 27.3 that
no longer exist either.

Clarify the meaning of all cross-reference to the
removed type POS_T.

ACCEPTED with
MODIFICATIONS

See LWG 1414

JP
40

21.4 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(96)" to "(Table 96)".

ACCEPTED

GB
110

21.4.7.1 Te data() is the function of choice for calling into legacy 'C'-
like APIs. Both vector and array designed this function to
be callable in a const-correct way while allowing for
functions that want to use the result to designate a return
buffer.

Add the following overload to basic_string data():
charT * data();
Relax the requirement that programs do not alter
values in the array through the pointe retrieved
through this new overload.

REJECTED

There is no consensus to
adopt this change.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 112 of 157
ISO electronic balloting commenting template/version 2001-10

GB
111

21.5 Te Section 17.6.4.8, Data Race Avoidance, requires the C++
Standard Library to avoid data races that might otherwise
result from two threads making calls to C++ Standard
Library functions on distinct objects. The C standard
library is part of the C++ Standard Library and some C++
Standary library functions (parts of the Localization library,
as well as Numeric Conversions in 21.5), are specified to
make use of the C standard library. Therefore, the C++
standard indirectly imposes a requirement on the thread
safety of the C standard library. However, since the C
standard does not address the concept of thread safety
conforming C implementations exist that do no provide
such guarantees. This conflict needs to be reconciled.

remove the requirement to make use of strtol()
and sprintf() since these functions depend on the
global C locale and thus cannot be made thread
safe.

ACCEPTED with
MODIFICATIONS

See paper N3278

JP
86

21.7 1 E Table numbers are listed incorrectly. "74,75. and" should
be "74, 75, and".

Correct typo as follows.
Tables 71, 72, 73, 74, 75, and 76 describe

ACCEPTED

JP
87

22.3.1 E While usage of "traits" and "Traits" are explained in 21.2
as template parameters and arguments respectively,
specifying "Traits" as template parameter seems misuse.
template <class charT, class Traits, class Allocator>
bool operator()(const
basic_string<charT,Traits,Allocator>& s1,
const basic_string<charT,Traits,Allocator>& s2) const;

Change "Traits" to "traits" in three places.

ACCEPTED

JP
88

22.6 3, Table 91 E Typo, duplicated "ispunct" and missing "iswpunct".

Correct as follows.
 isprint
 ispunct
 isspace
 :
 iswprint
 iswpunct
 iswspace

ACCEPTED

JP
89

23.1 2, Table 92 E Typo, "<forwardlist>" should be "<forward_list>".

Correct typo.
<forward_list>

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 113 of 157
ISO electronic balloting commenting template/version 2001-10

US
113

23.2 5 te Resolve LWG 579 one way or the other, but preferably in
the direction of changing the two erase overloads to return
void.

 REJECTED

There is no consensus to
adopt this change.

US
114

23.2.1 Paragraph 9 te Requirements on iterators swapping allegiance would
disallow the small-string optimization.

Add an exclusion for basic_string to the sentence
beginning “Every iterator referring to an
element...”. Add a sentence to 21.4.6.8/2 saying
that iterators and references to string elements
remain valid, but it is not specified whether they
refer to the same string or the other string.

ACCEPTED with
MODIFICATIONS

See paper N3108

DE
21

23.2.1,
23.3.3.4

 te 23.2.1/11 provides a general no-throw guarantee for
erase() container functions, exceptions from this are
explicitly mentioned for individual containers. Because of
its different name, forward_list's erase_after() function is
not ruled by this but should so.

Add a "Throws: Nothing" clause to both
erase_after overloads in 23.3.3.4.

ACCEPTED

US
115

23.2.1 Paragraph
15

te The terms CopyConstructible, MoveConstructible, and
constructible from are redefined, then used inconsistently
and often incorrectly within the section. New terms should
have been introduced and used correctly.

Better terms would be X can copy-insert T, X can
move-insert T, and X can construct-insert T with
args. See Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS

See paper N3173

US
116

23.2.1 Table 96 ed The requirement for X(rv) that move construction of the
allocator not throw can be misread as requiring that move
construction of the whole container not throw.

Add non-normative note:

Requires: move construction of A shall not exit via
an exception. [Note: This requirement on
allocators exists so that implementations can
(optionally) provide a nothrow guarantee on move
construction of some containers. – end note]

REJECTED

The text as is seems quite
clear; the proposed note just
muddles things.

FI
12

23.2.3

[sequence.req
mts]

Table 97 —
Sequence
container
requirement
s (in addition
to container)

te The requirement for insert says: “Requires:T shall be
CopyConstructible. For vector and deque, T shall also be
CopyAssignable.”. Why must T be CopyAssignable? Is it
for cases where the object may be already constructed
and insert will first copy the existing data out of the way
and assign to an existing object? Can't such an
implementation do the same with placement-new?

CopyAssignable seems like an overly strict
requirement for insert, exposing implementation
details in the specification. If such implementation
details are achievable without assignment, eg.
with placement-new, the CopyAssignable
requirement should be removed.

REJECTED

No consensus to make the
change.

JP 23.2.3 17, Table 98 E In Operational semantics for "a.emplace_front(args)", Change <Arg> to <Args>. ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 114 of 157
ISO electronic balloting commenting template/version 2001-10

90 <Arg> should be <Args>.
Prepends an object of type T
constructed with
std::forward<Arg>(args)...."

JP
91

23.2.5 10, Table
100

E Typo, unnecessary new-line.
 a_uniq.
 emplace(args)
Typo, unnecessary space.
 a_eq. emplace(args)

Remove space characters between "." and
"emplace" same as other word wrapped columns
in the table.

ACCEPTED with
MODIFICATIONS

The newline is needed, but
the space is unnecessary.
Removed the space.

JP
92

23.2.5 11 E Typo, "unodified" should be "unmodified".

Correct typo.
unmodified

ACCEPTED

ES
2

23.2.5
[unord.req],
Table 100
(Unordered
associative
container
requirements
(in addition to
container))

Row for
expression
a.erase(q
)

Te The expression is required to return the iterator
immediately following q prior to the erasure. As explained
in N2023, this requirement makes it impossible to achieve
average O(1) complexity for unordered associative
containers implemented with singly linked lists. This has a
theoretical as well as a practical impact, as reported by
users of early implementations of these containers.
Discussions among committee members have not found
any way of remedying this deficiency (other than
acknowledging it) by some smart modification of usual
singly linked lists implementations.

Change the return type of the expression from
iterator to void. Eliminate the sentence
“Return value is the iterator immediately following
q prior to the erasure”. Change accordingly the
appearances of “iterator
erase(const_iterator position)” in
23.5.1, 23.5.2, 23.5.3 and 23.5.4.

REJECTED
There was no consensus to
adopt this change.

GB
112

23.3.1.7 p3 Te Should the effect of calling front/back on a zero sized
array really be implementation defined i.e. require the
implementor to define behaviour?

Change "implementation defined" to "undefined" ACCEPTED

GB
113

23.3.2.2 p1 Te There is no mention of what happens if sz==size(). While
it obviously does nothing I feel a standard needs to say
this explicitely.

Append "If sz == size(), does nothing" to the
effects.

ACCEPTED with
MODIFICATIONS

See LWG 1418

US
117

23.3.3 Te forward_list::erase_after should return an iterator. See Appendix 1 - Additional Details ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 115 of 157
ISO electronic balloting commenting template/version 2001-10

JP
41

23.3.3 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(table 93)" to "(Table 93)".

ACCEPTED

GB
114

23.3.4.1 p11 & p12 Ed It looks like the erase/insert effects given in p11 are
intended for p12.

Move the erase/insert effects down to p12 ACCEPTED with
MODIFICATIONS

The code in question is a
remmant from a previous
version. It has now been
removed.

GB
115

23.3.4.2 p1 Te There is no mention of what happens if sz==size(). While
it obviously does nothing I feel a standard needs to say
this explicitly.

Express the semantics as pseudo-code similarly
to the way it is done for the copying overload that
follows (in p3). Include an else clause that does
nothing and covers the sz==size() case.

ACCEPTED with
MODIFICATIONS

See LWG 1420
GB
116

23.3.5 Ed The sequence container adaptors consume sequence
containers, but are neither containers nor sequences
themselves. While they clearly belong in clause 23, they
should not interrupt the presentation of the sequence
container themselves.

Move clause 23.3.5 out of clause 23.3.
Recommending inserting as a 'new' 23.4
immediately following sequence containers, and
before the current 23.4 (associative containers)
which would be renumbered 23.5.

ACCEPTED

DE
22

23.3.5.1,
23.3.5.2,
23.3.5.3

 te With the final acceptance of move operations as special
members and introduction of corresponding suppression
rules of implicitly generated copy operations the some
library types that were copyable in C++03 are no longer
copyable (only movable) in C++03, among them queue,
priority_queue, and stack.

 ACCEPTED with
MODIFICATIONS

See LWG 1421

JP
93

23.3.5.2 1 E Typo, missing ";".
template <class... Args> void emplace(Args&&... args)

Correct typo.
template <class... Args> void emplace(Args&&...
args);

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 116 of 157
ISO electronic balloting commenting template/version 2001-10

GB
117

23.3.6.2 p9 Te (Same as for 23.3.2.2p1 i.e. deque::resize).
There is no mention of what happens if sz==size(). While
it obviously does nothing I feel a standard needs to say
this explicitely.

Append "If sz == size(), does nothing" to the
effects.

ACCEPTED with
MODIFICATIONS

See LWG 1525
GB
118

23.3.7 Te vector<bool> iterators are not random access iterators
because their reference type is a special class, and not
'bool &'. All standard libary operations taking iterators
should treat this iterator as if it was a random access
iterator, rather than a simple input iterator.

Either revise the iterator requirements to support
proxy iterators (restoring functionality that was lost
when the Concept facility was removed) or add an
extra paragraph to the vector<bool> specification
requiring the library to treat vector<bool> iterators
as-if they were random access iterators, despite
having the wrong reference type.

REJECTED

There is no consensus to
adopt this change for this
revision.

JP 6 23.4.1

2 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.
namespace std {
template <class Key, class T, class Compare =
less<Key>,
class Allocator = allocator<pair<const Key, T> > >
class map {
public:
...
map(const Allocator&);

Add explicit.
namespace std {
template <class Key, class T, class Compare =
less<Key>,
class Allocator = allocator<pair<const Key, T> > >
class map {
public:
...
explicit map(const Allocator&);

ACCEPTED

JP 7

23.4.2

2 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key, class T, class Compare =
less<Key>,
class Allocator = allocator<pair<const Key, T> > >
class multimap {
public:
...
explicit multimap(const Allocator&);

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 117 of 157
ISO electronic balloting commenting template/version 2001-10

JP 8 23.4.3 2 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >
class set {
public:
...
explicit set(const Allocator&);

ACCEPTED

JP 9 23.4.4

2 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >
class multiset {
public:
...
explicit multiset(const Allocator&);

ACCEPTED

US
118

23.5 te Some unordered associative container operations have
undesirable complexities when the container is
implemented using singly linked lists.

See Appendix 1 - Additional Details REJECTED
There is no consensus to
adopt this change.

JP
10

23.5.1 3 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key,
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key,
T> > >
class unordered_map
{
public:
...

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 118 of 157
ISO electronic balloting commenting template/version 2001-10

explicit unordered_map(const Allocator&);

JP
11

23.5.2 3 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key,
T> > >
class unordered_multimap
{
public:
...
explicit unordered_multimap(const Allocator&);

ACCEPTED

JP
94

23.5.2 1 E "see below" should be in italic and need one space
between words.
explicit unordered_multimap(size_type n = seebelow,

Change to:
explicit unordered_multimap(size_type n = see
below,

ACCEPTED

JP
12

23.5.3 3 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >
class unordered_set
{
public:
...
explicit unordered_set(const Allocator&);

ACCEPTED

JP
13

23.5.4 3 TL Constructor accepting an allocator as a single parameter
should be qualified as explicit.

Add explicit.
namespace std {
template <class Key,

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 119 of 157
ISO electronic balloting commenting template/version 2001-10

class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >
class unordered_multiset
{
public:
...
explicit unordered_multiset(const Allocator&);

US
119

[input.iterators
]

24.2.3

Table 104 te Although the section talks about operator==, there is no
requirement that it exist.

Add a == b to Table 104 REJECTED

Standard is correct as is.

JP
42

25.1 8, 9 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(4)" to "(Clause 4)".

ACCEPTED

US
120

25.2.12 para 1 te is_permutation is underspecified for anything but the
simple case where both ranges have the same value type
and the comparison function is an equivalence relation.

Restrict is_permutation to the case where it is well
specified. See Appendix 1 - Additional Details

ACCEPTED

ES
3

25.2.12 Te is_permutation does not require ForwardIterator1 and
ForwardIterator2 to have the same value type. This opens
the door to nonsense heterogeneous usage where both
ranges have different value types

Require both iterator types to have the same
value type

ACCEPTED

JP
43

25.3.9 5 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the

Change "(4)" to "(Clause 4)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 120 of 157
ISO electronic balloting commenting template/version 2001-10

form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

US
121

25.3.12
[alg.random.s
huffle]

1 te random_shuffle and shuffle should be consistent in how
they accept their source of randomness: either both by
rvalue reference or both by lvalue reference.

Change random_shuffle to accept its
RandomNumberGenerator by lvalue reference.

ACCEPTED with
MODIFICATIONS

See LWG 1432

GB
119

25.3.12 Te The functions random_shuffle and shuffle both take
arguments providing a source of randomness, but one
take its argument by rvalue reference, and the other
requires an lvalue reference. The technical merits of which
form of argument passing should be settled for this
specific case, and a single preferred form used
consistently.

[DEPENDS ON WHETHER RVALUE OR
LVALUE REFERENCE IS THE PREFERRED
FORM]

ACCEPTED with
MODIFICATIONS

See LWG 1433

JP
44

25.4 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(4)" to "(Clause 4)".

ACCEPTED

JP
45

25.4.7 1, 10, 19 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(32)" to "(Table 32)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 121 of 157
ISO electronic balloting commenting template/version 2001-10

US
122

25.4.7
[alg.min.max]

 te It was the LWG’s intent in Pittsburgh that N2772 be
applied to the WP

Apply N2772 to the WP. ACCEPTED with
MODIFICATIONS

See paper N3106

US
123

25.5 ¶5b, and all
uses of lshift

ed N3056, as adopted, calls for each use of lshift to be
followed by a subscripted value.

Adjust all occurrences of the lshift notation so as
to match the notation of N3056.

ACCEPTED

FI
14

26.3.1. 3 ed typo "floating-point environmnet" should be "floating-
point environment."

ACCEPTED

GB
120

26.4.7 Ge The complex number functions added for compatibility
with the C99 standard library are defined purely as a
cross-reference, with no hint of what they should return.
This is distinct from the style of documentation for the
functions in the earlier standard. In the case of the
inverse-trigonometric and hyperbolic functions, a
reasonable guess of the functionality may be made from
the name, this is not true of the cproj function, which
apparently returns the projection on the Reimann Sphere.
A single line description of each function, associated with
the cross-reference, will greatly improve clarity.

[ONE LINE DESCRIPTIONS, AND ASSOCIATED
PARAGRAPH NUMBERS, TO FOLLOW IF THE
INTENT IS APPROVED]

ACCEPTED with
MODIFICATIONS

See LWG 1435

JP
46

26.5.1.6 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "Clause 21 and 27" to "Clauses 21 and
27".

ACCEPTED

GB
121

26.5.3 Te All the random number engine types in this clause have a
constructor taking an unsigned integer type, and a
constructor template for seed sequences. This means that
an attempt to create a random number engine seeded by
an integer literal must remember to add the appropriate
unsigned suffix to the literal, as a signed integer will

[WORDING TO FOLLOW ONCE A PREFERRED
DIRECTION IS INDICATED]

ACCEPTED with
MODIFICATIONS

See LWG 1436

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 122 of 157
ISO electronic balloting commenting template/version 2001-10

attempt to use the seed sequence template, yielding
undefined behaviour, as per 26.5.1.1p1a. It would be
helpful if at least these anticipated cases produced a
defined behaviour, either an erroneous program with
diagnostic, or a conversion to unsigned int forwarding to
the appropriate constructor.

US
124

26.5.3.2 ¶4 te The Mersenne twister algorithm is meaningless for word
sizes less than two, as there are then insufficient bits
available to be “twisted”.

Insert the following among the relations that are
required to hold: 2u < w.

ACCEPTED

US
125

26.5.4.1
[rand.adapt.di
sc]

3 ed The synopsis for min() and max() is lacking “()” in the
return statements.

return Engine::min();

return Engine::max();

ACCEPTED

US
126

26.5.4.1
[rand.adapt.di
sc],
 26.5.4.2
[rand.adapt.ibi
ts],
26.5.4.3
[rand.adapt.sh
uf]

3 te Each adaptor has a member function called base() which
has no definition.

Give it the obvious definition. ACCEPTED with
MODIFICATIONS

See LWG 1438

US
127

26.5.4.1 synopsis
after ¶3

ed/te Engine::min is a function and ought be invoked in the
context where mentioned, as should Engine::max.

Append parentheses so as to become return
Engine::min() and return Engine::max().

ACCEPTED

US
128

26.5.4.3 synopsis
after ¶3

ed/te Engine::min is a function and ought be invoked in the
context where mentioned, as should Engine::max.

Append parentheses so as to become return
Engine::min() and return Engine::max().

ACCEPTED

US
129

26.5.7.1 ¶8b ed/te The expression begin[x+q] is incorrect since x is
unspecified .

Replace x by k so as to obtain begin[k+q]. ACCEPTED

US
130

26.5.7.1 ¶8c ed/te The phrase “three more times” is misleading. s/three more times,/again,/ ACCEPTED

US
131

26.5.7.1 ¶8c ed/te Values r3 and r4 are correctly specified, but in their
subsequent use they are interchanged with respect to the
original algorithm by Mutso Saito.

Exchange subscripts so as to read as follows: “…
update begin[k + p] by xoring it with r3, update
begin[k + q] by xoring it with r4, and …”

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 123 of 157
ISO electronic balloting commenting template/version 2001-10

US
132

26.5.7.1
[rand.util.seed
seq]

8b ed The last sentence includes “begin[x + q]” but “x” is non-
sensical here.

Change “begin[x + q]” to “begin[k + q]” ACCEPTED

US
133

26.5.7.1
[rand.util.seed
seq]

8c te The use of r3 and r4 is reversed in the final sentence of 8c
according to the defect report on comp.std.c++ that this
specification is based on:
http://groups.google.com/group/comp.std.c++/browse_thre
ad/thread/e34cbee1932efdb8/aad523dccec12aed?q=grou
p:comp.std.c%2B%2B+insubject:seed_seq

If you follow the SFMT link to the software, the software
also uses r3 and r4 in a manner inconsistent with N3092.
I believe N3092 should be changed to be consistent with
the defect report.

Change 8c to end:

... update begin[k + p] by xoring it with r3, update
begin[k + q] by xoring it with
r4, and ...

ACCEPTED

US
134

26.5.8.5.2
[rand.dist.sam
p.pconst],
26.5.8.5.3
[rand.dist.sam
p.plinear]

 te These two distributions have a member function called
densities() which returns a vector<double>. The
distribution is templated on RealType. The distribution
also has another member called intervals() which returns
a vector<RealType>. Why doesn’t densities return
vector<RealType> as well? If RealType is long double,
the computed densities property isn’t being computed to
the precision the client desires. If RealType is float, the
densities vector is taking up twice as much space as the
client desires.

Change the piecewise constant and linear
distributions to hold / return the densities in a
vector<result_type>.

If this is not done, at least
correct[rand.dist.samp.pconst]/13 which describes
the return of densities as a vector<result_type>.

ACCEPTED

US
135

26.5.8.5.3 10 te This paragraph says: Let bk = xmin+k·δ for k = 0,...,n,
and wk = fw(bk +δ) for k = 0,...,n.

However I believe that fw(bk) would be far more desirable.
I strongly suspect that this is nothing but a type-o.

Change p10 to read:

Let bk = xmin+k·δ for k = 0,...,n, and wk = fw(bk)
for k = 0,...,n.

ACCEPTED

JP
47

26.7.1 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only

Change "(35)" to "(Table 35)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 124 of 157
ISO electronic balloting commenting template/version 2001-10

a number Z in parentheses to confer Clause or Table
number Z.

JP
48

26.7.2 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(35)" to "(Table 35)".

ACCEPTED

JP
49

26.7.4 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(36)" to "(Table 36)".

ACCEPTED

US
136

26.8 Te Floating-point test functions are incorrectly specified. See Appendix 1 - Additional Details ACCEPTED

CA
9

27.2.3p2

30.3.1.2p6

30.3.1.5p7

30.6.4p7

30.6.9p5

27.2.3p2

30.3.1.2p6

30.3.1.5p7

30.6.4p7

30.6.9p5

te Imposed happens-before edges should be in
synchronizes-with

Each use of the words "happens-before" should be
replaced with the words "synchronizes-with" in the
following sentences:

27.2.3p2

30.3.1.2p6

Each use of the words "happens-before" should
be replaced with the words "synchronizes-with" in
the following sentences:

27.2.3p2

30.3.1.2p6

30.3.1.5p7

ACCEPTED

See paper N3196

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 125 of 157
ISO electronic balloting commenting template/version 2001-10

30.6.10.1p23 30.6.10.1p2
3

30.3.1.5p7

30.6.4p7

30.6.9p5

30.6.10.1p23

Rationale: Happens-before is defined in 1.10p11 in a way
that (deliberately) does not make it explicitly transitively
closed. Adding edges to happens-before directly, as in
27.2.3p2 etc., does not provide transitivity with
sequenced-before or any other existing happens-before
edge. This lack of transitivity seems to be unintentional.

30.6.4p7

30.6.9p5

30.6.10.1p23

GB
122

27, 30 Te See (D) in attachment Appendix 1 - Additional Details Request the concurrency working group to
determine if changes are needed

ACCEPTED with
MODIFICATIONS

See LWG 1442, and LWG
1443

GB
123

27.5.3.2 Table 124 Te Several rows in table 124 specify a Return type of
'OFF_T', which does not appear to be a type defined in
this standard.

Resolve outstanding references to the removed
type 'OFF_T'.

ACCEPTED with
MODIFICATIONS

See LWG 1414, and LWG
1444

US
137

27.7 Te Several iostreams member functions are incorrectly
specified.

See Appendix 1 - Additional Details ACCEPTED with
MODIFICATIONS

See paper N3168

US
138

27.7 te For istreams and ostreams, the move-constructor does
not move-construct, the move-assignment operator does
not move-assign, and the swap function does not swap
because these operations do not manage the rdbuf()
pointer. Useful applications of these operations are
prevented both by their incorrect semantics and because

In short: reverse the resolution of issue 900, then
change the semantics to move and swap the
rdbuf() pointer. Add a new protected constructor
that takes an rvalue reference to a stream and a
pointer to a streambuf, a new protected assign()
operator that takes the same arguments, and a
new protected partial_swap() function that doesn’t

REJECTED

The Library Working Group
reviewed n3179 and
concluded that this change
alone was not sufficient, as it
would require changes to

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 126 of 157
ISO electronic balloting commenting template/version 2001-10

they are protected. swap rdbuf().

See Appendix 1 - Additional Details

some of the derived stream
types in the library. The
preference is not make such
a broad fix, and retain the
current semnatic. It would be
difficult to rename the new
functions introduced in the
C++0x revision of the
standard at a later date. Thus
there is no consensus to
make this change.
See paper N3179

US
139

27.7 1.1.3 te Resolve issue LWG 1328 one way or the other, but
preferably in the direction outlined in the proposed
resolution, which, however, is not complete as-is: in any
case, the sentry must not set ok_ = false if is.good() ==
false, otherwise istream::seekg, being an unformatted
input function, does not take any action because the
sentry object returns false when converted to type bool.
Thus, it remains impossible to seek away from end of file.

 ACCEPTED with
MODIFICATIONS

See paper N3168

US
140

27.8 te It should be possible to construct a stringstream with a
specific allocator.

Add an allocator_type and overloaded
constructors that take an Allocator argument to
basic_stringbuf, basic_istringstream,
basic_ostringstream, and basic_stringstream.
The semantics of allocator propagation should be
the same as if the stringbuf contained an
embedded basic_string using the same allocator.

REJECTED

There is no consensus to
adopt this change for this
revision.

GB
124

27.8.1.3 3 Te N3092 27.8.1.3 Member functions contains this text
specifying the postconditions of
basic_stringbuf::str(basic_string):
"Postconditions: If mode & ios_base::out is true, pbase()
points to the first underlying character and epptr() >=
pbase() + s.size() holds; in addition, if mode &
ios_base::in is true, pptr() == pbase() + s.data() holds,
otherwise pptr() == pbase() is true. [...]"
Firstly, there's a simple mistake: It should be pbase() +

 ACCEPTED with
MODIFICATIONS
See LWG 1448

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 127 of 157
ISO electronic balloting commenting template/version 2001-10

s.length(), not pbase() + s.data().
Secondly, it doesn't match existing implementations. As
far as I can tell, GCC 4.5 does not test for mode &
ios_base::in in the second part of that sentence, but for
mode & (ios_base::app | ios_base_ate), and Visual C++ 9
for mode & ios_base::app. Besides, the wording of the
C++0x draft doesn't make any sense to me. I suggest
changing the second part of the sentence to one of the
following:
Replace ios_base::in with (ios_base::ate | ios_base::app),
but this would require Visual C++ to change (replacing
only with ios_base::ate would require GCC to change, and
would make ios_base::app completely useless with
stringstreams):
in addition, if mode & (ios_base::ate | ios_base::app) is
true, pptr() == pbase() + s.length() holds, otherwise pptr()
== pbase() is true.
Leave pptr() unspecified if mode & ios_base::app, but not
mode & ios_base::ate (implementations already differ in
this case, and it's always possible to use ios_base::ate to
get the effect of appending, so it's not necessary to
require any implementation to change):
in addition, if mode & ios_base::ate is true, pptr() ==
pbase() + s.length() holds, if neither mode & ios_base::ate
nor mode & ios_base::app is true, pptr() == pbase() holds,
otherwise pptr() >= pbase() && pptr() <= pbase() +
s.length() (which of the values in this range is
unspecified).
Slightly stricter:
in addition, if mode & ios_base::ate is true, pptr() ==
pbase() + s.length() holds, if neither mode & ios_base::ate
nor mode & ios_base::app is true, pptr() == pbase() holds,
otherwise pptr() == pbase() || pptr() == pbase() +
s.length() (which of these two values is unspecified).
A small table might help to better explain the three cases.
BTW, at the end of the postconditions is this text: "egptr()
== eback() + s.size() hold". Is there a perference for

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 128 of 157
ISO electronic balloting commenting template/version 2001-10

basic_string::length or basic_string::size? It doesn't really
matter, but it looks a bit inconsistent.

CA
4

27.8.2 various te Subclause 27.9.2 [c.files] specifies that <cinttypes> has
declarations for abs() and div(); however, the signatures
are not present in this subclause. The signatures
proposed under TR1 ([tr.c99.inttypes]) are not present in
FCD (unless if intmax_t happened to be long long). It is
unclear as to which, if any of the abs() and div() functions
in [c.math] are meant to be declared by <cinttypes>. This
subclause mentions imaxabs() and imaxdiv(). These
functions, among other things, are not specified in FCD to
be the functions from Subclause 7.8 of the C Standard.
Finally, <cinttypes> is not specified in FCD to include
<cstdint> (whereas <inttypes.h> includes <stdint.h> in C).

Please clarify. ACCEPTED with
MODIFICATIONS

See LWG 1449

JP
14

28.4 TL Support of char16_t/char32_t is insufficient. The <regex>
does not have typedefs for char16_t/char32_t.

The reason we need this typedefs is, because anybody
may define
exactly same type with different typedef names.
Doesn't <locale> offer enough operations which is
required by regex
implementation?

Add typedefs below
 typedef basic_regex<char16_t> u16regex;
 typedef basic_regex<char32_t> u32regex;

REJECTED

No consensus to adopt this
change for this revision.

GB
127

28.5.2 Te The Bitmask Type requirements in 17.5.2.1.3 p3 say that
all elements on a bitmask type have distinct values, but
28.5.2 defines regex_constants::match_default and
regex_constants::format_default as elements of the
bitmask type regex_constants::match-flag_type, both with
value 0. This is a contradiction.

One of the bitmask elements should be removed
from the declaration and should be defined
separately, in the same manner as
ios_base::adjustfield, ios_base::basefield and
ios_base::floatfield are defined by 27.5.2.1.2p2
and Table 120. These are constants of a bitmask
type, but are not distinct elements, they have
more than one value set in the bitmask.
regex_constants::format_default should be
specified as a constant with the same value as
regex_constants::match_default.

REJECTED

No consensus to make a
change at this time.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 129 of 157
ISO electronic balloting commenting template/version 2001-10

JP
50

28.5.2 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 136" to "Table 136".

ACCEPTED

JP
51

28.5.3 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 137" to "Table 137".

ACCEPTED

US
141

28.8 te std::basic_regex should have an allocator for all the
reasons that a std::string does. For example, I can use
boost::interprocess to put a string or vector in shared
memory, but not a regex.

Add allocators to regexes REJECTED

There is no consensus for a
change at this time.

GB
125

28.10.3 2 Te The term "target sequence" is not defined. Replace "target sequence" with "string being
searched/matched"

REJECTED

The standard is correct as
written. The term 'target
sequence' is a common term
used in Regular Expressions.
A simple search will provide
examples of its use.

GB
126

28.10.3 Te It's unclear how match_results should behave if it has
been default-constructed. The sub_match objects
returned by operator[], prefix and suffix cannot point to the

Add to match_results::operator[],
match_results::prefix and match_results::suffix:
Requires: !empty()

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 130 of 157
ISO electronic balloting commenting template/version 2001-10

end of the sequence that was searched if no search was
done. The iterators held by unmatched sub_match objects
might be singular.

See paper N3158

JP
52

28.11.2 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 139" to "Table 139".

ACCEPTED

JP
95

28.11.3 1 E The section number "(24.1.4)" for "Bidirectional Iterator" is
wrong. The correct one is "(24.2.6)".
In addition, it is written as normal text, but it should be
embedded as a link to the section.

Change "(24.1.4)" to "(24.2.6)" and make it a link
to section (24.2.6).

ACCEPTED

JP
53

28.11.3 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 140" to "Table 140".

ACCEPTED

JP
54

28.13 6 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 135" to "Table 135".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 131 of 157
ISO electronic balloting commenting template/version 2001-10

GB
128

29 Ge WG14 has made some late changes to their specification
of atomics, and care should be taken to ensure that we
retain a common subset of language/library syntax to
declare headers that are portable to both languages.
Ideally, such headers would not require users to define
their own macros, especially not macros that map to
keywords (which remains undefined behaviour)

Depends on result of the review of WG14 work,
which is expected to be out to ballot during the
time wg21 is resolving its own ballot comments.
Liaison may also want to file comments in WG14
to ensure compatibity from both sides.

ACCEPTED with
MODIFICATIONS

See paper N3193

CH
22

29 te WG14 currently plans to introduce atomic facilities that are
intended to be compatible with the facilities of clause 29.
They should be compatible.

Make sure the headers in clause 29 are defined in
a way that is compatible with the planned C
standard.

ACCEPTED with
MODIFICATIONS

See paper N3193

GB
129

29 Table 143 Te Table 143 lists the typedefs for various atomic types
corresponding to the various standard integer typedefs,
such as atomic_int_least8_t for int_least8_t, and
atomic_uint_fast64_t for uint_fast64_t. However, there are
no atomic typedefs corresponding to the fixed-size
standard typedefs int8_t, int16_t, and so forth.

Add the following entries to table 143:

atomic_int8_t => int8_t (optional),
atomic_int16_t => int16_t (optional),
atomic_int32_t => int32_t (optional),
atomic_int64_t => int64_t (optional),
atomic_uint8_t => uint8_t (optional),
atomic_uint16_t => uint16_t (optional),
atomic_uint32_t => uint32_t (optional),
atomic_uint64_t => uint64_t (optional)

These typedefs should be available if the
corresponding typedefs from are available.

REJECTED

There was no consensus to
make this change.

CA
16

29.1p1

29.3p8

29.1p1

footnote 343

29.3p8

footnote 344

ed Radioactivity

Footnotes 343 and 344 from 29.1p1 and 29.3p8 read:

"Atomic objects are neither active nor radioactive" and

"Among other implications, atomic variables shall not

decay".

We suggest that these be removed - the first is pretty

Footnotes 343 and 344 from 29.1p1 and 29.3p8
should be removed.

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 132 of 157
ISO electronic balloting commenting template/version 2001-10

clearly a joke, but it's not obvious that the second doesn't
have some technical meaning.

US
142

29.1 P2 table 141 ed Missing 29.8 Fences Add 29.8 Fences ACCEPTED

US
143

[atomics.syn]

29.2

before 1 ed There is no free function
atomic_compare_exchange_strong for volatile atomic
integral types; there is one for non-volatile types.

Add atomic_compare_exchange_strong for
volatile integral types to the synopsis.

ACCEPTED

US
144

[atomics.syn]

29.2

before 1 ed The synopsis lists the macros
ATOMIC_INTEGRAL_LOCK_FREE and
ATOMIC_ADDRESS_LOCK_FREE; the Lock-free
Property requirements don't have
ATOMIC_INTEGRAL_LOCK_FREE, but have 8 macros
for the various integral types.

Change 29.2 [atomics.syn] to match 29.4
[atomics.lockfree].

ACCEPTED

US
145

29.2 ed missing atomic_compare_exchange_strong(volatile)
and atomic_compare)exchange_strong_explict(...//no
volatile *?

> bool atomic_compare_exchange_weak(volatile
atomic_itype*, integral*, integral);
> bool atomic_compare_exchange_weak(atomic_itype*,
integral*, integral);
> bool atomic_compare_exchange_strong(atomic_itype*,
integral*, integral);
> bool atomic_compare_exchange_weak_explicit(volatile
atomic_itype*, integral*,
> integral, memory_order, memory_order);
> bool
atomic_compare_exchange_weak_explicit(atomic_itype*,
integral*,
> integral, memory_order, memory_order);
> bool atomic_compare_exchange_strong_explicit(volatile
atomic_itype*, integral*,
> integral, memory_order, memory_order);

Repair as suggested ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 133 of 157
ISO electronic balloting commenting template/version 2001-10

GB
130

29.2 Ed The synopsis for the <atomic> header lists the macros
ATOMIC_INTEGRAL_LOCK_FREE and
ATOMIC_ADDRESS_LOCK_FREE. The
ATOMIC_INTEGRAL_LOCK_FREE macro has been
replaced with a set of macros for each integral type, as
listed in 29.4

Replace "#define
ATOMIC_INTEGRAL_LOCK_FREE unspecified"
with
#define ATOMIC_CHAR_LOCK_FREE
implementation-defined
#define ATOMIC_CHAR16_T_LOCK_FREE
implementation-defined
#define ATOMIC_CHAR32_T_LOCK_FREE
implementation-defined
#define ATOMIC_WCHAR_T_LOCK_FREE
implementation-defined
#define ATOMIC_SHORT_LOCK_FREE
implementation-defined
#define ATOMIC_INT_LOCK_FREE
implementation-defined
#define ATOMIC_LONG_LOCK_FREE
implementation-defined
#define ATOMIC_LLONG_LOCK_FREE
implementation-defined

ACCEPTED with
MODIFICATIONS

See paper N3278

US
146

29.2 syn 29.4 ed The ATOMIC_..._LOCK_FREE macros have not had
changes applied.

Change to match 29.4/0. ACCEPTED

US
147

29.2 syn 29.7 ed The declaration of ATOMIC_VAR_INIT should be
referenced to section 29.6 [atomics.types.operations], not
29.7.

Change it to 29.6. ACCEPTED

US
148

29.2 syn 29.7 ed The definition of ATOMIC_VAR_INIT should be
'implementation defined' rather than 'see below'.

Change it to 'implementation defined'. REJECTED

No, definitely not
implementation defined. "See
below "is correct.

US
149

29.2 syn 29.5.1 ed The synopsis is missing the atomic_init function
declarations for the bool, integral and address types.

Copy them from 29.5.1. ACCEPTED

US
150

29.2 syn 29.5.1 ed There are missing function prototypes bool
atomic_compare_exchange_strong(volatile atomic_itype*,
integral*, integral); and integral atomic_fetch_add(volatile

Add them. ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 134 of 157
ISO electronic balloting commenting template/version 2001-10

atomic_itype*, integral);

US
151

29.2 syn 29.5.1 ed There is a duplicate function declaration of integral
atomic_fetch_or(volatile atomic_itype*, integral);

Remove the volatile qualifier from the second
declaration.

ACCEPTED

US
152

29.3 para 1 ed The table shows no disinct meaning for
memory_order_seq_cst.

Add another bullet: "- memory_order_seq_cst:
See below."

REJECTED

It's named in the second and
fourth bullet items.

GB
131

29.3 8 Te See (H) in attachment Appendix 1 - Additional Details Request the concurrency working group to
determine if changes are needed. Consider
changing the use of "sequence" in 29.3

REJECTED
There is no concensus for a
change at this time.

CA
21

29.3p8

1.9p13

29.3p8

1.9p13
Te Overlapping evaluations are allowed

29.3p8 states:

"An atomic store shall only store a value that has

been computed from constants and program input values

by a finite sequence of program evaluations, such

that each evaluation observes the values of variables

as computed by the last prior assignment in the

sequence."

... but 1.9p13 states:

"If A is not sequenced before B and B is not

sequenced before A, then A and B are unsequenced.

[Note: The execution of unsequenced evaluations can

overlap. -end note]"

Please clarify.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 135 of 157
ISO electronic balloting commenting template/version 2001-10

Overlapping executions can make it impossible to
construct the sequence described in 29.3p8. We are not
sure of the intention here and do not offer a suggestion for
change, but note that 29.3p8 is the condition that prevents
out-of-thin-air reads.

For an example, suppose we have a function invocation
f(e1,e2). The evaluations of e1 and e2 can overlap.
Suppose that the evaluation of e1 writes y and reads x
whereas the evaluation of e2 reads y and writes x, with
reads-from edges as below (all this is within a single
thread).

 e1 e2

 Wrlx y-- --Wrlx x
 rf\ /rf
 X
 / \
 Rrlx x<- ->Rrlx y

This seems like it should be allowed, but there seems to
be no way to produce a sequence of evaluations with the
property above.

In more detail, here the two evaluations, e1 and e2, are
being executed as the arguments of a function and are
consequently not sequenced-before each other. In
practice we'd expect that they could overlap (as allowed
by 1.9p13), with the two writes taking effect before the two
reads. However, if we have to construct a linear order of
evaluations, as in 29.3p8, then the execution above is not
permited. Is that really intended?

US
153

[atomics.lockfr
ee]

before 1 ed The macros are all specified as "implementation-deifned";
they should be "see below", since the required values are
spelled out.

Change the definitions of the macros in 29.4
[atomics.lockfree] from "implementation-defined"
to "see below".

REJECTED

Implementation defined
requires that the

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 136 of 157
ISO electronic balloting commenting template/version 2001-10

29.4 implementation document
what it does. Removing this
requirement would be a
technical change.

US
154

[atomics.lockfr
ee]

29.4

before 1 te There is no ATOMIC_BOOL_LOCK_FREE macro. Add ATOMIC_BOOL_LOCK_FREE to 29.4
[atomics.lockfree] and to 29.2 [atomics.syn]

ACCEPTED with
MODIFICATIONS

See paper N3278

US
155

29.4 para 3 ed The 'via' 'by' word pairing is awkward. Replace 'by' with 'via' in 'communication via
memory ... and by memory'.

ACCEPTED

CA
1

29.4, 29.6
29.7

various te All ATOMIC_... macros should be prefixed with STD_ as
in STD_ATOMIC_... to indicate they are STD macros as
other standard macros. The rationale that they all seem
too long seems weak.

This covers the following macros which we
suggest prepending with STD_:

29.4:

#define ATOMIC_CHAR_LOCK_FREE
implementation-defined
#define ATOMIC_CHAR16_T_LOCK_FREE
implementation-defined
#define ATOMIC_CHAR32_T_LOCK_FREE
implementation-defined
#define ATOMIC_WCHAR_T_LOCK_FREE
implementation-defined
#define ATOMIC_SHORT_LOCK_FREE
implementation-defined
#define ATOMIC_INT_LOCK_FREE
implementation-defined
#define ATOMIC_LONG_LOCK_FREE
implementation-defined
#define ATOMIC_LLONG_LOCK_FREE
implementation-defined
#define ATOMIC_ADDRESS_LOCK_FREE
implementation-defined

29.6:

#define ATOMIC_VAR_INIT(value) see below

REJECTED

There is no concensus for a
change.

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 137 of 157
ISO electronic balloting commenting template/version 2001-10

29.7:

#define ATOMIC_FLAG_INIT see below

US
156

[atomics.types
.integral]

29.5.1

before 1 ed The list of member functions for atomic_bool has four
versions of compare_exchange_weak taking one
memory_order argument; the last two should be
compare_exchange_strong.

Change the last two member functions
comapare_exchange_weak taking two
memory_order arguments to
compare_exchange_strong.

ACCEPTED

JP
55

29.5.1 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 142" to "Table 142".

ACCEPTED

GB
132

29.5.1 Te The atomic_itype types and atomic_address have two
overloads of operator= --- one is volatile qualified, and the
other is not. atomic_bool only has the volatile qualified
version:
bool operator=(bool) volatile;
On a non-volatile-qualified object this is ambiguous with
the deleted copy-assignment operator
atomic_bool& operator=(atomic_bool const&) = delete;
due to the need for a single standard conversion in each
case when assigning a bool to an atomic_bool as in:
atomic_bool b;
b=true;
The conversions are atomic_bool& -> atomic_bool
volatile& vs bool -> atomic_bool

Add the "bool operator=(bool);" overload to
atomic_bool in 29.5.1

ACCEPTED with
MODIFICATIONS

See paper N3193

US
157

[atomics.types
.integral]

29.5.1

before 1 ed atomic_bool has a volatile assignment operator but not a
non-volatile operator The other integral types have both..

Add a non-volatile assignment operator to
atomic_bool.

ACCEPTED with
MODIFICATIONS

See paper N3193

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 138 of 157
ISO electronic balloting commenting template/version 2001-10

US
158

29.5.1 para 0 ed There is a space before the second & in the declaration
atomic_itype& operator=(const atomic_itype &) = delete;

Remove the space. ACCEPTED

US
159

29.5.1 Editori
al

Last 2 should be compare_exchane_strong
> bool compare_exchange_weak(bool&, bool,
memory_order, memory_order) volatile;
> bool compare_exchange_weak(bool&, bool,
memory_order, memory_order);
> bool compare_exchange_strong(bool&, bool,
memory_order, memory_order) volatile;
> bool compare_exchange_strong(bool&, bool,
memory_order, memory_order);
> bool compare_exchange_weak(bool&, bool,
memory_order = memory_order_seq_cst) volatile;
> bool compare_exchange_weak(bool&, bool,
memory_order = memory_order_seq_cst);
> bool compare_exchange_weak(bool&, bool,
memory_order = memory_order_seq_cst) volatile;
> bool compare_exchange_weak(bool&, bool,
memory_order = memory_order_seq_cst);

Fix last 2 ACCEPTED

US
160

[atomic.types.i
ntegral]

29.5.1

1 te The last sentence of 29.5.1 [atomics.types.integral]/1 says
"Table 143 shows typedefs to atomic integral classes and
the corresponding typedefs." That's nice, but nothing says
these are supposed to be part of the implementation, and
they are not listed in the synopsis.

Remove Table 143 and the last sentence of
29.5.1 [atomics.types.integral]/1.

ACCEPTED with
MODIFICATIONS

See paper N3193

US
161

[atomic.types.
address]

29.5.2

before 1 te atomic_address has operator+= and operator-=, but no
operator++ or operator--. The template specialization
atomic<Ty*> has all of them.

Add operator++(int) volatile, operator++(int),
operator++() volatile, operator++(), operator--(int)
volatile, operator--(int), operator--() volatile, and
operator--() to atomic_address.

ACCEPTED with
MODIFICATIONS

See paper N3193

US
162

[atomics.typre
s.address]

29.5.2

 te The compare_exchange_weak and
compare_exchange_strong member functions that take
const void* arguments lead to a silent removal of const,
because the load member function and other acessors
return the stored value as a void*.

Remove the const void* overloads of
compare_exchange_weak and
compare_exchange_strong

ACCEPTED with
MODIFICATIONS

See paper N3193

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 139 of 157
ISO electronic balloting commenting template/version 2001-10

US
163

[atomics.type.
address],
[atomics.types
.generic]

29.5.2, 29.5.3

 te Requiring atomic<Ty*> to be derived from atomic_address
breaks type safety:

atomic<double*> ip;

char ch;

atomic_store(&ip, &ch);

*ip.load() = 3.14159;

The last line overwrites ch with a value of type double

Remove the requirement that atomic<Ty*> be
derived from atomic_address.

ACCEPTED with
MODIFICATIONS

See paper N3193

US
164

[atomics.types
.address]

29.5.2

before 1 te atomic_address has member functions
compare_exchange_weak and
compare_exchange_strong that take arguments of type
const void*, in addition to the void* versions. If these
member functions survive, there should be corresponding
free functions.

Add atomic_compare_exchange_weak and
atomic_compare_exchange_strong free functions
taking pointers to volatile and non-volatile
atomic_address objects and const void*
arguments.

ACCEPTED with
MODIFICATIONS

See paper N3193

JP
56

29.5.3 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "table 142 or table 143" to "Table 142 or
Table 143".

ACCEPTED

GB
133

29.5.3 Te The free functions that operate on atomic_address can be
used to store a pointer to an unrelated type in an
atomic<T*> without a cast. e.g.
int i;
atomic<int*> ai(&i);
string s;
atomic_store(&ai,&s);

Overload the atomic_store, atomic_exchange and
atomic_compare_exchange_[weak/strong]
operations for atomic<T*> to allow storing only
pointers to T:

template<typename T>
void atomic_store(atomic<T*>&,T*);

template<typename T>

ACCEPTED with
MODIFICATIONS

See paper N3193

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 140 of 157
ISO electronic balloting commenting template/version 2001-10

void atomic_store(atomic<T*>&,void*) = delete;

template<typename T>
void
atomic_store_explicit(atomic<T*>&,T*,memory_or
der);

template<typename T>
void
atomic_store_explicit(atomic<T*>&,void*,memory
_order) = delete;

template<typename T>
T* atomic_exchange(atomic<T*>&,T*);

template<typename T>
T* atomic_exchange(atomic<T*>&,void*) = delete;

template<typename T>
T*
atomic_exchange_explicit(atomic<T*>&,T*,memor
y_order);

template<typename T>
T*
atomic_exchange_explicit(atomic<T*>&,void*,me
mory_order) = delete;

template<typename T>
T*
atomic_compare_exchange_weak(atomic<T*>&,T
**,T*);

template<typename T>
T*
atomic_compare_exchange_weak(atomic<T*>&,v
oid**,void*) = delete;

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 141 of 157
ISO electronic balloting commenting template/version 2001-10

template<typename T>
T*
atomic_compare_exchange_weak_explicit(atomic
<T*>&,T**,T*,memory_order);

template<typename T>
T*
atomic_compare_exchange_weak_explicit(atomic
<T*>&,void**,void*,memory_order) = delete;

template<typename T>
T*
atomic_compare_exchange_strong(atomic<T*>&,
T**,T*);

template<typename T>
T*
atomic_compare_exchange_strong(atomic<T*>&,
void**,void*) = delete;

template<typename T>
T*
atomic_compare_exchange_strong_explicit(atomi
c<T*>&,T**,T*,memory_order);

template<typename T>
T*
atomic_compare_exchange_strong_explicit(atomi
c<T*>&,void**,void*,memory_order) = delete;

US
165

29.5.3 Paragraph
23

ed “is the same that same as that of” is not grammatical (and
is not clear)

 ACCEPTED with
MODIFICATIONS

See LWG 1470
US
166

29.6 para 2 ed The first three bullets seem to be missing terminal
punctuation.

Add semicolons to ends of the bullets. ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 142 of 157
ISO electronic balloting commenting template/version 2001-10

US
167

29.6 para 3 ed The first three bullets seem to be missing terminal
punctuation.

Add semicolons to ends of the bullets. REJECTED

Seems to be a duplicate of
US 166 but with the wrong
section number.

US
168

29.6 para 4 te The definition of the default constructor needs exposition. Add a new paragraph: A::A() = default; Effects:
Leaves the atomic object in an uninitialized state.
[Note: These semantics ensure compatiblity with
C. --end note]

ACCEPTED

See paper N3196

US
169

29.6 para 5 ed The definition of ATOMIC_VAR_INIT should be
'implementation defined' rather than 'see below'.

Change it to 'implementation defined'. REJECTED

No, we should not require
implementors to document
the details of how they do
this.

US
170

29.6 para 6 ed The definition of atomic_init should be grouped with the
value constructor.

Move the atomic_init definition to just after the
constructor definition.

REJECTED

The current order reflects the
order of declarations. No
need to change it.

GB
134

29.6 5 Ed Some of the declarations of is_lock_free seem to be
missing return types.

Replace:
A::is_lock_free() const volatile;
A::is_lock_free() const;
With:
bool A::is_lock_free() const volatile;
bool A::is_lock_free() const;

ACCEPTED

US
171

29.6 para 6 te The atomic_init definition "Non-atomically assigns the
value" is not quite correct, as the atomic_init purpose is
initialization.

Change "Non-atomically assigns the value desired
to *object." with "Initializes *object with value
desired". Add the note: "[Note: This function
should only be applied to objects that have been
default constructed. These semantics ensure
compatibility with C. --end note]"

ACCEPTED

See paper N3196

US
172

29.6 para 9, 13,
17, 20

ed The order specifications are incomplete because the non-
_explicit functions do not have such parameters.

Add a new sentence: "If the program does not
specify an order, it shall be
memory_order_seq_cst." Or perhaps: "The non-
_explicit non-member functions shall affect
memory as though they were _explicit with

REJECTED

There is no need to make a
change. See 29.6
[atomics.types.operations]

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 143 of 157
ISO electronic balloting commenting template/version 2001-10

memory_order_seq_cst."

paragraph 2, bullet 4.

US
173

29.6 para 20 ed Misspelling. Replace "operations ate atomic" with "operations
are atomic".

ACCEPTED

US
174

29.6 para 22 ed The first note is about effects, not returns. Move this note to just after the Effects paragraph.

REJECTED

The note is correct as
written. This would require a
significant rewrite, because
the Returns clause refers to
the "result of the comparison"
from the Effects clause.

US
175

29.6 para 23 ed The first sentence is grammatically incorrect. Replace the sentence with two: "The weak
compare-and-exchange operations may fail
spuriously. That is, it may return false while
leaving the contents of memory pointed to by
expected the same as it was before the
operation."

ACCEPTED with
MODIFICATIONS
See LWG 1474

CH
23

29.6 p23 ed The first sentence has non-English syntax. Change to "The weak compare-and-exchange
operations may fail spuriously, that is, return false
while leaving the contents of memory pointed to
by expected unchanged."

ACCEPTED with
MODIFICATIONS
See LWG 1475

US
176

29.6 para 23 ed Unintended paragraph break. Proposal: Remove the paragraph break between
"will be in a loop." and "When a compare-and-
exchange is in a loop,".

REJECTED

Correct as written. Two
different subjects, two
paragraphs.

US
177

[atomics.types
.operations]

29.6

23 ed The first sentence of this paragraph doesn't make sense. Figure out what it's supposed to say, and say it. ACCEPTED with
MODIFICATIONS
See LWG 1476

GB
135

29.6 23 Ed The first sentence of 29.6p23 was changed by n2992 but
now makes no sense: "that is, return false while leaving
the contents of memory pointed to by expected before the
operation is the same that same as that of the object and

Fix the Remark to say whatever was intended. ACCEPTED with
MODIFICATIONS
See LWG 1477

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 144 of 157
ISO electronic balloting commenting template/version 2001-10

the same as that of expected after the operation."
There's a minor editorial difference between n2992 ("is
that same as that" vs "is the same that same as that") but
neither version makes sense.
Also, the remark talks about "object" which should
probably be "object or this" to cover the member functions
which have no object parameter.

GB
136

29.6 Te See (K) in attachment Appendix 1 - Additional Details GB requests normative clarification in 29.6p4 that
concurrent access constitutes a race, as already
done on p6 and p7.

ACCEPTED with
MODIFICATIONS
See LWG 1478

US
178

29.7 para 7 ed The sentence "The order argument shall not be
memory_order_acquire nor memory_order_acq_rel." is
awkwardly phrased.

Change the sentence to "The order argument
shall be neither memory_order_acquire nor
memory_order_acq_rel."

ACCEPTED with
MODIFICATIONS

Changed "nor" to "or".

US
179

29.8 para 5, 6 te The fence functions should be extern "C", for C
compatibility.

Add extern "C" to their declarations in 29.8 and in
29.2.

ACCEPTED with
MODIFICATIONS
See LWG 1479

GB
137

29.8 6 Te Thread fence not only establish synchronizes with
relationships,
there are semantics of fences that are expressed not in
terms of
synchronizes with relationships (for example see 29.3p5).
These semantics also need to apply to the use of
atomic_signal_fence in a restricted way.

Change 29.8p6 to "Effects: equivalent to
atomic_thread_fence(order), except that the
resulting ordering constraints are
established only between a thread and a signal
handler executed in the same thread."

ACCEPTED

US
180

30.1 para 1 ed The introductory sentence is missing futures. Replace "communicate conditions between
threads" with "communicate conditions and values
between threads".

ACCEPTED

GB
138

30.2 Te The FCD combines the requirements for lockable objects
with those for the standard mutex objects. These should
be separate. This is LWG issue 1268.

See attached Appendix 1 - Additional Details ACCEPTED with
MODIFICATIONS

See paper N3197

US
181

30.2.4 para 2 te The timeout operations are under-specified. Define precise semantics for timeout_until and
timeout_for. See Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 145 of 157
ISO electronic balloting commenting template/version 2001-10

See paper N3191
US
182

[thread.req.na
tive]

30.2.3

 te native_handle and native-handle_type should be
removed. It is implementation-defined whether these
names are present in the various thread support classes,
and if present, it is implementation-defined what the name
native_handle_type refers to. This is exactly what the
implementor namespace is for. There is no benefit to
programmers from providing a way to portably detect that
an implementation provides non-portable extensions. The
standard should not reserve these names, with
unspecified semantics; it if does, the names will never
become portable because implementations will differ on
what they mean.

Remove [thread.req.native] 30.2.3 and remove all
mentions of native_handle and
native_handle_type.

REJECTED

No consensus to adopt this
change for this revision.

DE
23

30.3 te Predefined macros usually start and end with two
underscores, see 16.8 and FDIS 29124 = WG21 N3060
clause 7. __STDCPP_THREADS should blend in.

Change the macro name to
__STDCPP_THREADS__.

ACCEPTED

US
183

30.3.1 te There is no way to join a thread with a timeout. Add join_for and join_until. Or decide one should
never join a thread with a timeout since
pthread_join doesn't have a timeout version.

REJECTED

Thjere is no consensus to
make this change. The
poposed changed is
regarded as an extension
beyond the scope of C++0x.

US
184

30.3.1.1 para 2 te It is unclear when a thread::id ceases to be meaningful.
The sentence "The library may reuse the value of a
thread::id of a terminated thread that can no longer be
joined." implies that some terminated threads can be
joined. It says nothing about detached threads.

Require a unique thread::id for every thread that is
(1) detached and not terminated or (2) has an
associated std::thread object.

REJECTED

There is no concensus for a
change.

JP
97

30.3.1.5 9 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

JP
98

30.3.1.5 14 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead

Change to:
Throws: system_error

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 146 of 157
ISO electronic balloting commenting template/version 2001-10

of std::system_error.

CH
24

30.3.2 p1 te What would be the value this_thread::get_id() when called
from a detached thread?

Add some text to clarify that get_id() still returns
the same value even after detaching.

REJECTED

The standard is correct as
written. See 30.3.2
[thread.thread.this]/1.

CH
25

30.3.2 p8 and p11 te Clock related operations are currently not required not to
throw. So "Throws: Nothing." is not always true.

Either require clock related operations not to throw
(in 20.10) or change the Throws clauses in 30.3.2.
Also possibly add a note that abs_time in the past
or negative rel_time is allowed.

ACCEPTED with
MODIFICATIONS
See LWG 1487

US
185

30.4 te Cooperate with WG14 to improve interoperability between
the C++0x and C1x threads APIs. In particular, C1x
mutexes should be conveniently usable with a C++0x
lock_guard. Performance overheads for this combination
should be considered.

Remove C++0x timed_mutex and
timed_recursive_mutex if that facilitates
development of more compatible APIs.

REJECTED

There is no consensus to
adopt this change for this
revision.

CH
26

30.4 te Specifications of unlock member functions and unlock
mutex requirements are inconsistent wrt to exceptions and
pre- and postconditions.

unlock should specifiy the precondition that the
current thread "owns the lock", this will make calls
without holding the locks "undefined behavior".
unlock in [mutex.requirements] should either be
noexcept(true) or be allowed to throw
system_error like unique_lock::unlock, or the latter
should be nothrow(true) and have the precondition
owns==true.
Furthermore unique_lock's postcondition is wrong
in the case of a recursive mutex where owns
might stay true, when it is not the last unlock
needed to be called.

ACCEPTED with
MODIFICATIONS

See paper N3197

CH
27

30.4.1 p18 te The mutex requirements force try_lock to be
noexcept(true). However, where they are used by the
generic algorithms, those relax this requirement and say
that try_lock may throw. This means the requirement is
too stringent, also a non-throwing try_lock does not allow
for a diagnostic such as system_error that lock() will give
us.

delete p18, adjust 30.4.4 p1 and p4 accordingly ACCEPTED with
MODIFICATIONS

See paper N3197

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 147 of 157
ISO electronic balloting commenting template/version 2001-10

JP
99

30.4.1 11 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

US
186

30.4.1 14 te try_lock does not provide a guarantee of forward progress
because it is allowed to spuriously fail.

The standard mutex types must not fail spuriously
in try_lock. See Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS

See paper N3209

US
187

30.4.1 14 ed Paragraph mentions compare_exchange, which no longer
exists.

Change “compare_exchange” to
“compare_exchange_weak”.

ACCEPTED with
MODIFICATIONS

Changed
compare_exchange to
"compare and exchange".

JP
57

30.4.1 14 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(29)" to "(Clause 29)".

ACCEPTED

US
188

30.4.1 20, 21 te Mutex requirements should not be bound to threads See Appendix 1 - Additional Details ACCEPTED with
MODIFICATIONS

See paper N3197

JP
58

30.4.1.1 3 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.

Change "(9)" to "(Clause 9)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 148 of 157
ISO electronic balloting commenting template/version 2001-10

However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

US
189

30.4.1.1

30.4.1.2

 te mutex and recursive_mutex should have an is_locked()
member function. is_locked allows a user to test a lock
without acquiring it and can be used to implement a light-
weight try_try_lock.

Add a member function:

bool is_locked() const;

to std::mutex and std::recursive_mutex. These
functions return true if the current thread would
not be able to obtain a mutex. These functions do
not synchronize with anything (and, thus, can
avoid a memory fence).

REJECTED

There was no consensus to
adopt that change for this
revision.

JP
59

30.4.1.2 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(9)" to "(Clause 9)".

ACCEPTED

JP
60

30.4.2.1 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(9)" to "(Clause 9)".

ACCEPTED

JP
61

30.4.2.2 2 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and

Change "(9)" to "(Clause 9)".

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 149 of 157
ISO electronic balloting commenting template/version 2001-10

subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

JP
70

30.4.3.2 18 E Constant width font should be used for
"std::system_error"s in the paragraph as described in
Syntax notation (1.6).

Change the font for "std::system_error" to
constant width type.
Throws: system_error when an exception is
required

ACCEPTED

JP
100

30.4.3.2.2 18 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

US
190

30.4.5.2 para 2, 3 te The term "are serialized" is never defined. Remove the sentence with "are serialized" from
paragraph 2. Add "Calls to call_once on the same
once_flag object shall not introduce data races
(17.6.4.8)." to paragraph 3.

ACCEPTED with
MODIFICATIONS
See LWG 1494

JP
101

30.4.5.2 4 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

US
191

30.5 te The condition variable wait_for returning cv_status is
insufficient.

Return a duration of timeout remaining instead.
See Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS

See paper N3191

GB
139

30.5 7 Ed The text says "... ownership of the lock as the current
thred exits, ...", with "thread" misspelled.

Replace "thred" with "thread" ACCEPTED

GB
140

30.5 9 Ed The text says "... waiting threds ..." with "threads"
misspelled.

Replace "threds" with "threads". ACCEPTED

CH 30.5.1 te Requiring wait_until makes it impossible to implement
condition_variable correctly using respective objects

Remove the wait_until functions or make them at
least conditionally supported.

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 150 of 157
ISO electronic balloting commenting template/version 2001-10

28 provided by the operating system (i.e. implementing the
native_handle() function) on many platforms (e.g. POSIX,
Windows, MacOS X) or using the same object as for the
condition variable proposed for C.

See paper N3191

JP
102

30.5.1 3 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

CH
30

30.5.1 and
30.5.2

p13, last
bullet, and
correspondin
g
paragraphs
in all wait
functions

te If lock.lock() throws an exception, the postcondition can
not be generally achieved.

Either state that the postcondition might not be
achieved, depending on the error condition, or
state that terminate() is called in this case.

ACCEPTED with
MODIFICATIONS
See LWG 1497

JP
103

30.5.1 15 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

CH
31

30.5.1 and
30.5.2

p19, third
bullet, and
correspondin
g
paragraphs
in all
wait_for/wait
_until
functions

ed The sentences contain superflous "or"s. Change "The function will unblock when signaled
by a call to notify_one() or a call to notify_all(), if
abs_time <= Clock::now(), or spuriously." to "The
function will unblock when signaled by a call to
notify_one(), a call to notify_all(), if abs_time <=
Clock::now(), or spuriously."

REJECTED

This is correct as written.
There are three conditions:
"when signalled", "if",
"spuriously". The first has
two parts, separated by "or".

JP
104

30.5.1 22 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

US 30.5.1 para 26 ed The identifier cv_status::no_timeout is not in code font. Change it to code font. ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 151 of 157
ISO electronic balloting commenting template/version 2001-10

192
CH
29

30.5.1 and
30.5.2

p34 and
p28,
respectively

te It is unclear if a spurious wake-up during the loop and re-
entering of the blocked state due to a repeated execution
of the loop will adjust the timer of the blocking with the
respect to the previously specified rel_time value.

Make it clear (e.g. by a note) that when re-
executing the loop the waiting time when blocked
will be adjusted with respect to the elapsed time of
the previous loop executions.

ACCEPTED with
MODIFICATIONS

See paper N3191

US
193

30.5.1, 30.5.2 te Condition variables preclude a wakeup optimization. Change condition_variable to allow such
optimization. See Appendix 1 - Additional Details

REJECTED

There is no consensus to
adopt this change for this
revision.

JP
62

30.5.1 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(9)" to "(Clause 9)".

ACCEPTED

CH
32

30.5.2 te Given that the lock type can be something the underlying
doesn't know 'native_handle()' is probably
unimplementable on essentially all platforms.

Consider the removal of 'native_handle()'. ACCEPTED

JP
105

30.5.2 12 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

JP
106

30.5.2 18 E In Throw clause, both "Throws: system_error" and
"Throws: std::system_error" are used. They should be in a
unified way, and we propose to use system_error instead
of std::system_error.

Change to:
Throws: system_error

ACCEPTED

CH 30.5.2 before p25 ed Template function wait_until is missing class Clock
template parameter.

Change "template <class Lock, class Duration,
class Predicate>" to "template <class Lock, class

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 152 of 157
ISO electronic balloting commenting template/version 2001-10

33 Clock, class Duration, class Predicate>".

JP
96

30.5.3 2 E Inconsistency between 30.4 paragraph 1 and 30.4.3
paragraph 2.
In 30.4 paragraph 1:
namespace std {
...
constexpr defer_lock_t defer_lock { };
constexpr try_to_lock_t try_to_lock { };
constexpr adopt_lock_t adopt_lock { };
}
In 30.4.3 paragraph 2:
namespace std {
...
extern const defer_lock_t defer_lock { };
extern const try_to_lock_t try_to_lock { };
extern const adopt_lock_t adopt_lock { };
}
The writer seems to have forgotten to rewrite latter cases,
so 30.4.3 paragraph 2 should be modified as this
proposal.

Change "extern const" to "constexpr".
namespace std {
...
constexpr defer_lock_t defer_lock { };
constexpr try_to_lock_t try_to_lock { };
constexpr adopt_lock_t adopt_lock { };
}

ACCEPTED

US
194

30.6 te The specification for managing associated asynchronous
state is confusing, sometimes omitted, and redundantly
specified.

Define terms-of-art for releasing, making ready,
and abandoning an associated asynchronous
state. Use those terms where appropriate. See
Appendix 1 - Additional Details

ACCEPTED with
MODIFICATIONS

See paper N3192

CH
34

30.6.1 p1 ed The paragraph is misleading and incorrect wrt to the
current specification, since an async call with launch::sync
will execute in the same thread.

Change the paragraph to '30.6 describes
components that a C++ program can use to
retrieve the result (value or exception) of a
function that has run in a (potentially different)
thread.'

ACCEPTED

US
195

30.6.4 para 8 te The intent and meaning of the paragraph is not apparent.

 ACCEPTED with
MODIFICATIONS

See paper N3278

CH 30.6.4ff ed/te The term "associated asynchronous state" is long, ugly Change all occurrences of "associated ACCEPTED with

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 153 of 157
ISO electronic balloting commenting template/version 2001-10

35 and misleading terminology. When introduced we agreed
upon that we should come up with a better name. Here it
is: "liaison state". Since the state is hidden and provides
synchronization of a future with its corresponding promise,
we believe "liaison state" is a much better and shorter
name (liaison ~ (typically hidden) relationship)

asynchronous state" to "liaison state". MODIFICATIONS

See LWG 1503

US
196

30.6.5 para 21, 25 te The term "are serialized" is not defined. Replace "are serialized" with "shall not introduce a
data race (17.6.4.8)".

ACCEPTED with
MODIFICATIONS
See LWG 1504

US
197

30.6.5 para 21, 25 te There is no defined synchronization between
promise::set_value and future::get.

Replace "[Note: and they synchronize and
serialize with other functions through the referred
associated asynchronous state. --end note]" with
the normative "They synchronize with (1.10) any
operation on a future object with the same
associated asynchronous state marked ready."

ACCEPTED with
MODIFICATIONS
See LWG 1505, and 1507

US
198

30.6.5 22 te promise::set_exception can be called with a null pointer,
but none of the descriptions of the get() functions for the
three types of futures say what happens for this case.

Add the following sentence to the end of
30.6.5/22: The behavior of a program that calls
set_exception with a null pointer is undefined.

ACCEPTED

US
199

[futures.promi
se]

30.6.5

26ff, 29ff te promise::XXX_at_thread_exit functions have no
synchronization requirements. Specifying synchronization
for these member functions requires coordinating with the
words in 30.6.5/21 and 25, which give synchronization
requirements for promise::set_value and
promise::set_exception.

Change 30.6.5/21 to mention
set_value_at_thread_exit and
set_exception_at_thread_exit; with this text,
replace 30.6.5/25 and add two new paragraphs,
after 30.6.5/28 and 30.6.5/31.

ACCEPTED with
MODIFICATIONS

See paper N3278

US
200

30.6.6 para 26 ed The paragraph is missing the "Returns:" label. Add the label.

ACCEPTED

US
201

[futures.uniqu
e_future],
[futures.share
d_future],
[futures.atomi
c_future],

 te packaged_task provides operator bool() to check whether
an object has an associated asynchronous state. The
various future types provide a member function valid() that
does the same thing. The names of these members
should be the same.

Replaced the name packaged_task::operator
bool() with packaged_task::valid() in the synopsis
(30.6.10 [futures.task]/2) and the member function
specification (before 30.6.10.1
[futures.task.members]/15).

ACCEPTED with
MODIFICATIONS

See paper N3194

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 154 of 157
ISO electronic balloting commenting template/version 2001-10

[futures.task]

30.6.6

30.6.7

30.6.8

30.6.10

US
202

[futures.atomi
c_future]

30.6.8

18 te The note in this paragraph says "unlike future, calling get
more than once on the same atomic_future object is well
defined and produces the result again." There is nothing
in future that says anything negative about calling get
more than once.

Remove this note, or add words to the
requirements for future that reflect what this note
says.

ACCEPTED with
MODIFICATIONS

See paper N3194

US
203

[futures.atomi
c_future]

30.6.8

 te Both future and shared_future specify that calling most
member functions on an object for which valid() == false
produces undefined behavior. There is no such statement
for atomic_future.

Add a new paragraph after 30.6.8
[futures.atomic_future]/2 with the same words as
30.6.7 [futures.shared_future]/3.

ACCEPTED with
MODIFICATIONS

See paper N3194

US
204

30.6.8 Paragraph
7-8

te According to the definition of atomic_future, all members
of atomic_future are synchronizing except constructors.
However, it would probably be appropriate for a move
constructor to be synchronizing on the source object. If
not, the postconditions on paragraphs 7-8, might not be
satisfied. This may be applicable if a collection of futures
are being doled out to a set of threads that process their
value.

Make the move constructor for atomic future lock
the source

ACCEPTED with
MODIFICATIONS

See paper N3194

US
205

[futures.async
]

30.6.9

3 te The third sentence says "If the invocation is not deferred,
a call to a waiting function on an asynchronous return
object that shares the associated asynchronous state
created by this async call shall block until the associated
thread has completed." The next sentence says "If the
invocation is not deferred, the join() on the created
thread..." Blocking until a thread completes is not
necessarily a join.

Decide whether the requirement is to block until
finished or to call join, and rewrite to match.

ACCEPTED with
MODIFICATIONS

See paper N3194

CH
36

30.6.9 and
30.6.1

<future>
synopsis

te Providing only three different possible values for the enum
launch and saying that launch::any means either

Change in 30.6.1 'enum class launch' to allow
further implementation defined values and provide

ACCEPTED with
MODIFICATIONS

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 155 of 157
ISO electronic balloting commenting template/version 2001-10

and p3,
respectively

launch::sync or launch::async is very restricting. This
hinders future implementors to provide clever
infrastructures that can simply by used by a call to
async(launch::any,...). Also there is no hook for an
implementation to provide additional alternatives to launch
enumeration and no useful means to combine those (i.e.
interpret them like flags). We believe something like
async(launch::sync | launch::async, ...) should be allowed
and can become especially useful if one could say also
something like async(launch::any & ~launch::sync,)
respectively. This flexibility might limit the features usable
in the function called through async(), but it will allow a
path to effortless profit from improved hardware/software
without complicating the programming model when just
using async(launch::any,...)

the following bit-operators on the launch values
(operator|, operator&, operator~ delivering a
launch value).
Note: a possible implementation might use an
unsigned value to represent the launch enums,
but we shouldn't limit the standard to just 32 or 64
available bits in that case and also should keep
the launch enums in their own enum namespace.
 Change [future.async] p3 according to the
changes to enum launch. change --launch::any to
"the implementation may choose any of the
policies it provides." Note: this can mean that an
implementation may restrict the called function to
take all required information by copy in case it will
be called in a different address space, or even, on
a different processor type. To ensure that a call is
either performed like launch::async or
launch::sync describe one should call
async(launch::sync|launch::async,...)

See paper N3188

JP
107

30.6.9 3 E Typo, "." should be ">".
decay_copy(std::forward<Args.(args))...

Correct typo.
decay_copy(std::forward<Args>(args))…

ACCEPTED

JP
108

30.6.9 3 E <Arg> should be <Args>.
launch::sync — Stores decay_copy(std::forward<F>(f))
and
decay_copy(std::forward<Arg>(args))...

Change to:
launch::sync — Stores
decay_copy(std::forward<F>(f)) and
decay_copy(std::forward<Args>(args))...

ACCEPTED

US
206

[futures.task.
members]

30.6.10.1

27, 28 ed The text of paragraph 27 says that reset() moves the
function object, but the text of paragraph 28 talks about
exceptions thrown by the copy constructor.

Change "copy constructor" to "move constructor"
in 30.6.10.1/28, bullet 2.

ACCEPTED

US
207

[futures.task.
members]

30.6.10.1

1-8 te The constructor that takes R(*)(ArgTypes...) is not
needed; the constructor that takes a callable type works
for this argument type. More generally, the constructors

Review the constructors for packaged_task and
provide the same ones as function, except where
inappropriate.

ACCEPTED with
MODIFICATIONS
See LWG 1514

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 156 of 157
ISO electronic balloting commenting template/version 2001-10

for packaged_task should parallel those for function.

US
208

[futures.task.
members]

30.6.10.1

24-26 te packaged_task::make_ready_at_thread_exit has no
synchronization requirements.

Figure out what the synchronization requirements
should be and write them.

ACCEPTED with
MODIFICATIONS

See paper N3278

GB
141

Appendix A
[gram]
paragraph 1

 Ed The links for disambiguation rules go to 6.8, 7.1 and 10.2.
Section 8.2 covers ambiguity in declarators, so should be
added

Added a link to 8.2 [dcl.ambig.res] to Appendix A
p1

ACCEPTED

JP
63

A.1 1 E Representations of reference link are not unified.
Most reference links to clause (table) number, say X, are
in the form "Clause X" ("Table X") capitalized, and
subsection Y.Y.Y is referenced with its number only in the
form "Y.Y.Y". Whether they are parenthesized or not
depends on the context.
However there are some notations "(Z)" consisting of only
a number Z in parentheses to confer Clause or Table
number Z.

Change "(clause 9)" to "(Clause 9)".
Change "(clause 14)" to "(Clause 14)".

ACCEPTED

FI 6 D.2
[depr.static]

Paragraph 1 te The use of static in namespace scope should not be
deprecated. Anonymous namespaces are not a sufficient
replacement for the functionality.

Strike [depr.static] completely. ACCEPTED

GB
142

D10 Ge auto_ptr does not appear in the <memory> synopsis and
[depr.auto.ptr] doesn't say which header declares it.
Conversely, the deprecated binders bind1st etc. are in the
<functional> synopsis, this is inconsistent

Either auto_ptr should be declared in the
<memory> synopsis, or the deprecated binders
should be removed from the <functional> synopsis
and appendix D should say which header declares
the binders and auto_ptr

ACCEPTED

JP
109

Annex B E Although implementation limits for at_quick_exit() is
mentioned in 18.5 paragraph 5, it is not on the list of
Implementation quantities.

Add the following line.
— Functions registered by at_quick_exit()[32].

ACCEPTED

JP
110

Index E "local scope" has been renamed to "block scope", but the
reference to "local scope" still remains in Index.

block scope; see local scope, 37

Change to:
local scope; see block scope, 37

ACCEPTED

ISO/IEC FCD 14882 Ballot Comments and Responses Date: 7 April 2011 Document: SC22 WG21 N3289

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 157 of 157
ISO electronic balloting commenting template/version 2001-10

"local scope" should refer to "block scope".

APPENDIX 1

ADDITIONAL DETAILS

ISO/IEC FCD 14882, C++0X, National Body Comments

FCD 14882

ADDITIONAL DETAILS TO US BALLOT COMMENTS

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 23:

3.4.5: Global class templates should not hide member templates.

Technical details:

[basic.lookup.classref] p1 says:

In a class member access expression (5.2.5), if the . or -> token is immediately followed by an
identifier followed by a <, the identifier must be looked up to determine whether the < is the
beginning of a template argument list (14.3) or a less-than operator. The identifier is first looked up
in the class of the object expression. If the identifier is not found, it is then looked up in the context
of the entire postfix-expression and shall name a class template. If the lookup in the class of the
object expression finds a template, the name is also looked up in the context of the entire postfix-
expression and

 - if the name is not found, the name found in the class of the object expression is used, otherwise

- if the name is found in the context of the entire postfix-expression and does not name a class
template, the name found in the class of the object expression is used, otherwise

- if the name found is a class template, it shall refer to the same entity as the one found in the
class of the object expression, otherwise the program is ill-formed.

This means that the following program is ill-formed:

#include <set>
using std::set;
struct X {
 template <typename T> void set(const T& value);
};
void foo() {
 X x;
 x.set<double>(3.2);
}

That’s confusing and unnecessary. The compiler has already done the lookup in X’s scope, and the
obviously-correct resolution is that one, not the identifier from the postfix-expression’s scope. Issue 305 fixed
a similar issue for destructor names, but missed member functions.

Proposed resolution:
Strike the end of paragraph 1 starting with “If the lookup in the class of the object expression finds a
template,” and including all three bullets.

FCD 14882

ADDITIONAL DETAILS TO US COMMENTS

US 26

Clause 3.7.4
C++ Sized Deallocation
ISO/IEC JTC1 SC22 WG21 - 2010-05-19 - National Body Comment by Google

Lawrence Crowl, crowl@google.com, Lawrence@Crowl.org

Problem
Solution
Wording
 3.7.4 Dynamic storage duration [basic.stc.dynamic]
 3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]
 5.3.5 Delete [expr.delete]
 12.5 Free store [class.free]
 17.6.3.6 Replacement functions [replacement.functions]
 18.6 Dynamic memory management [support.dynamic]
 18.6.1.1 Single-object forms [new.delete.single]
 18.6.1.2 Array forms [new.delete.array]

Problem
Within the Final Committee Draft, programmers may define a static member function
operator delete that takes a size parameter indicating the size of the object to be
deleted. The equivalent global operator delete is not available. This omission has
unfortunate performance consequences.

Modern memory allocators often allocate in size categories, and, for space efficiency
reasons, do not store the size of the object near the object. Deallocation then requires
searching for the size category store that contains the object. This search can be
expensive, particularly as the search data structures are often not in memory caches.

Solution
Permit implementations and programmers to define sized versions of the global
operator delete. The compiler shall the sized version in preference to the unsized
version when the sized version is available.

There are two potential problems with this solution.

• When deleting an incomplete type, there is not size available. In this case, the
unsized version must be used. This observation implies that calls to one version
must be effectively equivalent to calls to the other version. Excepting the specific
deallocation function called, we believe that any programs that would change
behavior already have undefined behavior within the standard.

• Existing programs that redefine the global unsized version do not also define the
sized version. When an implementation introduces a sized version, the
replacement would be incomplete. In this case, the only viable option seems to be
for the implementation to emit a diagnostic when the programmer provides an
unsized replacement but does not provide a sized replacement. The workaround is
to define a sized version that simply calls the unsized version.

Note, however, that the converse case is not a problem. The programmer may
define a both an unsized and a sized version even when the underlying
implementation only provides a sized version. The reason is that the two versions
must be functionally equivalent.

As a consequence of the second problem, we expect implementations to be somewhat
conservative in the introduction of the pre-defined sized versions. On the other hand,
programmers may aggressively define the sized versions.

Wording
The proposed wording changes are relative to the Final Committee Draft, N3092.

3.7.4 Dynamic storage duration [basic.stc.dynamic]

Edit within paragraph 2 as follows.

.... The following allocation and deallocation functions (18.6) are
implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t)
throw(std::bad_alloc);
void* operator new[](std::size_t)
throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();

Furthermore, the implementation may implicitly declare the following
functions in global scope in each translation unit of a program.

void operator delete(void*, std::size_t)
throw();
void operator delete[](void*, std::size_t)
throw();

If the implementation provides these functions, and if a translation unit
provides a definition for an unsized version but not for a sized version, the
program is ill-formed.

These implicit declarations introduce only the function names operator
new, operator new[], operator delete, operator delete[].

3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]

Edit paragraph 2 as follows.

Each deallocation function shall return void and its first parameter shall
be void*. A deallocation function can have more than one parameter. If
there is a declaration of global operator delete with exactly two
parameters, the second of which has type std::size_t (18.2), then that
function is a usual (non-placement) deallocation function. Similarly, if
there is a declaration of global operator delete[] with exactly two
parameters, the second of which has type std::size_t, then this function
is a usual deallocation function. If a class T has a member deallocation
function named operator delete with exactly one parameter, then that
function is a usual (non-placement) deallocation function. If class T does
not declare such an operator delete but does declare a member
deallocation function named operator delete with exactly two
parameters, the second of which has type std::size_t (18.2), then this
function is a usual deallocation function. Similarly, if a class T has a
member deallocation function named operator delete[] with exactly
one parameter, then that function is a usual (non-placement) deallocation
function. If class T does not declare such an operator delete[] but does
declare a member deallocation function named operator delete[] with
exactly two parameters, the second of which has type std::size_t, then
this function is a usual deallocation function. A deallocation function can
be an instance of a function template. Neither the first parameter nor the
return type shall depend on a template parameter. [Note: that is, a
deallocation function template shall have a first parameter of type void*
and a return type of void (as specified above). —end note] A deallocation
function template shall have two or more function parameters. A template
instance is never a usual deallocation function, regardless of its signature.

5.3.5 Delete [expr.delete]

Paragraph 1 remains unchanged, though note the restrictions on the delete operand.

.... The operand shall have a pointer to object type, or a class type having a
single non-explicit conversion function (12.3.2) to a pointer to object type.
The result has type void. [Footnote: This implies that an object cannot be

deleted using a pointer of type void* because void is not an object type.
—end footnote]

paragraph 2 remains unchanged, though note the restriction on inheritance with respect to
the delete operand.

.... If it is not a null pointer value, in the first alternative (delete object), the
value of the operand of delete shall be a pointer to a non-array object or a
pointer to a subobject (1.8) representing a base class of such an object
(Clause 10). If not, the behavior is undefined. In the second alternative
(delete array), the value of the operand of delete shall be the pointer
value which resulted from a previous array new-expression. [Footnote:
For non-zero-length arrays, this is the same as a pointer to the first element
of the array created by that new-expression. Zero-length arrays do not
have a first element. —end footnote] If not, the behavior is undefined.
[Note: this means that the syntax of the delete-expression must match the
type of the object allocated by new, not the syntax of the new-expression.
—end note]

Paragraph 3 remains unchanged, though note the further restriction on inheritance.

In the first alternative (delete object), if the static type of the object to be
deleted is different from its dynamic type, the static type shall be a base
class of the dynamic type of the object to be deleted and the static type
shall have a virtual destructor or the behavior is undefined. In the second
alternative (delete array) if the dynamic type of the object to be deleted
differs from its static type, the behavior is undefined.

Paragraph 5 remains unchanged.

If the object being deleted has incomplete class type at the point of
deletion and the complete class has a non-trivial destructor or a
deallocation function, the behavior is undefined.

Remove paragraph 9 as follows.

When the keyword delete in a delete-expression is preceded by the unary
:: operator, the global deallocation function is used to deallocate the
storage.

Add a new paragraph in place of paragraph 9 as follows.

If a delete-expression begins with a unary :: operator, the deallocation
function's name is looked up in global scope. Otherwise, the lookup
considers class-specific deallocations (12.5 [class.free]). If no class-
specific deallocation is found, the deallocation function's name is looked

up in global scope. If the lookup selects a placement deallocation function,
the program is ill-formed.

Add a new paragraph as follows.

If deallocation function lookup finds both a usual deallocation function
with one parameter and a usual deallocation function with two parameters,
and then if the object being deleted has incomplete class type, the selected
deallocation function shall be the one with two parameters. Otherwise, the
selected deallocation function shall be the function with one parameter.

Add a new paragraph as follows. This paragraph is identical to the existing 12.5/5.

When a delete-expression is executed, the selected deallocation function
shall be called with the address of the block of storage to be reclaimed as
its first argument and (if the two-parameter style is used) the size of the
block as its second argument. [Footnote: If the static type of the object to
be deleted is different from the dynamic type and the destructor is not
virtual the size might be incorrect, but that case is already undefined, as
stated above. —end footnote]

12.5 Free store [class.free]

Edit paragraph 4 as follows.

Class-specific deallocation function lookup is a part of general
deallocation function lookup (5.3.5 [expr.delete]) and occurs as follows. If
a delete-expression begins with a unary :: operator, the deallocation
function's name is looked up in global scope. Otherwise, if If the delete-
expression is used to deallocate a class object whose static type has a
virtual destructor, the deallocation function is the one selected at the point
of definition of the dynamic type's virtual destructor (12.4). [Footnote: A
similar provision is not needed for the array version of operator delete
because 5.3.5 requires that in this situation, the static type of the object to
be deleted be the same as its dynamic type. —end footnote] Otherwise, if
the delete-expression is used to deallocate an object of class T or array
thereof, the static and dynamic types of the object shall be identical and
the deallocation function's name is looked up in the scope of T. If this
lookup fails to find the name, the name is looked up in the global scope.
the class-specific deallocation function lookup has failed and general
deallocation function lookup (5.3.5 [expr.delete]) continues. If the result
of the lookup is ambiguous or inaccessible, or if the lookup selects a
placement deallocation function, the program is ill-formed.

Remove paragraph 5 as follows. This paragraph moves to 5.3.5/9++.

When a delete-expression is executed, the selected deallocation function
shall be called with the address of the block of storage to be reclaimed as
its first argument and (if the two-parameter style is used) the size of the
block as its second argument. [Footnote: If the static type of the object to
be deleted is different from the dynamic type and the destructor is not
virtual the size might be incorrect, but that case is already undefined; see
5.3.5. —end footnote]

17.6.3.6 Replacement functions [replacement.functions]

Edit paragraph 2 as follows.

A C++ program may provide the definition for any of eight dynamic
memory allocation function signatures declared in header <new> (3.7.4,
Clause 18 18.4 [support.dynamic]):

• operator new(std::size_t)
• operator new(std::size_t, const std::nothrow_t&)
• operator new[](std::size_t)
• operator new[](std::size_t, const std::nothrow_t&)
• operator delete(void*)
• operator delete(void*, const std::nothrow_t&)
• operator delete[](void*)
• operator delete[](void*, const std::nothrow_t&)

Furthermore, a C++ program may provide the definition for any of the
four dynamic memory deallocation function signatures that
implementations may choose to declare in header <new>:

• operator delete(void*, std::size_t)
• operator delete(void*, std::size_t, const

std::nothrow_t&)
• operator delete[](void*, std::size_t)
• operator delete[](void*, std::size_t, const

std::nothrow_t&)

18.6 Dynamic memory management [support.dynamic]

At the end of the synopsis add the following.

The implementation may, but need not, provide the following additional
group of functions.

operator delete(void* ptr, std::size_t size)
throw();
operator delete(void* ptr, std::size_t size,
const std::nothrow_t&) throw();

operator delete[](void* ptr, std::size_t size)
throw();
operator delete[](void* ptr, std::size_t size,
const std::nothrow_t&) throw();

18.6.1.1 Single-object forms [new.delete.single]

At the end of the section, add a new paragraph as follows.

operator delete(void* ptr, std::size_t size) throw();
operator delete(void* ptr, std::size_t size, const
std::nothrow_t&) throw();

Add a new paragraph as follows.

These functions behave as their corresponding version
without the std::size_t size parameter, with the additional
constraints:

Requires: size shall equal that used to
allocate ptr.

Required behavior: Calls to the sized and
unsized versions shall be interchangable.

18.6.1.2 Array forms [new.delete.array]
At the end of the section, add a new paragraph as follows.

operator delete[](void* ptr, std::size_t size) throw();
operator delete[](void* ptr, std::size_t size, const
std::nothrow_t&) throw();

Add a new paragraph as follows.

These functions behave as their corresponding version
without the std::size_t size parameter, with the additional
constraints:

Requires: size shall equal that used to
allocate ptr.

Required behavior: Calls to the sized and
unsized versions shall be interchangable.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 28
Clause 4.4

Comment 4.4/3: A const member function pointer could safely be applied to a non-const object
without violating const correctness.

Technical details:
While a cv-qualified member function can be called on a less-cv-qualified object-expression (see [class.this]
9.3.2/4), a cv-qualified member function cannot be assigned to less-cv-qualified member function pointer
even though it is no more dangerous to const correctness than the rule in 9.3.2/4. This code sample
illustrates:

struct X {
void func1() const;
void func2();
};
void f() {
void (X::*fptr1)() = &X::func1; // ill-formed, should be well-formed
void (X::*fptr2)() = &X::func2; // well-formed
void (X::*fptr3)() const = &X::func1; // well-formed
void (X::*fptr4)() const = &X::func2; // ill-formed, must remain so
}

Proposed resolution:
Informally, we want to add an implicit conversion for pointer-to-member-function types from "void (T::*)()
const" to "void (T::*)()". This is slightly tricky because the cv-qualifier-seq on a function declaration isn't
actually a cv-qualified function type (see 8.3.5).

One possible wording change: strike 9.3.2/4, and add to 4.4/3 "A prvalue of type 'pointer to cv-qualified
member function' can be converted to a prvalue of type 'pointer to less-cv-qualified member function'."

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 29

Jason Merrill
2010-03-09
Revision 3

CORE ISSUE 974. Default arguments for lambdas
Section: 5.1.2 [expr.prim.lambda] Status: open Submitter: Jason Merrill Date: 4 September, 2009
 Priority: 2

(From 15012 and 15148.)

There does not appear to be any technical difficulty that would require the restriction in 5.1.2
[expr.prim.lambda] paragraph 5 against default arguments in lambda-expressions.

Suggested Resolution (March, 2010)
Strike from 5.1.2/5:

 Default arguments (8.3.6) shall not be specified in the parameter‐declaration‐clause of a
lambda‐declarator

US 30

975. Restrictions on return type deduction for lambdas

Section: 5.1.2 [expr.prim.lambda] Status: open Submitter: Jason Merrill Date:
4 September, 2009 Priority: 2

(From messages 15012, 15148, 15152, and 15170.)

There does not appear to be any technical difficulty that would require the current
restriction that the return type of a lambda can be deduced only if the body of the lambda
consists of a single return statement. In particular, multiple return statements could be
permitted if they all return the same type.

Drafting note

It is unfortunate that there is no way of writing directly the type deduced from an
expression by auto or lambda return type deduction; decltype has significantly different
results.

Suggested Resolution (March, 2010)

Change 5.1.2/4 from:
..... If a lambda-expression does not include a trailing-return-type, it is as if the trailing-
return-type denotes the following type:

• if the compound-statement if of the form

{ return attribute-specifieropt expression ; }

the type of the returned expression after lvalue-to-rvalue conversion (4.1), array-
to-pointer conversion (4.2), and function-to-pointer conversion (4.3);

• otherwise, void.

[Example:

 auto x1 = [](int i){ return i; }; // OK: return type is int
 auto x2 = []{ return { 1, 2 }; }; // error: the return type is void
(a
 // braced-init-list is not an
expression)
-- end example]
to:
..... If a lambda-expression does not include a trailing-return-type, it is as if the trailing-
return-type denotes the following type:

• If there are no return statements in the compound-statement, or all return
statements return void, void;

• otherwise, if all return statements are of the form return expression ; and for
all return statements the type of the returned expression after lvalue-to-rvalue
conversion (4.1), array-to-pointer conversion (4.2), and function-to-pointer
conversion (4.3) is equivalent, that type;

• otherwise, the program is ill-formed.

[Example:

 auto x1 = [](int i){ return i; }; // OK: return type is int
 auto x2 = []{ return { 1, 2 }; }; // error (a braced-init-list is
not an expression)
 template <class T> void f () {
 [](T t, bool b){
 if (b)
 return t.fn();
 else
 return t.fn();
 }; // OK: return type is type of
t.fn()
 [](T t, bool b){
 if (b)
 return t.fn1();
 else
 return t.fn2();
 }; // error: the type of t.fn1() is
not equivalent to the type of t.fn2() (14.6.6.1)
 }
-- end example]

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 34

Comment 5.3.4, 5.3.5: Allocation functions are missing happens-before requirements and
guarantees.

Technical details:
When the same unit of storage is allocated and deallocated repeatedly, operations on it can’t be allowed to
race between the allocator and the user program. But I don’t see any mention of happens-before in the
descriptions of allocation and deallocation functions.

Proposed resolution (not wording yet):

• The call to an allocation function returning a pointer P must happen-before the matching
deallocation call with P as a parameter. Otherwise the behavior is undefined. I don’t know whether
receiving P with memory_order_consume fits this requirement. memory_order_relaxed does not.

• If some memory is passed to a deallocation function, the implementation must ensure that the
deallocation call happens-before any allocation call that returns the same memory address.

US 49

Jason Merrill
2010-05-25
Revision 1

Direct Binding correction
The Problem

The FCD rules do not specify direct binding for this example:
int i;
int main()
{
 int&& ir = static_cast<int&&>(i);
 ir = 42;
 return (i != 42);
}
We ought to do direct binding for reference-compatible xvalues. It also seems that the
array rvalue case ought to be folded in with the class rvalue case, since the only way to
get an array rvalue is to refer to an array member of a class rvalue. I considered
introducing the term "crvalue" for that subset of prvalues, but couldn't find any other
places to use it. I also considered extending the direct binding treatment to scalar
members of a class rvalue, but that seems like a larger change than necessary.

Proposed Wording

Change 8.5.3 [dcl.init.ref] paragraph 5 as follows:
...
• Otherwise, if the initializer expression is an xvalue, class prvalue or array prvalue, and
"cv1 T1" is reference-compatible with "cv2 T2", the reference is bound to the object
represented by the rvalue (see 3.10) or to a subobject within that object.
• Otherwise, if T2 is a class type and

• the initializer expression is an rvalue and "cv1 T1" is reference-compatible with
"cv2 T2", or

• T1 is not reference-related to T2 and the initializer expression can be implicitly
converted to an rvalue of type "cv3 T3" where "cv1 T1" is reference-compatible
with "cv3 T3" (this conversion is selected by enumerating the applicable
conversion functions (13.3.1.6) and choosing the best one through overload
resolution (13.3)),

then the reference is bound to the initializer expression rvalue in the first case and to the
object that is the result of the conversion in the second case (or, in either case, to the
appropriate base class subobject of the object).

[Example:

 struct A { };
 struct B : A { } b;
 extern B f();
 const A& rca = f(); // bound to the A subobject of
the B rvalue.
 A&& rcb = f(); // same as above
 struct X {
 operator B();
 } x;
 const A& r = x; // bound to the A subobject of
the result of the conversion
-- end example]
• If the initializer expression is an rvalue, with T2 an array type, and "cv1 T1" is
reference-compatible with "cv2 T2," the reference is bound to the object represented by
the rvalue (see 3.10). ...

[Example:

 struct A { };
 struct B : A { } b;
 extern B f();
 const A& rca = f(); // bound to the A subobject of
the B rvalue.
 A&& rcb = f(); // same as above
 struct X {
 operator B();
 } x;
 const A& r = x; // bound to the A subobject of
the result of the conversion
-- end example]
• If the initializer expression is an rvalue, with T2 an array type, and â€œcv1 T1â€� is
reference-compatible with â€œcv2 T2,â€� the reference is bound to the object
represented by the rvalue (see 3.10).

US 66
Author: Jason Merrill
2010-05-10
Revision 2

List-construction fallback
The Problem

In core-16131, Daniel Krügler offered the following example:
a) If I have no initializer-list c'tors, I can write

struct A{} a;

struct S {
 S(A, A); // #1
 S(int, double, bool); // #2
};

S s1{a, a}; // OK, calls #1
S s2{12, 3.1, false}; // OK, calls #2
b) If I now add an initializer-list c'tor like this:

#include <initializer_list>

struct A{} a;
struct B{};

struct S {
 S(A, A); // #1
 S(int, double, bool); // #2
 S(std::initializer_list); // #3
};

S s1{a, a}; // Error, does not match #3
S s2{12, 3.1, false}; // Error, does not match #3
This struck him as unfortunate; if there are list constructors but none are viable, we
should subsequently try to match a non-list constructor. This is especially problematic if
S has an additional constructor:

#include <initializer_list>

struct A{} a;
struct B{};
struct C {
 C(A, A);
};

struct S {
 S(A, A); // #1
 S(std::initializer_list); // #3
 S(C); // #4

};

S s1{a, a}; // Matches #4 instead of #1
This was not a problem in N2385, but my changes to formalize the rules ended up
oversimplifying the handling of classes with list constructors in a way that created this
problem.

The right answer seems to be to do overload resolution for list-initialization of a class in
two phases: first look for a suitable list constructor, and if none is found then look for a
suitable non-list constructor.

Proposed Wording

Change 8.5.4 [dcl.init.list] as follows:
....

• Otherwise, if T is a class type, constructors are considered. If T has an initializer-
list constructor, the argument list consists of the initializer list as a single
argument; otherwise, the argument list consists of the elements of the initializer
list. The applicable constructors are enumerated (13.3.1.7) and the best one is
chosen through overload resolution (13.3.1.7, 13.3). If a narrowing conversion
(see below) is required to convert any of the arguments, the program is ill-formed.

....
Change 13.3.1.7 [over.match.list] as follows:
When objects of non-aggregate class type T are list-initialized (8.5.4), overload resolution
selects the constructor in two phasesas follows, where T is the cv-unqualified class type
of the object being initialized:

• If T has an initializer-list constructor (8.5.4), Initially, the candidate functions are
the initializer-list constructors (8.5.4) of the class T and the argument list consists
of the initializer list as a single argument; argument.

• otherwise, If no viable initializer-list constructor is found, overload resolution is
performed again, where the candidate functions are all the constructors of the
class T and the argument list consists of the elements of the initializer list.

• For direct-list-initialization, the candidate functions are all the constructors of the
class T.

• For In copy-list-initialization, the candidate functions are all the constructors of T.
However, if an explicit constructor is chosen, the initialization is ill-formed. [
Note: This differs from other situations (13.3.1.3, 13.3.1.4), where only
converting constructors are considered for copy-initialization. This restriction
only applies if this initialization is part of the final result of overload resolution --
end note]

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 76

Comment 14.8.2/9: extern template prevents inlining functions not marked inline.

Technical details:
Existing compilers often inline functions that weren’t explicitly declared inline. To inline a function, they need
to instantiate its template. Yet the FCD [temp.explicit]p9 says, “Except for inline functions and class template
specializations, explicit instantiation declarations have the
effect of suppressing the implicit instantiation of the entity to which they refer.” This means that adding an
explicit instantiation declaration can affect performance, even though the user only intended to suppress out-
of-line copies of functions. N1987 doesn’t seem to expect any changes in inlining behavior.

Proposed resolution:

• Remove [temp.explicit] / p9.
• Replace the note in [temp.explicit] / p10 with: “The intent of this rule is to allow compilers to avoid
emitting out-of-line copies of template functions, while still allowing them to inline those functions.
The compiler may assume that another translation unit will supply the body.”

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 88

Clause 20.2.5 [allocator.requirements]

Allocator Interface Not Backward Compatible

Date: 2010-05-21
Author: P.J. Plauger

Clause 20.2.5, Allocator requirements, adds functionality to the C++03 (old) allocator interface. It also
endeavors to maintain compatibility with old allocators, so that old allocators can be used with new users of
allocators, such as containers, function objects, regular expressions, shared pointers, string streams, etc. To
supply the missing functionality for old allocators, C++0X also adds allocator traits, in the form of a new
template class allocator_traits. This template class uses various template metaprogramming techniques to
determine whether it can obtain a given type or function from an allocator, or whether it should supply a
default instead. If code that uses allocators is changed to work through the intermediary of allocator_traits, it
can access (most of) the functions and types defined in the old allocator interface.

Unfortunately, the new allocator requirements go too far. They permit a new allocator to omit many of the
types and functions required by old allocators. allocator_traits will fill in the blanks. The new allocator
requirements also eliminate some functions and types required of old allocators, presumably on the
assumption that programmers don't need them any more and won't miss them. In so doing, however, the
new allocator requirements fail to maintain the other half of the allocator interface -- they permit, even
encourage, programmers to write new allocators that don't work with old users of allocators. Indeed, every
existing container, function object, etc. listed above has to be reviewed and probably revised to work in the
new world of abbreviated allocators and allocator traits.

Things that use allocators in the Standard C++ library are not a problem. Implementers are obliged to
update the standard containers, etc. to match the new requirements. User-defined things that use the
library-supplied default allocator are also not a problem. The default allocator retains even those features of
old allocators that are no longer required by the new allocator requirements. But in general:

• Old allocators work with old allocator users, as we would expect.
• New allocators work with new allocator users, as we would expect.
• Old allocators work with new allocator users, if the new allocator users use allocator_traits, as

needed.
• Old allocator users work with the new default allocator.
• But otherwise, old allocator users do not work with new allocators.

In designing the new allocator/user interface, committee discussions focused overwhelmingly on the
problem of retaining backward compatibility between old allocators and the new containers supplied by the
Standard C++ library. There was strong sentiment that old code should not have to be modified to work with
the new library, even though the new library demanded more of allocators than before. The committee could
have simply required that old allocators have to work only with the standard containers ("just make it work"),
but it chose to go farther. By publishing the allocator_traits interface, C++0X provides tools for user-supplied
containers, etc. to work with either old or new allocators.

The same consideration was not extended nearly as far to old containers, etc. If they want to survive in the
C++0X world of new allocators, they will typically have to be rewritten. The rewrite is largely mechanical, but
a careful review has to be done. To the best of my knowledge, the committee has not commented on this
issue. There may be no sentiment for preserving old allocator users, but that weakens the case for indulging
in heroics to preserve old allocators.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

Proposal 0

If the committee is willing to mandate at least some rewrite of old code, it could simply suggest that all
allocators be changed, if necessary, to (behave as if they) have the default allocator as a public base class,
as in:

 template<class T, class... Rest>
 class Myalloc
 : public std:allocator<T>
 {.....}

This solves the problem of defaulting the new functions and types that are missing in the old allocators. It
ensures that old containers, etc. work with new allocators. And it provides for future additions to the allocator
interface Deriving from std::allocator<T> has long been a common idiom. The author of Myalloc merely has
to supply those things that change from the default allocator, and those things that cannot be inherited from
a base class (such as constructors and rebind). Allocators of this form do not have to change to conform to
this new requirement.

The fix is to remove the defaults from Table 41 in 20.2.5, and to restore the requirements dropped from the
old allocator specification. allocator_traits can also be removed, or it can be retained for those who believe
that abbreviating allocators will prove to be a good idea.

Proposal 1

If the preceding Proposal is too sweeping, at the very least the C++ Standard should fix the backward
compatibility problem outlined above:

• Restore to the allocator requirements the functions and types that were dropped (primarily
reference, const_reference, and address).

• Drop the default behavior for all allocator requirements inherited from C++2003.

Detailed changes for Proposal 1 are summarized below.

A salutary effect of adopting this proposal is to reduce the amount of new code that has to be added to
<memory>. In its current form, allocator_traits adds roughly 200 lines of code to this header, which must be
included in every program that uses a library container, including string. The code removed merely gives
the programmer the ability to abbreviate allocators, solving a non-problem that can usually be addressed, if
needed, by the one-line addition shown above.

Note that a library implementation can still choose to provide all the defaults currently listed in
allocator_traits, as a conforming extension. If it turns out that there really is a market for abbreviated
allocators, the evidence will be apparent after a couple of years of field experience. The C++ Standard can
then be modified with a Technical Corrigendum or Amendment. But if we allow abbreviations from the start,
it's much harder to later disallow abbreviations in user code.

Proposal 2

We can simplify allocator_traits even farther by noting that only two kinds of allocators really need to be
supported, old and new. As before, there's no compelling need for various levels of newness. allocator_traits
need only have code that recognizes the presence of any new feature to conclude that all new features are
present.

Programmers sophisticated enough to write allocators know to add a base class, as above, when they are
content with the defaults for some features. Adding a hundred-odd lines of code to practically every compile
penalizes simple programs that, say, just use string, all to save sophisticated programs from writing perhaps
one line of text. This is a clear violation of the rule that you don't pay for what you don't use.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

The fix is simple:

In 20.2.5/2 Allocator requirements, after the sentence "Table 42 specifies a default for a given expression."
ADD "If an allocator supplies any requirement that has a default, it shall supply all requirements that have a
default."

Proposal 1 Details

In 20.2.5 Allocator requirements:

ADD to Table 41 the line:

mt a value of type T&

REMOVE from Table 42 defaults for pointer, const_pointer, size_type, difference_type, rebind, allocate with
hint, and max_size.

Add to Table 42 the lines:

 X::reference (no Return) Assertion/note: T&
 X::const_reference (no Return) Assertion/note: const T&
 p.address(mt) X::pointer &mt
 p.address(t) X::const_pointer &t
 a.construct(p, t) (not used) Effect: Constructs an object of type T at p.
 a.destroy(p) (not used) Effect: Destroys the object at p

REMOVE from 20.2.5/2 the sentence "A user specialization of allocator_traits may provide different defaults
and may provide defaults for different requirements than the primary template."

In 20.2.5/3, DELETE: "If Allocator is a class template instantiation of the form SomeAllocator<T, Args>,
where Args is zero or more type arguments, and Allocator does not supply a rebind member template, the
standard allocator_traits template uses SomeAllocator<U, Args> in place of Allocator::rebind<U>::other by
default. For allocator types that are not template instantiations of the above form, no default is provided."

In 20.3.5/5, CHANGE the example from:

template <class Tp>
 struct SimpleAllocator {
 typedef Tp value_type;
 SimpleAllocator(ctor args);
 template <class T> SimpleAllocator(const SimpleAllocator<T>& other);
 Tp *allocate(std::size_t n);
 void deallocate(Tp *p, std::size_t n);
 };

TO:

template <class Tp>
 struct SimpleAllocator
 : public std::allocator<Tp> {
 template <class T>
 SimpleAllocator(const SimpleAllocator<T>& other);
 template <class T>
 SimpleAllocator& (const SimpleAllocator<T>& other)
 { return *this; }
 template <class T>
 struct rebind {

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

 typedef SimpleAllocator<T>& other; }
 };
The allocator can add just those functions it wishes to override,
 such as allocate and deallocate, to obtain behavior that differs
 from std::allocator<Tp>.

In 20.9.4 Allocator traits, CHANGE:

 typedef see below pointer;
 typedef see below const_pointer;
 typedef see below void_pointer;
 typedef see below const_void_pointer;

 typedef see below difference_type;
 typedef see below size_type;

 template <class T> using rebind_alloc = see below;

TO:

 typedef Alloc::pointer pointer;
 typedef Alloc::const_pointer const_pointer;
 typedef pointer_traits<pointer>::rebind<void> void_pointer;
 typedef pointer_traits<pointer>::rebind<const void> const_void_pointer;

 typedef Alloc::difference_type difference_type;
 typedef Alloc::size_type size_type;

 template <class T> using rebind_alloc = Alloc::rebind<T>::other;

In 20.9.4.1 Allocator traits member types, REMOVE:

typedef see below pointer;

Type: Alloc::pointer if such a type exists; otherwise, value_type*.

typedef see below const_pointer;

Type: Alloc::const_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<const
value_type>.

typedef see below void_pointer;

Type: Alloc::void_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<void>.

typedef see below const_void_pointer;

Type: Alloc::const_void_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<const void>.

typedef see below difference_type;

Type: Alloc::difference_type if such a type exists; otherwise, ptrdiff_t.

typedef see below size_type;

Type: Alloc::size_type if such a type exists; otherwise, size_t.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

.....

template <class T> using rebind_alloc = see below;

Template alias: Alloc::rebind<T>::other if such a type exists; otherwise, Alloc<T, Args> if Alloc is a class
template instantiation of the form Alloc<U, Args>, where Args is zero or more type arguments; otherwise, the
instantiation of rebind_alloc is ill-formed.

In 20.9.4.2 Allocator traits static member functions, CHANGE:

static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

Returns: a.allocate(n, hint) if that expression is well-formed; otherwise, a.allocate(n).

.....

template <class T, class... Args>
 static void construct(Alloc& a, T* p, Args&&... args);

Effects: calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes ::new
(static_cast<void*>(p)) T(std::forward<Args>(args)...).

template <class T>
 static void destroy(Alloc& a, T* p);

Effects: calls a.destroy(p) if that call is well-formed; otherwise, invokes p->~T().

static size_type max_size(Alloc& a);

Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::max().

TO:

static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

Returns: a.allocate(n, hint).

.....

template <class T, class... Args>
 static void construct(Alloc& a, T* p, Args&&... args);

Effects: calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes ::new
(static_cast<void*>(p)) T(std::forward<Args>(args)...).

[Note: Alloc always defines a signature equivalent to construct(pointer, const value_type&). -- end note]

template <class T>
 static void destroy(Alloc& a, T* p);

Effects: calls a.destroy(p) if that call is well-formed; otherwise, invokes p->~T().

[Note: Alloc always defines a signature equivalent to destroy(pointer). -- end note]

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

static size_type max_size(Alloc& a);

Returns: a.max_size().

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 96

20.3.5.2 [pairs.pair] Move/forward confusion in pair and tuple construction and assignment

Section: 20.3.5.2 [pairs.pair], 20.4.2.1 [tuple.cnstr], and 20.4.2.2/6 [tuple.assign]

Submitter: Pablo Halpern

Discussion

Note: This issue overlaps with LWG 1326.

There are actually two issues that are intertwined, so it makes sense to resolve them together.

The first issue is that the terms MoveConstructible, MoveAssignable, CopyAssignable are being misused in
[pair] and [tuple] to describe heterogeneous construction or assignment, even thought the terms are defined
only in terms of a single type.

The second issue is that std::move is being used where std::forward is required. In particular, std::move will
erroneously convert an lvalue-reference to an rvalue-reference whereas std::forward will not. Also, the
terms “move-constructs” and “move-assigns” are being used in contexts where std::forward should be used,
implying the wrong semantic.

Proposed Resolution

Change [pairs.pair]/6 as follows:

template<class U, class V> pair(pair<U, V>&& p);
6 Effects: The constructor initializes first with std::moveforward<U>(p.first) and second with

std::moveforward<V>(p.second).

Change [pairs.pair] paragraphs 12-15 as follows:

pair& operator=(pair&& p);
12 Effects: Assigns to first with std:: moveforward<T1>(p.first) and to second with std::

moveforward<T2>(p.second).
13 Returns: *this.

template<class U, class V> pair& operator=(pair<U, V>&& p);

14 Effects: Assigns to first with std:: moveforward<U>(p.first) and to second with std::
moveforward<V>(p.second).

15 Returns: *this.

Change [tuple.cnstr] paragraph 6 as follows:

template <class... UTypes>
 explicit tuple(UTypes&&... u);

6 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 34)be
constructible from the corresponding type in UTypes&& . sizeof...(Types) == sizeof...(UTypes).

Change [tuple.cnstr] paragraphs 11-20 as follows:

tuple(tuple&& u);

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

10 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 34).
11 Effects: Move-constructs each element of *this with the corresponding element of

std::forward<Types>(u).

template <class... UTypes> tuple(const tuple<UTypes...>& u);

12 Requires: Each type in Types shall be constructible from the corresponding type in UTypes&&.
sizeof...(Types) == sizeof...(UTypes).

13 Effects: Constructs each element of *this with the corresponding element of std::forward<UTypes>(u).
14 [Note: enable_if can be used to make the converting constructor and assignment operator exist only

in the cases where the source and target have the same number of elements. —end note]

template <class... UTypes> tuple(tuple<UTypes...>&& u);

15 Requires: Each type in Types shall shall the requirements of MoveConstructible (Table 34)be
constructible from the corresponding type in UTypes&&. sizeof...(Types) == sizeof...(UTypes).

16 Effects: Move-constructs each element of *this with the corresponding element of
std::forward<UTypes>(u).

 [Note: enable_if can be used to make the converting constructor and assignment operator exist only
in the cases where the source and target have the same number of elements. —end note]

template <class U1, class U2> tuple(const pair<U1, U2>& u);

17 Requires: The first type in Types shall be constructible from U1 and the second type in Types shall be
constructible from U2. sizeof...(Types) == 2.

18 Effects: Constructs the first element with u.first and the second element with u.second.

template <class U1, class U2> tuple(pair<U1, U2>&& u);

19 Requires: The first type in Types shall shall the requirements of MoveConstructible (Table 34)be
constructible from U1&& and the second type in Types shall be move-constructible from U2&&.
sizeof...(Types) == 2.

20 Effects: Constructs the first element with std:: moveforward<U1>(u.first) and the second element with
std:: moveforward<U2>(u.second).

Change [tuple.assign] paragraph 6 as follows:

6 Effects: Move-assigns each element of std::forward<Types>(u) to the corresponding element of *this.

Change [tuple.assign] paragraphs 11 and 12 as follows:

11 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 34)be

assignable from the corresponding type in UTypes&&. sizeof...(Types) == sizeof...(UTypes).
12 Effects: Move-assigns each element of std::forward<UTypes>(u) to the corresponding element of

*this.

Change [tuple.assign] paragraph 14 as follows:

14 Requires: The first type in Types shall shall satisfy the requirements of MoveAssignable (Table 36)be
assignable from U1 and the second type in Types shall shall satisfy the requirements of
MoveAssignable (Table 36)be assignable from U2. sizeof...(Types) == 2.

Change [tuple.assign] paragraphs 18 and 19 as follows:

18 Requires: The first type in Types shall be Assignable from U1&& and the second type in Types shall

be Assignable from U2&&. sizeof...(Types) == 2.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

19 Effects: Assigns std:: moveforward<U1>(u.first) to the first element of *this and std::
moveforward<U2>(u.second) to the second element of *this.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 106

 [pointer.traits] pointer_traits lacks size_type

Section: 20.9.3 [pointer.traits]

Submitter: Pablo Halpern

Discussion:

The pointer_traits template has a difference_type member, but not a corresponding size_type member. This
asymmetry causes issues for allocators. Currently, the default type for allocator_traits<A>::difference_type
is ptrdiff_t and the default type for allocator_traits<A>::size_type is size_t. However, it would be more useful
and natural for allocator_traits<A>::difference_type to default to pointer_traits<A::pointer>::difference_type
and allocator_traits<A>::size_type to default to pointer_traits<A::pointer>::size_type. The former is currently
possible but the latter is not because of the absence of size_type in pointer_traits.

Proposed Resolution:

Add a new type to [pointer.traits]/1:

typedef see below difference_type;
typedef see below size_type;

And a paragraph after [pointer.traits]/2:

 typedef see below difference_type;

2 Type: Ptr::difference_type if such a type exists; otherwise, std::ptrdiff_t.

 typedef see below size_type;

 Type: Ptr::size_type if such a type exists; otherwise, std::size_t.

In section [allocator.requirements], Table 42, replace the defaults for difference_type and size_type:

X::size_type unsigned integral type a type that can represent the size of
the largest object in the allocation
model.

size_tpointer_traits<point
er>::size_type

X::difference_type signed integral type a type that can represent the
difference between any two pointers
in the allocation model.

ptrdiff_tpointer_traits<poi
nter>::difference_type

Change the definitions of difference_type and size_type in [allocator.traits] paragraphs 5 and 6:

typedef see below difference_type;

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

5 Type: Alloc::difference_type if such a type exists; otherwise,

ptrdiff_tpointer_traits<pointer>::difference_type.

typedef see below size_type;

6 Type: Alloc::size_type if such a type exists; otherwise, size_tpointer_traits<pointer>::size_type.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 107

Clauses 20.1, 20.9.1, 20.9.6

Scoped Allocator Adaptor Inappropriate for <memory>

Date: 2010-05-21
Author: P.J. Plauger

Template class scoped_allocator_adaptor (20.9.6) requires a nontrivial piece of code to implement. The
reference implementation (referenced in N2982) runs to nearly 800 lines. C++0X has already added
significantly to the header <memory> with features such as shared_ptr and unique_ptr, but scoped
allocators still represent a significant addition to a widely used header.

Dinkumware has already received push back from customers whe dislike the longer compile times brought
on by C++0X features that they don't even use. This may appear to be carping, given the speed of today's
computers, but it is not. If an overnight build doesn't complete overnight, scheduling problems arise. We
have repartitioned our headers more than once, in response to this feedback. But that technique goes only
so far.

WG21 can probably justify placing shared_ptr and unique_ptr in <memory>, since the expectation is that
these template classes are also likely to be widely used, and by a broad range of programmers. But it is
hard to make the same case for scoped_allocator_adaptor. The latter requires a sophisticated knowledge of
allocators and how they might interact with containers and container elements.

Template class scoped_allocator_adaptor has the virtue of being self-contained. It has no required uses
within the Standard C++ library, and there are no references to it from other parts of the C++ Standard.
Hence, it is both easy and beneficial to move this template class to a new header.

The fix is to add the new header <scoped_allocator>:

IN 20.1 General, Table 30, ADD the line:

 20.xx Scoped allocators <scoped_allocator>

IN 20 General Utilities Library, INSERT/APPEND a new section 20.xx, Class scoped_allocator_adaptor

FROM 20.9.1 Header <memory> synopsis, MOVE to 20.xx the new 20.xx.1 Header <scoped_allocator>
synopsis:

 // 20.9.6, scoped allocator adaptor
 template <class OuterAlloc, class... InnerAlloc>
 class scoped_allocator_adaptor;
 template <class OuterA1, class OuterA2, class... InnerAllocs>
 bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,)
 const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);
 template <class OuterA1, class OuterA2, class... InnerAllocs>
 bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,)
 const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);

MOVE 20.9.6 Scoped allocator adaptor to the new 20.xx.2.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 115

23.2.1 [container.requirements.general] Terminology for constructing container elements

Section: 23.2.1 [container.requirements.general]

Submitter: Pablo Halpern

Discussion

The resolution to issue 704 added a number of requirements to the container operations in order to properly
constrain the elements of the containers. Unfortunately, the current wording effectively redefines the terms
CopyConstructible and MoveConstructible and the phrase “constructible with args” so that they have
different meanings in the containers section than in the rest of the standard. This use of terminology is not
only confusing and vague, it is also not applied correctly through the section. There are some cases, in fact,
when the term CopyConstructible is used in its original meaning, but the reader would have no way to know
that.

The best solution is to choose an entirely new and more precise set of terms and apply them consistently
and correctly in the containers section. I nominate the terms X can copy-insert T, X can move-insert T, and
X can construct-insert T with args as replacements for the above terms, where X is the container type, A is
X’s allocator type and T is its element type.

Proposed Resolution:

Replace [container.requirements.general]/15 as follows:

15 The descriptions of the requirements of the type T in this section use the terms CopyConstructible,
MoveConstructible, constructible from *i, and constructible from args. These terms are equivalent to
the following expression using the appropriate arguments:

 Given a container type X having an allocator_type A and a value_type T and given an lvalue m of

type A, a pointer p of type T*, a value v of type T, or a value rv of type rvalue-of-T, the following terms
are defined. (If X is not allocator-aware, the terms below are defined as if A were std::allocator<T>.):

X can copy-insert T means that the following expression is well-formed:

 allocator_traits<A>::contruct(m, p, v);

X can move-insert T means that the following expression is well-formed:

 allocator_traits<A>::contruct(m, p, rv);

A can construct-insert T from args for zero or more arguments, args, means that the following
expression is well-formed:

 allocator_traits<A>::contruct(m, p, args);

 [Note: The default of contruct in std::allocator will call

::new((void*) p) T(args)

 but specialized allocators may choose a different definition. – end note]

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

A review of the rest of section 23 shows that one can substitute the above terms in all cases where the
phrase “T is CopyConstructible”, etc.. A complete resolution will need to spell out each individual case, as
sometimes the wording varies as in “T shall be CopyConstructible” or “value_type is constructible from,” etc.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 117

Clause 23.3.3

Problems with forward_list::erase_after

Date: 2010-05-21
Author: P.J. Plauger

The iterator returns from the two overloads of forward_list::erase_after were removed as part of the adoption
of N2988. The rationale given was, in its entirety:

"I believe that erase_after should return void. Returning its argument does nothing (potentially for a price),
and confuses the programmer. I think it's better that the programmer notice that forward_list is different from
other containers (and better not to pass a value through a function unnecessarily)."

The first and last sentences are, by their own admission ("I believe", "I think"), unfounded conjectures.

The second sentence is misleading, since only the second overload -- erase_after(iterator first, iterator last) -
- happens to return one of its arguments. The first overload -- erase_after(iterator before) -- does not. Both
return an iterator designating the first element after the element(s) removed, or end() if the last element is
removed.

The parenthetic remark in the second sentence happens not to be true, since the iterator to be returned
arises naturally in the process of erasing the elements.

The real price that this change has exacted is to destroy backward compatibility with the Committee Draft,
implementations of which are now widely available to programmers. It takes more than conjectures to justify
making such a breaking change.

It is also worth noting that the Dinkumware implementation of forward_list calls erase_after thirteen times for
internal purposes. In five of these cases, the code makes use of the return value. This is admittedly a small
sample of all the code now using forward_list, but enough to refute the notion that the return value of
erase_after "does nothing" or merely "confuses the programmer." Whether it is "better" to enforce a different
style of programming is a matter of taste.

The fix is to restore the wording in the Committee Draft:

IN 23.3.3/3, CHANGE:

 void erase_after(const_iterator position);
 void erase_after(const_iterator position, iterator last);

TO:

 iterator erase_after(const_iterator position);
 iterator erase_after(const_iterator position, iterator last);

IN 23.3.3.5/18-21, CHANGE:

 void erase_after(const_iterator position);

Requires: The iterator following position is dereferenceable.
Effects: Erases the element pointed to by the iterator following position.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

 void erase_after(const_iterator position, iterator last);

Requires: All iterators in the range (position,last) are dereferenceable.
Effects: Erases the elements in the range (position,last).

TO:

 iterator erase_after(const_iterator position);

Requires: The iterator following position is dereferenceable.
Effects: Erases the element pointed to by the iterator following position.
Returns: An iterator pointing to the element following the one that was erased, or end() if no such element
exists.

 iterator erase_after(const_iterator position, iterator last);

Requires: All iterators in the range (position,last) are dereferenceable.
Effects: Erases the elements in the range (position,last).
Returns: last

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 118

Comment 23.5: Some unordered associative container operations have undesirable complexities
when the container is implemented using singly linked lists.

Technical details
A common implementation technique for hash tables is as a vector of buckets, where each bucket is a
separate singly linked list. The TR1 unordered associative container specification was intended to allow that
implementation, among others.

This representation is desirable in some ways, but it does have a known problem: if the current element
happens to be the last in a bucket, incrementing it to get to the next element requires a linear scan over the
bucket array to find the next non-empty bucket. If the load factor (the ratio of elements to buckets) is very
low, this means that iterator increment is expensive.

In itself this is unfortunate but tolerable ---iteration through hash tables is less common than element
insertion or lookup, and there is long experience with STL hash table implementations (such as the SGI
implementation) that have this property. FCD unordered associative containers, however, make the problem
worse. The erase() member function is defined to return an iterator pointing to the element after the one
that’s erased, which means that a common hash table operation can result in invoking the potentially
expensive iterator increment

Proposed resolution
None. In principle there are several possibilities, including:

• Change the signature of erase so that it returns void. This would return us to the situation with
SGI STL hash tables, where iterator increment is potentially expensive but programmers can
realistically avoid it in most cases.
• Impose a minimum load factor, resizing the tables when necessary. This might involve changing
the iterator invalidation rules.
• Require implementations to use a doubly linked list implementation instead. This would be
undesirable because it would greatly increase the space requirements, for essentially technical
reasons.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 120

Comment 25.2.12/1: is_permutation is underspecified for anything but the simple case where both
ranges have the same value type and the comparison function is an equivalence relation.

Technical details

There are no requirements on is_permutation's template parameters beyond those implied by their names,
and by the fact that the returns clause is written in terms of std::equal. It thus appears at first sight that
is_permutation has the same constraints as equal, and that no further constraints are needed. This apparent
simplicity is misleading.

The returns clause says that is_permutation(f1,l1,f2) is true iff there is some permutation of the elements in
[f1, l1), which we can call [f1',l1'), such that equal(f1',l1',f2) is true. However, it doesn't say how to find that
permutation or prove that no such permutation exists. That's obviously the crux of the algorithm, and we
need to think about the constraints that are needed for it to work. So let's think about a definition that
describes how we actually compute whether is_permutation(f1,l1,f2) is true or false.

The n2986 reference implementation describes the actual algorithm that's intended: loop through [f1, l1). For
each value v, count how many times it appears in [f1, l1) and in [f2, l2). If the counts differ, then [f1, l1) can’t
be a permutation of [f2, l2). If the counts are the same for every v and the ranges have the same length,
then it is. There are several variations on this technique, but all the variations I know of involve choosing
some value v in one of the input ranges and looking at other instances of the same value in the same range.

This means that, unlike the case of std::equal, it isn't enough to require the existence of comparison
between a value of type iterator_traits<ForwardIterator1>::value_type and one of type
iterator_traits<ForwardIterator2>::value_type. At a minimum, we also also need to perform comparisons
between two values of type iterator_traits<ForwardIterator1>::value_type and/or two values of type
iterator_traits<ForwardIterator2>::value_type.

Even that isn't enough, though --it's enough to get is_permutation to compile, but not enough for it to give
sane results. It's easy to come up with examples of two types V1 and V2 such that there are sensible
comparisons between V1 and itself, V2 and itself, and V1/V2, but where is_permutation would give
nonsensical results. Consider, for example:

struct A { int val; char tag; };
struct B { int val; string tag; };

bool operator==(A x, A y) { return x.val == y.val && x.tag == y.tag; }
bool operator==(B x, B y) { return x.val == y.val && x.tag == y.tag; }
bool operator==(A x, B y) { return x.val == y.val; }

Now suppose we call is_permutation on two sequences c1 and c2, where c1 is [(1, 'a'), (2, 'b'), (1, 'c')] and
c2 is [(2,"x"), (1, "y"), (1, "z")]. Do we want the result to be true, or false? Taken literally the returns clause in
the FCD says that in this example the return value should be true, but the algorithm described above, and
the n2986 reference implementation, will return false. (And I don't know of any practical algorithm that would
do otherwise.) It will examine (1, a), find that it appears once in c1 and twice in c2, and return false.

The fundamental problem with this example is is that we have three elements, x, y, and z, such that x == y, y
== z, and x != z. That should look familiar. If operator== is allowed to violate the requirements of an
equivalence relation, one can construct equally pathological examples using only a single value type. This
algorithm has to compare multiple elements against each other, so we won't get sensible results unless
operator== obeys sensible axioms.

Proposed resolution
Informally: restrict is_permutation to the case where it is well specified. More formally:
Add a new paragraph to [alg.is_permutation], before the existing paragraph 1:

Requires: ForwardIterator1 and ForwardIterator2 shall have the same value type. The
comparison function shall be an equivalence relation.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

[There are other possible fixes. We could allow heterogeneous comparisons but constrain them more. Or,
more radically, we could get rid of is_permutation entirely and describe in words what equality comparison
should mean for hash multisets/multimaps, or even get rid of or change the definition of hash
multiset/multumap equality. We recommend the resolution above because the former option would be
complicated and easy to get wrong, while the latter two are larger changes than necessary.]

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 136

Clause 26.8

Problems with Floating-point Test Functions

Date: 2010-05-21
Author: P.J. Plauger

In 26.8 C Library, Table 116 lists as "Templates" a number of functions defined as macros in the C
Standard:

 Templates:
 fpclassify isgreaterequal islessequal isnan isunordered
 isfinite isinf islessgreater isnormal signbit
 isgreater isless
This is inaccurate. Each macro is better described in C++ as three overloads, with operand(s) of type float,
double, and long double. Moreover, as with the math functions described in this same section, each of the
functions has "sufficient additional overloads" to simulate the effect of the C type-generic functions.

The fix is to change 26.8 as follows:

In Table 116, CHANGE "Functions:" TO "Math Functions:" and CHANGE "Templates:" TO
"Classification/comparison Functions:".

BEFORE paragraph 10 ("Moreover, there shall be...") INSERT:

The classification/comparison functions behave the same as the C macros with corresponding names
defined in 7.12.3, Classification macros, and 7.12.14, Comparison macros in the C Standard. Each function
is overloaded for the three floating-point types, as follows:

namespace std {
int fpclassify(float x);
bool isfinite(float x);
bool isinf(float x);
bool isnan(float x);
bool isnormal(float x);
bool signbit(float x);

bool isgreater(float x, float y);
bool isgreaterequal(float x, float y);
bool isless(float x, float y);
bool islessequal(float x, float y);
bool islessgreater(float x, float y);
bool isunordered(float x, float y);

int fpclassify(double x);
bool isfinite(double x);
bool isinf(double x);
bool isnan(double x);
bool isnormal(double x);
bool signbit(double x);

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

bool isgreater(double x, double y);
bool isgreaterequal(double x, double y);
bool isless(double x, double y);
bool islessequal(double x, double y);
bool islessgreater(double x, double y);
bool isunordered(double x, double y);

int fpclassify(long double x);
bool isfinite(long double x);
bool isinf(long double x);
bool isnan(long double x);
bool isnormal(long double x);
bool signbit(long double x);

bool isgreater(long double x, long double y);
bool isgreaterequal(long double x, long double y);
bool isless(long double x, long double y);
bool islessequal(long double x, long double y);
bool islessgreater(long double x, long double y);
bool isunordered(long double x, long double y);
} // namespace std

DELETE paragraph 11 ("The templates defined...") and paragraph 12 ("The templates behave...").

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 137

Clause: 27.7

Problems with Iostreams Member Functions

Date: 2010-05-21
Author: P.J. Plauger

There are several problems with member functions in basic_istream and basic_ostream:

-- putback is obliged to fail at end of file. Moreover, the member function doesn't clear eofbit, as it should.
The current wording says:

Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After constructing
a sentry object, if !good() calls setstate(failbit) which may throw an exception, and return.

Both problems can be solved by first clearing eofbit:

CHANGE 27.7.1.3/34 (putback) first sentence from:

Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1).

TO:

Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except that the function
first clears eofbit.

-- A similar problem exists with unget, with a similar fix:

CHANGE 27.7.1.3/36 (unget) first sentence from:

Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1).

TO:

Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except that the function
first clears eofbit.

-- The first overload of seekg ends with the sentence:

In case of failure, the function calls setstate(failbit) (which may throw ios_basefailure).

This sentence is missing in the description of the second overload, for no good reason that I can detect. The
fix is to add the sentence:

CHANGE 27.7.1.3/43 (seekg) by ADDING at the end of the paragraph:

In case of failure, the function calls setstate(failbit) (which may throw ios_basefailure).

-- The basic_ostream seek functions, seekp and tellp say nothing about constructing a sentry object. But
these functions need such protection just as much as seekg and tellg, which do. The fix is to add a
sentence:

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

AFTER 27.7.2.5 basic_ostream seek members, ADD:

Each seek member function begins execution by constructing an object of class sentry. It returns by
destroying the sentry object.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 138

27.7 [iostream.format] Move and swap for I/O streams

Section: 27.7 [iostream.format]

Submitter: Pablo Halpern

Discussion:

For basic_istream, basic_ostream, and basic_iostream, the move constructor does not do a move
construction, tthe move-assignment operation does not do move-assignment and swap does not perform a
swap. Moreover, these functions are protected, precluding their use in reasonable code.

The resolution to issue 900 (and related issue 911) assumes that these functions would never be called from
client code. However, these classes are not abstract. They can be instanced and there are use-cases for
such instances. For example, one can create a filebuf outside of an fstream, then associate it with an
ostream:

 filebuf fb("name");

 ostream fstr(&fb);

The above ostream is a full-fledged object that should be movable, and copyable. In that case, the move
and copy operations should move and copy the whole object, including the rdbuf() member.

However, moving the rdbuf() member poses a problem for derived classes like fstream, that contain
embedded streambuf objects and which want to ensure that the base class portion of the copy container a
pointer to a copy of the streambuf, not a pointer to the original streambuf. To simplify programming of these
operations, we can have new constructors and a new function that perform the same actions as copy-
construction, move-construction, and move-assignment, but do not move or copy the rdbuf() pointer.

Proposed Resolution:

The move() functions declared in basic_ios provides a good start. move() functions could be added to
basic_istream, basic_ostream, and basic_iostream in order to support the same idiom. Alternatively, each
class can have special constructors and assignment operators specific to the three operations. For
example, basic_istream could have:

 basic_istream(basic_istream&& rhs, basic_streambuf<…> *sb);

 partial_move(basic_istream&& rhs, basic_streambuf<…> *sb);

 partial_swap(basic_istream& other, basic_streambuf<…> *this_sb,

 basic_streambuf<…> *other_sb);

These functions are useful in general, and should be public. Additionally, the regular move constructor,
move-assignment operator, and swap functions should be made public and changed so that they move and
swap the streambuf pointer as well as the rest of the stream state.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 181

Clauses 30.2.4, 30, 20.10

C++ Timeout Specification
ISO/IEC JTC1 SC22 WG21 - 2010-05-19 - National Body Comment by Google

Lawrence Crowl, crowl@google.com, Lawrence@Crowl.org

Problem
Solution
Wording
 20.10 Time utilities [time]
 20.10.1 Clock requirements [time.clock.req]
 20.10.5.1 Class system_clock [time.clock.system]
 20.10.5.2 Class monotonic_clock [time.clock.monotonic]
 20.10.5.3 Class high_resolution_clock [time.clock.hires]
 20.10.5.4 Class steady_clock [time.clock.steady]
 30.2.4 Timing specifications [thread.req.timing]
 30.3.2 Namespace this_thread [thread.thread.this]
 30.4.2 TimedMutex requirements [thread.timedmutex.requirements]
 30.5.1 Class condition_variable [thread.condition.condvar]
 30.5.2 Class condition_variable_any [thread.condition.condvarany]
 30.6.6 Class template future [futures.unique_future]
 30.6.7 Class template shared_future [futures.shared_future]
 30.6.8 Class template atomic_future [futures.atomic_future]

Problem
The meaning of clocks and timeouts is poorly defined within the Final Committee Draft
when those clocks may be adjusted. Clocks can be adjusted by hours and many network
protocols expect responses within seconds. A task regularly scheduled for midnight GMT
should execute at midnight even though the clock has been adjusted to eliminate
accumulated error. Failure of the standard to be precise about this distinction makes
programs effectively unportable.

The root of the problem is that the current definition leaves open disparate
implementations that even as implementations increase their quality, separate
implementations will not converge on the same behavior.

There will necessarily be some delay in the interrupt response, function return, and
scheduling of a thread waking from a timeout. Implementations can reasonably strive to
approach zero delay for these activities. So, we call this delay the "quality of
implementation".

Separately, there will be some delay due to contention for processor and memory
resources. This delay is more under the control of the application programmer and
systems administrator than it is under the implementation. So, we call this delay the
"quality of management". The tradeoff between resources and responsiveness is
necessarily application-dependent.

We can express the actual time of a timeout as the sum of the intended time, the quality
of implementation and the quality of management. The remaining problem is to map the
given timeout specifications to a common intended time.

If there are no adjustments to the clock time, the intended time may be straightforwardly
determined from the manner of specification. In this case, we assume that any difference
in durations between reported times and SI units is small, and thus constitutes a measure
of the quality of implementation.

The problem arises with the specification of the intended timeout when the clock is
adjusted in the middle of the timeout. There are two plausible strategies, the timeout is
sensitive to adjustments in the clock time, or it is not. The timeout_until functions have
straightforward definitions when they are sensitive to adjustments. The timeout_for
functions have straightforward definitions when they are insensitive to adjustments.

Solution
Define timeout_until to respect reported clock time points and define timeout_for to
respect real time durations.

A consequence of these definitions is that timeout_until and timeout_for are not
functionally redundant. That is, timeout_until(Clock::now()+3_seconds) is not equivalent
to timeout_for(3_seconds) when the clock is adjusted in the interval.

The implementation of the timeout definition necessarily depends on a steady clock, one
that cannot be adjusted. A monotonic clock is not sufficient. While one could be implicit
in the standard, below we make one explicit.

Given a steady clock, the monotonic clock seems to be of marginal utility. Still, we have
preserved it in this proposal.

[Note that considered the practics of setting clocks forward in unit tests, and believe that
continuing to do so even in timeout_for operations would be reasonable because the tests
operate in a virtual world, not in the real world. The definition of time in that world need
not be the same as the time in the real world.]

Wording
The proposed wording changes are relative to the Final Committee Draft, N3092.

20.10 Time utilities [time]

Edit within the header synopsis as follows.

// Clocks
class system_clock;
class monotonic_clock;
class steady_clock;
class high_resolution_clock;

20.10.1 Clock requirements [time.clock.req]

Edit within table 54 as follows.

....
C1::is_monotonic const bool true if t1 <= t2 is always true,

otherwise false. [Note: A clock that can
be adjusted backwards is not monotonic.
—end note]

C1::is_steady const bool true if the clock value cannot be adjusted
and that the duration between ticks is close
to the tick period, otherwise false.

C1::now() C1::time_point Returns a time_point object representing
the current point in time.

Add a new paragraph 3.

[Note: The relative difference in durations between those reported by the
given clock and the SI definition is a measure of the quality of
implementation. —end note]

20.10.5.1 Class system_clock [time.clock.system]

Edit paragraph 1 as follows.

Objects of class system_clock represent wall clock time from the system-
wide realtime clock.

 class system_clock {

 public:
 typedef see below
rep;
 typedef ratio<unspecified, unspecified>
period;
 typedef chrono::duration<rep, period>
duration;
 typedef chrono::time_point<system_clock>
time_point;
 static const bool is_monotonic =
unspecified;
 static const bool is_steady =
unspecified;

 static time_point now();

 // Map to C API
 static time_t to_time_t(const
time_point& t);
 static time_point from_time_t(time_t t);
};

20.10.5.2 Class monotonic_clock [time.clock.monotonic]

Edit paragraph 2 as follows.

The class monotonic_clock is conditionally supported.

 class monotonic_clock {
 public:
 typedef unspecified
rep;
 typedef ratio<unspecified, unspecified>
period;
 typedef chrono::duration<rep, period>
duration;
 typedef chrono::time_point<unspecified>
time_point;
 typedef chrono::time_point<monotonic_clock>
time_point;
 static const bool is_monotonic =
true;
 static const bool is_steady =
unspecified;

 static time_point now();
};

20.10.5.3 Class high_resolution_clock [time.clock.hires]

Edit paragraph 1 as follows.

Objects of class high_resolution_clock represent clocks with the
shortest tick period. high_resolution_clock may be a synonym for
system_clock or monotonic_clock.

 class high_resolution_clock {
 public:
 typedef unspecified
rep;
 typedef ratio<unspecified, unspecified>
period;
 typedef chrono::duration<rep, period>
duration;
 typedef chrono::time_point<unspecified>
time_point;
 typedef
chrono::time_point<high_resolution_clock>
time_point;
 static const bool is_monotonic =
unspecified;
 static const bool is_steady =
unspecified;

 static time_point now();
};

20.10.5.4 Class steady_clock [time.clock.steady]

Add a new section 20.10.5.4 Class steady_clock [time.clock.steady] as follows.

Add a new paragraph.

Objects of class steady_clock represent clocks for which values of
time_point advance at a steady rate relative to real time. That is, the
clock may not be adjusted.

 class steady_clock {
 public:
 typedef unspecified
rep;
 typedef ratio<unspecified, unspecified>
period;
 typedef chrono::duration<rep, period>
duration;
 typedef chrono::time_point<steady_clock>
time_point;
 static const bool is_monotonic =
true;
 static const bool is_steady =
true;

 static time_point now();

};

30.2.4 Timing specifications [thread.req.timing]

Add a new paragraph after paragraph 1 as follows.

Implementations necessarily have some delay in returning from a timeout.
Any overhead in interrupt response, function return, and scheduling
induces a "quality of implementation" delay, expressed as duration Di.
Ideally, this delay would be zero. Further, any contention for processor
and memory resources induces a "quality of management" delay,
expressed as duration Dm. The delay durations may vary from timeout to
timeout, but in all cases shorter is better.

Edit paragraph 2 as follows.

The member functions whose names end in _for take an argument that
specifies a relative time duration. These functions produce relative
timeouts. Implementations should shall use a monotonic steady clock to
measure time for these functions. [Note: Implementations are not required
to use a monotonic clock because such a clock may not be available. —
end note] [Footnote: All implementations for which standard time units
are meaningful must necessarily have a steady clock within their hardware
implementation. —end footnote] Given a duration argument Dt, the real-
time duration of the timeout is Dt+Di+Dm.

Add a new paragraph after paragraph 2 as follows.

The member functions whose names end in _until take an argument that
specifies a time point. These functions produce absolute timeouts.
Implementations shall use the clock specified in the time point to measure
time for these functions. Given a clock time point argument Ct, the clock
time point of the return from timeout is Ct+Di+Dm unless, during the
timeout, the clock has been adjusted to a time Ca>Ct, in which case the
return time is Ca+Di+Dm.

30.3.2 Namespace this_thread [thread.thread.this]

Edit paragraph 6, regarding sleep_until, as follows.

Effects: Blocks the calling thread at least until the time for the absolute
timeout (30.2.4 [thread.req.timing]) specified by abs_time.

Edit paragraph 9, regarding sleep_for, as follows.

Effects: Blocks the calling thread for at least the time for the relative
timeout (30.2.4 [thread.req.timing]) specified by rel_time.

30.4.2 TimedMutex requirements [thread.timedmutex.requirements]

Edit paragraph 4, regarding try_lock_for, as follows.

Effects: The function attempts to obtain ownership of the mutex within the
time relative timeout (30.2.4 [thread.req.timing]) specified by rel_time.
If the time specified by rel_time is less than or equal to 0, the function
attempts to obtain ownership without blocking (as if by calling
try_lock()). The function shall return within the time timeout specified
by rel_time only if it has obtained ownership of the mutex object. [Note:
As with try_lock(), there is no guarantee that ownership will be
obtained if the lock is available, but implementations are expected to make
a strong effort to do so. —end note]

Edit paragraph 10, regarding try_lock_until, as follows.

Effects: The function attempts to obtain ownership of the mutex by the
time absolute timeout (30.2.4 [thread.req.timing]) specified by abs_time.
If abs_time has already passed, the function attempts to obtain ownership
without blocking (as if by calling try_lock()). The function shall return
before the time timeout specified by abs_time only if it has obtained
ownership of the mutex object. [Note: As with try_lock(), there is no
guarantee that ownership will be obtained if the lock is available, but
implementations are expected to make a strong effort to do so. —end note]

30.5.1 Class condition_variable [thread.condition.condvar]

Edit within paragraph 19, regarding wait_until, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), if abs_time <=
Clock::now() expiration of the absolute timeout (30.2.4
[thread.req.timing]) specified by abs_time, or spuriously.

•

Edit paragraph 21, regarding wait_until, as follows.

Returns: cv_status::timeout if the function unblocked because
abs_time was reached the absolute timeout (30.2.4 [thread.req.timing])
specified by abs_time expired, otherwise cv_status::no_timeout.

Edit within paragraph 25, regarding wait_for, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), by the elapsed time
rel_time passing expiration of the relative timeout (30.2.4
[thread.req.timing]) specified by rel_time, or spuriously.

•

Edit paragraph 26, regarding wait_for, as follows.

Returns: cv_status::timeout if the function unblocked because
rel_time elapsed the relative timeout (30.2.4 [thread.req.timing])
specified by rel_time expired, otherwise cv_status::no_timeout.

Edit within paragraph 34, regarding the predicate wait_for, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), by the elapsed time
rel_time passing expiration of the relative timeout (30.2.4
[thread.req.timing]) specified by rel_time, or spuriously.

•
• The loop terminates when pred() returns true or when the time

duration relative timeout (30.2.4 [thread.req.timing]) specified by
rel_time has elapsed.

•

30.5.2 Class condition_variable_any [thread.condition.condvarany]

Edit within paragraph 15, regarding wait_until, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), if abs_time <=

Clock::now() expiration of the absolute timeout (30.2.4
[thread.req.timing]) specified by abs_time, or spuriously.

•

Edit paragraph 17, regarding wait_until, as follows.

Returns: cv_status::timeout if the function unblocked because
abs_time was reached the absolute timeout (30.2.4 [thread.req.timing])
specified by abs_time expired, otherwise cv_status::no_timeout.

Edit within paragraph 20, regarding wait_for, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), by the elapsed time
rel_time passing expiration of the relative timeout (30.2.4
[thread.req.timing]) specified by rel_time, or spuriously.

•

Edit paragraph 21, regarding wait_for, as follows.

Returns: cv_status::timeout if the function unblocked because
rel_time elapsed the relative timeout (30.2.4 [thread.req.timing])
specified by rel_time expired, otherwise cv_status::no_timeout.

Edit within paragraph 28, regarding the predicate wait_for, as follows.

Effects:

•
• The function will unblock when signaled by a call to

notify_one() or , a call to notify_all(), by the elapsed time
rel_time passing expiration of the relative timeout (30.2.4
[thread.req.timing]) specified by rel_time, or spuriously.

•
• The loop terminates when pred() returns true or when the time

duration relative timeout (30.2.4 [thread.req.timing]) specified by
rel_time has elapsed.

•

30.6.6 Class template future [futures.unique_future]

Edit within paragraph 22, regarding wait_for, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
relative timeout (30.2.4 [thread.req.timing]) specified by rel_time has
elapsed expired.

Edit within paragraph 23, regarding wait_for, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

time period relative timeout (30.2.4 [thread.req.timing]) specified
by rel_time has elapsed expired.

•

Edit within paragraph 25, regarding wait_until, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
current time exceeds the absolute timeout (30.2.4 [thread.req.timing])
specified by abs_time has expired.

Edit within paragraph 26, regarding wait_until, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

the time point absolute timeout (30.2.4 [thread.req.timing])
specified by rel_time has been reached expired.

•

30.6.7 Class template shared_future [futures.shared_future]

Edit within paragraph 27, regarding wait_for, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
relative timeout (30.2.4 [thread.req.timing]) specified by rel_time has
elapsed expired.

Edit within paragraph 28, regarding wait_for, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

time period relative timeout (30.2.4 [thread.req.timing]) specified
by rel_time has elapsed expired.

•

Edit within paragraph 30, regarding wait_until, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
current time exceeds the absolute timeout (30.2.4 [thread.req.timing])
specified by abs_time has expired.

Edit within paragraph 31, regarding wait_until, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

the time point absolute timeout (30.2.4 [thread.req.timing])
specified by rel_time has been reached expired.

•

30.6.8 Class template atomic_future [futures.atomic_future]

Edit within paragraph 23, regarding wait_for, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
relative timeout (30.2.4 [thread.req.timing]) specified by rel_time has
elapsed expired.

Edit within paragraph 24, regarding wait_for, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

time period relative timeout (30.2.4 [thread.req.timing]) specified
by rel_time has elapsed expired.

•

Edit within paragraph 27, regarding wait_until, as follows.

Effects: blocks until the associated asynchronous state is ready or until the
current time exceeds the absolute timeout (30.2.4 [thread.req.timing])
specified by abs_time has expired.

Edit within paragraph 28, regarding wait_until, as follows.

Returns:

•
• future_status::timeout if the function is returning because the

the time point absolute timeout (30.2.4 [thread.req.timing])
specified by rel_time has been reached expired.

•

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 186

30.4.1 [thread.mutex.requirements/A] try_lock does not provide a guarantee of forward progress

Section: 30.4.1 [thread.mutex.requirements]

Submitter: Pablo Halpern (with help from Charles Leiserson, Edya Laden Mozes, and Tao B. Schardl)

Discussion

Summary

The current definition of try_lock() allows the attempt to fail spuriously, even if another thread has not
acquired the lock. This definition does not provide a guarantee of forward progress without elaborate
countermeasures by the programmer. We consider this to be a serious deficiency.

Background

The reasons to allow spurious failures are described in Foundations of the C++ Concurrency Memory
Model, by Boehm and Adve, PLDI 2008: http://portal.acm.org/citation.cfm?id=1375591 (requires ACM
membership). The authors describe a situation like the following:

THREAD 1 THREAD 2

x = 42; while (m.try_lock()) { }

m.lock(); assert(x == 42);

In order to maintain the “sequential consistency for data-race-free programs” model and still have the assert
succeed, it is necessary to have an extra fence on entering lock() for some CPU architectures. Otherwise,
the try_lock() may fail before the lock() has completed and, therefore, before the memory fence within lock()
has executed. To avoid this cost, it was decided that this case should be allowed to fail. One way to allow
such a failure is to allow spurious false return from try_lock().

It is interesting to note that spurious failures are unlikely to occur in practice, on any architecture. POSIX
mutexes, for example, are not permitted to fail spuriously. The effect of allowing spurious failures, however,
is that the above code is permitted to fail, allowing some implementations to avoid an extra fence on lock().

Problems with the current definition

The FCD's definition of try_lock does not guarantee that forward progress will be made by any thread using
try_lock. Consider code that contains no lock() calls, but any number of try_lock() calls that could be
executed in parallel. Whenever threads contend on a try_lock(), they may both fail and spin indefinitely,
causing livelock. In fact, a degenerate but conforming implementation of try_lock() would simply return false,
thus guaranteeing livelock! (Such an implementation of try_lock() would be very efficient because it contains
no fences! :-)).

Livelock is a surprising result, and is one of those traps that is easy enough to fall into without the standard
lending assistance. To defend against livelock, the programmer would be forced to implement elaborate
logic, such as a probabilistic back-off protocol, which most programmers are not capable of writing correctly.
In contrast, if try_lock() could not fail spuriously, then one thread would be guaranteed to make progress on

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

the critical section. Code that did not have to defend against this kind of livelock would be simpler and less
error-prone.

Allowing spurious failures is a premature optimization. People will have to write defensive code forever in the
future, no matter how fast locks and memory fences become in the future (and the performance of these
synchronization primitives has been improving). There is no doubt that lock acquisition can hurt
performance, and that an extra fence could make a lock 20-30% slower, but if the nature of a program is
such that the cost of acquiring an uncontended lock becomes a major bottleneck, then the solution is
probably not a cheaper standard lock, but a cheaper algorithm – or else it is time to write your own lock with
weaker guarantees. Our feeling is that the performance penalty for a well-behaved, predictable lock will
make little difference to most multithreaded programs.

Proposed Resolution

We propose to ban spurious failures of try_lock and to require sequential consistency in the system-provided
mutex types.

To permit the user to supply higher-performance mutexes in the requirements clause, we can permit one or
both of the following in the Mutex requirements:

1. Mutexes with spurious failures on try_lock
2. Mutexes whose locking functions permit reordering of ordinary memory operations into the critical

region (i.e., after the point of synchronization with a failed try block).

Each approach has as its downsides. Spurious failures are reasonably easy to reason about, but very
difficult to correct-for in cases where they might cause live-lock. Allowing memory operations to be
reordered across a lock is not unheard-of, but it does violate the sequential consistency rules that the
standard tries hard to preserve. Either approach will give implementers of custom mutexes the flexibility they
need to reduce the cost of a lock, so it is not necessary to provide both options (and therefore suffer both
sets of downsides).

As per the PLDI paper, allowing spurious failures is not an implementation strategy but rather a simple way
to explain the behavior of certain locks without breaking sequential consistency. Effectively, an equivalence
relationship is posited such that the simpler language of spurious failures can be used instead of the more
complex happens-before language. However, this equivalence is not proven and, in fact, it appears not to
hold in all cases. Specifically, spurious failures could result in livelock in situations where reordering memory
operations would not. According to the PLDI paper, “this is the first solution that eliminates the need to
provide a fence before a lock, while still maintaining a simple definition of a race.” Indeed, a try_lock that
may fail spuriously is a new invention, not vetted in common use. It is not clear how many algorithms that
depend on reliable try_lock behavior would be impacted, but it is clear that the number is not zero. To our
knowledge, there is no widely-used threading library that allows spurious failures in try_lock as a matter of
policy.

Perhaps the most important argument against allowing for spurious failures is that the work-around for code
that requires a reliable try_lock is beyond the skill of most programmers, whereas the work-around for code
that relies on sequential consistency simply involves adding a well-placed fence. If a lock() call allows
memory operations to be reordered into the critical section, but disallows spurious try_lock() failures, then
the code example above could be made to work reliably by adding a fence before the lock():

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

THREAD 1 THREAD 2

x = 42; while (m.try_lock()) { }

atomic_thread_fence(memory_order_release); assert(x == 42);

m.lock();

For these reasons, we propose wording that would ban spurious failure of try_lock for both system-supplied
and user-supplied mutex types. For improved performance, a user-supplied mutex would be permitted to
use a subtler synchronization protocol to avoid extra fences. Such a protocol might violate the "sequential
consistency for data-race-free programs" model and would, therefore, be harder to reason about than
mutexes that don’t take such liberties. But such reasoning doesn’t rely on incomplete equivalences which
may yield incorrect conclusions. Critically, unlike spurious failures, there would not be the same threat of
livelock. To simplify matters for the reader, however, we propose a non-normative note suggesting that
such weak ordering of memory operations before a lock may manifest as an apparent spurious failure. It
should be noted that the example code in the PLDI paper uses locks in a strange and not recommended
fashion. Confusion about why it may fail should not be a driving force for choosing a sub-optimal solution.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 188

30.4.1 [thread.mutex.requirements/B] Mutex requirements should not be bound to threads

Section: 30.4.1 [thread.mutex.requirements]

Submitter: Pablo Halpern (with help from Charles Leiserson)

Discussion:

The set of requirements called “Mutex” are intended to describe mutual exclusion locks as a set of generic
requirements that permit a reasonably wide range of different mutual exclusion mechanisms. However,
these requirements unnecessarily narrow the range of locks that can be called Mutexes because they define
mutex ownership in terms of threads. There are, however, other agents besides threads (e.g. tasks or
processes) that could meaningfully hold a mutex, and the definition of Mutex should be broad enough to
encompass those types of mutex.

Some types of mutex that would not be owned by a thread:

• Models involving dynamic scheduling of tasks may have a task migrate from thread to thread. A
mutex may be acquired and released within a task, but may be rescheduled in between.

• There are models involving parallelism within locked regions. There could be a type of mutex that
does not protect the threads within the parallel region against one another, but rather protects the
entire parallel region against other concurrent actions.

• Parallel libraries like TBB (Threading Building Blocks) may need a type of mutex that can be
inherited by a child task.

• Similarly, one could conceive of a mutex that would be inherited by a packaged task or async() call.
• There are parallelism models like Cilk for which thread ownership is not well defined.
• A course-grained mutex might be owned by a process, rather than with an individual thread.
• A library might allow the owner of a mutex to delegate the release of that mutex to another entity.

None of the above would meet the requirements of a Mutex by the current definition, yet programmers would
probably be surprised if they were unable to use them with the standard lock_guard, unique_lock, and
generic locking algorithms. Restricting a mutex to thread-based ownership is fine for the standard-supplied
mutex types, but should not be required for all mutex types.

Proposed resolution:

Change [thread.mutex.requirements] as follows:

1 A concurrent agent is a an entity (such as a thread, process, or packaged task) that may perform
work in parallel with other concurrent agents. The calling agent is determined by context, e.g., the
calling thread, the calling process, or the packaged task that contains the call, etc.. A mutex object
facilitates protection against data races and allows thread-safe synchronization of data between
threads concurrent agents. An agent thread owns a mutex from the time it successfully calls one of
the lock functions until it calls unlock. Mutexes may be either recursive or non-recursive, and may
grant simultaneous ownership to one or many threads concurrent agents. The mutex types supplied
by the standard library provide exclusive ownership semantics for threads: only one thread may own
the mutex at a time. Both recursive and non-recursive mutexes are supplied. [Note: Some mutexes
are “agent-oblivious” in that they work for any concurrent-agent model because they do not determine
or store the agent’s ID (e.g., an ordinary spin-lock). – end note]

2 This section describes requirements on template argument types used to instantiate templates

defined in the C++ standard library. The template definitions in the C++ standard library refer to the
named Mutex requirements whose details are set out below. In this description, m is an object of a
Mutex type.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

3 A Mutex type shall be DefaultConstructible and Destructible. If initialization of an object of a Mutex

type fails, an exception of type std::system_error shall be thrown. A Mutex type shall not be copyable
nor movable.

4 The error conditions for error codes, if any, reported by member functions of a Mutex type shall be:

— resource_unavailable_try_again — if any native handle type manipulated is not available.

— operation_not_permitted — if the thread calling agent does not have the privilege to perform
the operation.

— device_or_resource_busy — if any native handle type manipulated is already locked.

— invalid_argument — if any native handle type manipulated as part of mutex construction is

incorrect.

5 The implementation shall provide lock and unlock operations, as described below. The

implementation shall serialize those operations. [Note: Construction and destruction of an object of a
Mutex type need not be thread-safe; other synchronization should be used to ensure that Mutex
objects are initialized and visible to other threads. —end note]

6 The expression m.lock() shall be well-formed and have the following semantics:

7 Effects: Blocks the calling thread agent until ownership of the mutex can be obtained for the

calling thread agent.

8 Postcondition: The calling thread agent owns the mutex.

9 Return type: void

10 Synchronization: Prior unlock() operations on the same object shall synchronize with (1.10)

this operation.

11 Throws: std::system_error when an exception is required (30.2.2).

12 Error conditions:

— operation_not_permitted — if the thread calling agent does not have the privilege to
perform the operation.

— resource_deadlock_would_occur — if the implementation detects that a deadlock

would occur.

— device_or_resource_busy — if the mutex is already locked and blocking is not
possible.

13 The expression m.try_lock() shall be well-formed and have the following semantics:

14 Effects: Attempts to obtain ownership of the mutex for the calling thread agent without

blocking. If ownership is not obtained, there is no effect and try_lock() immediately returns. An
implementation may fail to obtain the lock even if it is not held by any other thread concurrent
agent. [Note: This spurious failure is normally uncommon, but allows interesting
implementations based on a simple compare_exchange_weak (29). —end note]

15 Return type: bool

16 Returns: true if ownership of the mutex was obtained for the calling thread agent, otherwise

false.

17 Synchronization: If try_lock() returns true, prior unlock() operations on the same object

synchronize with (1.10) this operation. [Note: Since lock() does not synchronize with a failed

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

subsequent try_lock(), the visibility rules are weak enough that little would be known about the
state after a failure, even in the absence of spurious failures. —end note]

18 Throws: Nothing.

19 The expression m.unlock() shall be well-formed and have the following semantics:

20 Requires: The calling thread agent shall own the mutex.

21 Effects: Releases the calling thread agent’s ownership of the mutex.

22 Return type: void

23 Synchronization: This operation synchronizes with (1.10) subsequent lock operations that

obtain ownership on the same object.

24 Throws: Nothing.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 191

Comment 30.5: Condition variable wait_for returning cv_status is insufficient.

Technical details:
The predicate wait is defined as a loop over the non-predicate wait. The predicate wait_until is defined as a
loop over the non-predicate wait_until. The predicate wait_for is not so implemented. The problem is that the
return value from the non-predicate wait_for operation provides insufficient information to synthesize the
behavior of the predicate wait_for. This problem indicates that the wait_for facility is under-provisioned.

Proposed resolution:
Rather than return the enumeration cv_status, the non-predicate wait_for should return the duration
remaining in the timeout. Then the predicate wait_for has a constructive definition testing the duration
against zero and waiting as needed for the successively smaller return values.

For consistency, the wait_until operation could return the time point of the return for comparison to the
specified abs_time.

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 193

Comment 30.5.1: Condition variables preclude a wakeup optimization.
Technical details:
When a thread calls condition_variable::notify_all, it causes all threads blocked in
condition_variable::wait(Predicate) to wake up, reacquire the lock, evaluate their predicates, and then often
go back to sleep. It’s more efficient to evaluate the predicates in the notifying thread, and only wake up the
threads for which the predicate is true. However, wait(Predicate) doesn’t allow the predicate to run in
another thread, and it doesn’t allow missed wakeups when the predicate would return true when evaluated
in the waiting thread but returns false when evaluated in the notifying thread. Further, the predicate must run
under the wait’s mutex, but notify_all may be called with or without that mutex held.

I believe condition_variable_any cannot implement this optimization because it doesn’t require that all
waiters hold the same mutex, so there’s no way for notify_all to guarantee that it won’t acquire a mutex
recursively when trying to guard the predicate call.

Proposed resolution:

1. To condition_variable::notify_one and condition_variable::notify_all, add:

Requires: if any threads are concurrently executing a call to wait*(lock, ...), lock.mutex() must be
locked by the calling thread. Note: this allows them to run a wait’s predicate.

2. To each of the condition_variable::wait variants that takes a predicate, add to the "Effects" a line
saying that

“pred may be called in any thread that calls any notify or wait member function of this
condition_variable, either inside the call to notify() or at the start of the next mutex.unlock() call,
before the mutex is unlocked. If it returns false at any of these points, it is unspecified whether the
preceding call to notify*() causes this wait to unblock.”

FCD 14882
ADDITIONAL DETAILS TO US COMMENTS

US 194
Clause 30.6

Managing C++ Associated Asynchronous
State
ISO/IEC JTC1 SC22 WG21 - 2010-05-19 - National Body Comment by Google

Lawrence Crowl, crowl@google.com, Lawrence@Crowl.org

Problem
Solution
Wording
 30.6.4 Associated asynchronous state [futures.state]
 30.6.5 Class template promise [futures.promise]
 30.6.6 Class template future [futures.unique_future]
 30.6.7 Class template shared_future [futures.shared_future]
 30.6.8 Class template atomic_future [futures.atomic_future]
 30.6.10.1 packaged_task member functions [futures.task.members]

Problem
Within the Final Committee Draft, the specification for managing associated
asynchronous state [futures.state] is confusing, sometimes omitted, and redundantly
specified.

Solution
Define terms-of-art for releasing, making ready, and abandoning an associated
asynchronous state. Use those terms where appropriate.

Wording
The wording is relative to the FCD.

30.6.4 Associated asynchronous state [futures.state]

Edit paragraph 5 as follows.

When the last reference to an associated asynchronous state is given up,
any resources held by that associated asynchronous state are released. An
asynchronous return object or an asynchronous provider release their
associated asynchronous state as follows. If the return object or provider
contains the last reference to that state, destroys that state. Destroys the
reference to that state.

After paragraph 5, add a new paragraph as follows.

An asynchronous provider makes ready an associated asynchronous state
by marking that state ready and then unblocking any threads waiting for
the associated state to become ready. An asynchronous provider abandons
an associated asynchronous state as follows. If that state is not ready, the
provider stores an exception object of type future_error with an error
condition of broken_promise within that state and then makes ready that
state. The provider then releases that state.

30.6.5 Class template promise [futures.promise]

Edit paragraph 7, regarding the destructor, as follows.

Effects: if the associated asynchronous state of *this is not ready, stores
an exception object of type future_error with an error condition of
broken_promise Any threads blocked in a function waiting for the
asynchronous state associated with *this to become ready are unblocked.
Destroys *this and releases its reference to its associated asynchronous
state if any. If this is the last reference to that associated asynchronous
state, destroys that state. abandons any associated asynchronous state
([futures.state]).

Edit paragraph 8, regarding the move assignment operator, as follows.

Effects: abandons any associated asynchronous state ([futures.state]) and
then as if promise<R>(std::move(rhs)).swap(*this).

Remove paragraph 9, as it is now redundant with the effects.

Postcondition: rhs has no associated asynchronous state. *this has the
associated asynchronous state of rhs prior to the assignment.

Edit paragraph 18, regarding set_value, as follows.

Effects: atomically stores r in the associated asynchronous state and sets
that state to ready. Any threads blocked in a call of a blocking function of

any future that refers to the same associated asynchronous state as *this
are unblocked. makes ready that state ([futures.state]).

Edit paragraph 22, regarding set_exception, as follows.

Effects: atomically stores p in the associated asynchronous state and sets
that state to ready. Any threads blocked in a call of a blocking function of
any future that refers to the same associated asynchronous state as *this
are unblocked. makes ready that state ([futures.state]).

Edit paragraph 26, regarding set_value_at_thread_exit, as follows.

Effects: Stores r in the associated asynchronous state without making
ready the associated asynchronous that state ready immediately. Schedules
the associated asynchronous that state to be made ready when the current
thread exits, after all objects of thread storage duration associated with the
current thread have been destroyed.

Edit paragraph 29, regarding set_exception_at_thread_exit, as follows.

Effects: Stores p in the associated asynchronous state without making
ready the associated asynchronous that state ready immediately. Schedules
the associated asynchronous that state to be made ready when the current
thread exits, after all objects of thread storage duration associated with the
current thread have been destroyed.

30.6.6 Class template future [futures.unique_future]

Edit paragraph 10, regarding the destructor, as follows.

Effects:

• gives up the reference to its releases any associated asynchronous
state ([futures.state]).

• destroys *this.

Edit paragraph 11, regarding the move assignment operator, as follows.

Effects:

• if *this referred to an associated asynchronous state prior to the
assignment it gives up this reference. releases any associated
asynchronous state ([futures.state]).

• move assigns the contents of rhs to *this.

30.6.7 Class template shared_future [futures.shared_future]

Edit paragraph 13, regarding the destructor, as follows.

Effects:

• gives up the reference to its releases any associated asynchronous
state ([futures.state]).

• destroys *this.

Edit paragraph 14, regarding the move assignment operator, as follows.

Effects:

• if *this refers to an associated asynchronous state it gives up this
reference. releases any associated asynchronous state
([futures.state]).

• assigns the contents of rhs to *this.

Edit paragraph 16, regarding the copy assignment operator, as follows.

Effects:

• if *this refers to an associated asynchronous state it gives up this
reference. releases any associated asynchronous state
([futures.state]).

• assigns the contents of rhs to *this. [Note: as a result, *this
refers to the same associated asynchronous state as rhs (if any). —
end note]

30.6.8 Class template atomic_future [futures.atomic_future]

Edit paragraph 9, regarding the destructor, as follows.

Effects:

• gives up the reference to its releases any associated asynchronous
state ([futures.state]).

• destroys *this.

Edit paragraph 10, regarding the copy assignment operator, as follows.

Effects:

• releases any associated asynchronous state.
• assigns the contents of rhs to *this. [Note: as a result, *this

refers to the same associated asynchronous state as rhs (if any). —
end note]

30.6.10.1 packaged_task member functions [futures.task.members]

Edit paragraph 9, regarding the move assignment operator, as follows.

Effects:

• releases any associated asynchronous state ([futures.state]).
• packaged_task<R, ArgTypes...>(other).swap(*this).

Edit paragraph 10, regarding the destructor, as follows.

Effects: if the associated asynchronous state of *this is not ready, stores
an exception object of type future_error with an error code of
broken_promise. Any threads blocked in a function waiting for the
associated asynchronous state of *this to become ready are unblocked.
Destroys *this and releases its reference to its associated asynchronous
state (if any). If this is the last reference to that associated asynchronous
state, destroys that state. abandons any associated asynchronous state
([futures.state]).

Edit within paragraph 24, regarding make_ready_at_thread_exit, as follows.

.... this shall be done without making the state ready making ready that
state ([futures.state]) immediately.

Edit paragraph 27, regarding reset, as follows.

Effects: returns the object to a state as if a newly-constructed instance had
just been assigned to *this by *this =
packaged_task(std::move(f)), where f is the task stored in *this.
[Note: this constructs a new associated asynchronous state for *this. The
old state is discarded, abandoned ([futures.state]). as described in the
destructor for packaged_task. get_future may now be called again for
*this. —end note]

FCD 14882

UNITED KINGDOM (GB)

ADDITIONAL DETAILS TO BALLOT COMMENTS

FCD 14882
GB 9

B) The use of maximal in the definition of release sequence
--

The current wording of the standard suggests that release sequences
are maximal with respect to sequence inclusion, i.e. that if there are
two release operations in the modification order,

 mod mod
 rel1----->rel2----->w

then [rel1;rel2;w] is the only release sequence, as the other
candidate [rel2;w] is included in it. This interpretation precludes
synchronizing with releases which have other releases sequenced-before
them. We believe that the intention is actually to define the maximal
release sequence from a particular release operation, which would
admit both [rel1;rel2;w] and [rel2;w].

We suggest that 1.10:6 be changed to:

 A release sequence from a release operation A on an atomic object M
 is a maximal contiguous sub-sequence of side effects in the
 modification order of M, where the first operation is A, and every
 subsequent operation
 - is performed by the same thread that performed the release, or
 - is an atomic read-modify-write operation.

FCD 14882
GB 10

C) Inter-thread-happens-before is not acyclic
--

Inter-thread-happens-before (1.10:10) is not acyclic at the
moment. The following example execution is valid according to the
current draft and has cycles in its inter-thread-happens-before
relation, but we believe the intent is to forbid it:

Rx_consume<--+ +-->Ry_consume
| rf\ /rf |
|sb X |sb
v / \ v
Wy_release---+ +---Wx_release

The diagram consists of four memory actions, each represented by
either an 'R' or a 'W' for read or write, followed by a letter
identifying an atomic object and a memory ordering parameter. For
example the action 'Rx_consume' is a read of x that is ordered in
memory as a consume.

The labelled arrows represent relationships between the
operations. The vertical arrows labelled 'sb' are sequenced-before
edges. The crossed diagonal arrows labelled 'rf' are reads-from edges
that point from a write to the read that takes its value.

The reads-from edges make dependency-order edges with the same
arrows. Transitively closing inter-thread-happens-before (ithb) gives
the following relation:

Rx<--------->Ry
^ ithb ^
|ithb |ithb
| |
Wy Wx

Note that this is cyclic and that the execution is valid. We believe
the intention is for inter thread happens before to be acyclic, and
the standard will have to explicitly state this.

We suggest the following sentence be added to 1.10:

 Candidate executions with a cyclic inter-thread-happens-before
 should not be considered [Note: the existence of such a candidate
 execution does not introduce undefined behaviour].

or

 The inter-thread happens-before relation shall be acyclic.

with a similar note.

FCD 14882
GB 11

E) Non-unique visible sequences of side effects and happens-before
ordering
--

In 1.10:12 the standard allows multiple visible sequences of side
effects (vsse's) for a given read (despite the use of "The" at the
start of 1.10:13). We will demonstrate this by constructing an
execution with two vsse's. The following execution has five memory
operations, four of which are read modify writes (RMW's). There are two
threads, one with four operations each ordered by sequenced before
(sb), the other with a single RMW release.

RMW1 +---RMW3_release
| /
|sb do/
v /
R_consume<---+
|
|sb
v
RMW2
|
|sb
v
RMW4

The modification order in this example is as follows:

 mod mod mod
 RMW1----->RMW2----->RMW3_release----->RMW4

There are two visible sequences of side effects here for the read
consume:

 [RMW1,RMW2] and [RMW3,RMW4]

The R_consume here must read from the later vsse in modification order
for the dependency_ordered edge to exist. The existence of two vsse's
relies on the lack of transitivity of happens before (which only
occurs in the presence of consume operations).

Given that there is not a unique vsse for a given side effect, the
standard should be changed from defining "the" vsse to defining "a"
vsse. A note can explain that we can only ever read from one vsse.

In addition to non-uniqueness, if every element in a vsse
happens-before a read, the read should not take the value of the
visible side effect. We can prevent this by removing the word

"subsequent" from the definition of vsse in 1.10:12 (as suggested by
Hans).

Collecting the two issues together, our suggestion is to change
1.10:12 to:

 "A visible sequence of side effects on an atomic object M, with
 respect to a value computation B of M, is a maximal contiguous
 sub-sequence of side effects in the modification order of M, where
 the first side effect is visible with respect to B, and for every
 side effect, it is not the case that B happens before it. The
 value of an atomic object M, as determined by evaluation B, shall
 be the value stored by some operation in a visible sequence of M
 with respect to B. [...] [Note: For a given value computation B,
 there is only one visible sequence of side effects that B can read
 from, even if more than one sequence can be constructed. -end
 note]"

FCD 14882
GB 12

F) Alternative definition of the value read by an atomic operation

The standard introduces visible side effects, which are used first to
define the values read by non-atomic operations. They are then
re-used to constrain the value read by atomic operations:
1.10:13 says that an atomic operation must read from somewhere in
"the" visible sequence of side effects, which must start from *a*
visible side effect, ie a side effect that (a) happens before the
read, and (b) is not happens-before-hidden.

We suspect that this re-use of the notion of visible side effect may
be a drafting artifact, and tentatively suggest that it would be
clearer to remove the requirement that there is a vse for atomics,
replacing the first two sentences of 1.10:13 by

 "An atomic operation must read from somewhere in the modification
 order that is not happens-before-hidden and does not follow (in
 modification order) any side effect that happens-after the read."

Note that the current text allows the following, whereas the revised
text would forbid it. We believe that in a direct implementation on
hardware, this would be forbidden by coherence.

 hb
 do
 rf
 Wx_release ----> Rx_consume
 ^ |
 \ |sb,hb
 mo \ v
 --- Wx_release

FCD 14882
GB 13

G) Wording of the read-read coherence condition
--

In 1.10:13 a coherence condition is stated on the values of atomic
reads:

 "Furthermore, if a value computation A of an atomic object M
 happens before a value computation B of M, and the value computed
 by A corresponds to the value stored by side effect X, then the
 value computed by B shall either equal the value computed by A, or
 be the value stored by side effect Y, where Y follows X in the
 modification order of M."

The words "corresponds to" are not used elsewhere in the standard, as
far as we can see, and it is unclear whether they have a special
meaning here. In addition taking the value of the read B from the
value read by A seems unnecessarily indirect. B could take its value
from X instead. We suggest that the prose be changed to the following:

 "Furthermore, if a value computation A of an atomic object M
 happens before a value computation B of M, and A takes its value
 from the side effect X, then the value computed by B shall either
 be the value stored by X, or the value stored by a side effect Y,
 where Y follows X in the modification order of M."

FCD 14882
GB 14

I) Implementation of dependencies on Power/ARM

Carries-a-dependency includes via-memory dependencies (from a write to
a program-order-later read from the same location on the same
processor), but the Power and ARM architectures do not guarantee that
such dependencies are respected by all processors. Hence, we wonder
how implementations are expected to guarantee dependency-ordered
before.

FCD 14882
GB 15

J) Control dependencies for atomics

Given the examples of compilers interchanging data and control
dependencies, and that control dependencies are respected on Power/ARM
for load->store (and on Power for load->load with a relatively cheap
isync), we're not sure why carries-a-dependency-to does not include
control dependencies between atomics.

FCD 14882
GB 16

L) Minor editorial changes

1.10:12 last note: "...as defined here..." should be "...as defined
below...".

FCD 14882: GB 53
Page 1 of 12

Date: 2010-06-28

Problems with bitmask types in the library
The library defines the bitmask types (17.5.2.1.3) ios_base::fmtflags, ios_base::iostate,
ios_base::openmode, regex_constants::syntax_option_type and
regex_constants::match_flag_type. Each is defined as an unscoped enumeration without a
fixed underlying type. Each has operator&, operator| and operator~ overloaded.

The library also defines the enumerated types (17.5.2.1.2) ios_base::seekdir and
regex_constants::error_type.

There are several problems related to these types:

• Bitmask type operators declared as members of ios_base,
• bitmask type operators defined for enumerated types,
• operator^ is missing,
• operator~ is defined incorrectly,
• the underlying type should be fixed,
• value of goodbit is not unspecified,
• bitmask types are inconsistent with the requirements and over-specified.

Bitmask operators declared as members of ios_base

The bitwise operators for the ios_base bitmask types are declared in the body of ios_base,
making them members of the class, but they should be non-member functions. This is largely an
editorial issue, but is addressed by the proposed changes below.

Bitmask type operators defined for enumerated types

As specified in 27.5.2p1 and 27.5.2.1.5p1, ios_base::seekdir is an enumerated type
(17.5.2.1.2) not a bitmask type (17.5.2.1.3) and so should not have bitwise operators defined.
The operators were added by the constexpr proposal, n2349, but should be removed.

The same applies to regex_constants::error_type (28.5.3) although 28.5.3p1 incorrectly
uses the term "enumeration type" instead of "enumerated type".

operator^ is missing

n2349 proposed the following additional overload which is missing from the FCD:

constexpr fmtflags operator^(fmtflags lhs, fmtflags rhs)
{

FCD 14882: GB 53
Page 2 of 12

 return fmtflags(int(lhs) ^ int(rhs));
}

This operator would be needed for all the bitmask types if they were defined as enumeration
types.

operator~ is defined incorrectly

The FCD specifies:

constexpr fmtflags operator~(fmtflags f)
{
 return fmtflags(f);
}

This seems to be an editorial error as n2349 proposed:

constexpr fmtflags operator~(fmtflags f)
{
 return fmtflags(~(f));
}

This isn't right either, since it will lead to infinite recursion. I think the intended definition is:

constexpr fmtflags operator~(fmtflags f)
{
 return fmtflags(~int(f));
}

The underlying type should be fixed

Bitmask types need operator~ in order to clear a value from the bitmask type, as show in
17.5.2.1.3 paragraph 4:

— To clear a value Y in an object X is to evaluate the expression X &= ~Y.

However the definition for fmtflags above does not have well-specified behaviour if the
underlying type is smaller than int, because ~int(f) is likely to produce a value outside the
range of fmtflags.

The same problem is present in the example implementation in 17.5.2.1.3 because int_type is
only stated to be capable of holding all the values of bitmask so there is no guarantee that
sizeof(int_type) == sizeof(bitmask) and therefore no guarantee that the code given for
operator~ works as intended.

This could be solved by giving the enumeration a fixed underlying type which is the same type
as used for the conversions used by the bitwise operators. An alternative solution would be to do
all conversions to and from std::underlying_type<bitmask>.

FCD 14882: GB 53
Page 3 of 12

Value of goodbit is not unspecified.

The synopsis in 27.5.2 includes:

goodbit = unspecified,

but 27.5.2.1.3 specifies that goodbit has the value zero.

Bitmasks types are inconsistent with the requirements and over-specified.

In C++03 implementions were allowed to use any of the options in 17.5.2.1.3 for the bitmask
types defined by the library and e.g. std::ios::in is an object of bitmask type with an
implementation-defined value. The FCD specifies that bitmask types are implemented as
enumerations and std::ios::in is an enumerator not an object. Not only is this inconsistent
with the stated requirements in 17.5.2.1.3 but it means that existing implementations which
define bitmask types as an integer type must change, and it breaks the following valid C++03
code:

#include <ios>
std::ios::openmode* p = &std::ios::in;

If all the library's bitmask types are required to be enumeration types then there is no reason for
17.5.2.1.3 to allow integer types or a bitset.

Existing C++03 implementations choose to implement bitmask types as integer types for
efficiency, because enumerations with overloaded operators are less efficient without
constexpr. Since the FCD defines the bitmask types as enumerations with overloaded
constexpr operators, implementations cannot provide a common definition for C++03 and
C++0x. This is of no benefit to users or implementations.

Proposed Solution
The over-specification of the library's bitmask types should be reverted. The example bitmask in
clause 17 can be updated to use constexpr and an enumeration type with a fixed underlying
type. constexpr can also be used for declaring the objects of bitmask type. Proposed wording
for this change is given below.

An alternative solution would be to fix all the issues listed above except the over-specification,
but this would still require existing implementations to change, has the chance of breaking valid
C++03 programs, and leaves the definitions of bitmask types inconsistent with the requirements
in Clause 17.

Proposed Wording

FCD 14882: GB 53
Page 4 of 12

Modifications to Bitmask types

Make the following changes to 17.5.2.1.3:

The bitmask type bitmask can be written:

// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask
enum bitmask : int_type {
 V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,
};

static constconstexpr bitmask C0 (V0);
static constconstexpr bitmask C1 (V1);
static constconstexpr bitmask C2 (V2);
static constconstexpr bitmask C3 (V3);

// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask
constexpr bitmask operator& (bitmask X , bitmask Y) {
 return static_cast<bitmask >(
 static_cast<int_type>(X) &
 static_cast<int_type>(Y));
}
constexpr bitmask operator| (bitmask X , bitmask Y) {
 return static_cast<bitmask >(
 static_cast<int_type>(X) |
 static_cast<int_type>(Y));
}
constexpr bitmask operator^ (bitmask X , bitmask Y){
 return static_cast<bitmask >(
 static_cast<int_type>(X) ^
 static_cast<int_type>(Y));
}
constexpr bitmask operator~ (bitmask X){
 return static_cast<bitmask >(~static_cast<int_type>(X));
}
constexpr bitmask & operator&=(bitmask & X , bitmask Y){
 X = X &Y ; return X ;
}
constexpr bitmask & operator|=(bitmask & X , bitmask Y) {
 X = X |Y ; return X ;
}
constexpr bitmask & operator^=(bitmask & X , bitmask Y) {
 X = X ^Y ; return X ;
}

Modifications to Class ios_base

Make the following changes to the synopsis in 27.5.2:

FCD 14882: GB 53
Page 5 of 12

class ios_base {
public:
 class failure;

 typedef T1 fmtflags;
 constexpr fmtflags boolalpha = unspecified;
 constexpr fmtflags dec = unspecified;
 constexpr fmtflags fixed = unspecified;
 constexpr fmtflags hex = unspecified;
 constexpr fmtflags internal = unspecified;
 constexpr fmtflags left = unspecified;
 constexpr fmtflags oct = unspecified;
 constexpr fmtflags right = unspecified;
 constexpr fmtflags scientific = unspecified;
 constexpr fmtflags showbase = unspecified;
 constexpr fmtflags showpoint = unspecified;
 constexpr fmtflags showpos = unspecified;
 constexpr fmtflags skipws = unspecified;
 constexpr fmtflags unitbuf = unspecified;
 constexpr fmtflags uppercase = unspecified;
 constexpr fmtflags adjustfield = unspecified;
 constexpr fmtflags basefield = unspecified;
 constexpr fmtflags floatfield = unspecified;

 // 27.5.2.1.2 fmtflags
 enum fmtflags {
 boolalpha = unspecified,
 dec = unspecified,
 fixed = unspecified,
 hex = unspecified,
 internal = unspecified,
 left = unspecified,
 oct = unspecified,
 right = unspecified,
 scientific = unspecified,
 showbase = unspecified,
 showpoint = unspecified,
 showpos = unspecified,
 skipws = unspecified,
 unitbuf = unspecified,
 uppercase = unspecified,
 adjustfield = unspecified,
 basefield = unspecified,
 floatfield = unspecified,
 };

 constexpr fmtflags operator~(fmtflags f);
 constexpr fmtflags operator&(fmtflags lhs, fmtflags rhs);
 constexpr fmtflags operator|(fmtflags lhs, fmtflags rhs);

 typedef T2 iostate;
 constexpr iostate badbit = unspecified;

FCD 14882: GB 53
Page 6 of 12

 constexpr iostate eofbit = unspecified;
 constexpr iostate failbit = unspecified;
 constexpr iostate goodbit{ 0 };

 // 27.5.2.1.3 iostate
 enum iostate {
 badbit = unspecified,
 eofbit = unspecified,
 failbit = unspecified,
 goodbit = unspecified,
 };

 constexpr iostate operator~(iostate f);
 constexpr iostate operator&(iostate lhs, iostate rhs);
 constexpr iostate operator|(iostate lhs, iostate rhs);

 typedef T3 openmode;
 constexpr openmode app = unspecified;
 constexpr openmode ate = unspecified;
 constexpr openmode binary = unspecified;
 constexpr openmode in = unspecified;
 constexpr openmode out = unspecified;
 constexpr openmode trunc = unspecified;

 // 27.5.2.1.4 openmode
 enum openmode {
 app = unspecified,
 ate = unspecified,
 binary = unspecified,
 in = unspecified,
 out = unspecified,
 trunc = unspecified,
 };

 constexpr openmode operator~(openmode f);
 constexpr openmode operator&(openmode lhs, openmode rhs);
 constexpr openmode operator|(openmode lhs, openmode rhs);

 typedef T4 seekdir;
 constexpr seekdir beg = unspecified;
 constexpr seekdir cur = unspecified;
 constexpr seekdir end = unspecified;

 // 27.5.2.1.5 seekdir
 enum seekdir {
 beg = unspecified,
 cur = unspecified,
 end = unspecified,
 };

 constexpr seekdir operator~(seekdir f);
 constexpr seekdir operator&(seekdir lhs, seekdir rhs);

FCD 14882: GB 53
Page 7 of 12

 constexpr seekdir operator|(seekdir lhs, seekdir rhs);

Revert the changes from n2349, making the following changes to 27.5.2.1.2:

 typedef T1 fmtflags;
 enum fmtflags;

1 The type fmtflags is a bitmask type (17.5.2.1.3). Setting its elements has the effects
indicated in Table 112.

2 Type fmtflags also defines the constants indicated in Table 113.

 constexpr fmtflags ios_base::operator~(fmtflags f);

3 Returns: fmtflags(f).

 constexpr fmtflags ios_base::operator&(fmtflags lhs, fmtflags rhs);

4 Returns: fmtflags(int(lhs) & int(rhs)).

 constexpr fmtflags ios_base::operator|(fmtflags lhs, fmtflags rhs);

5 Returns: fmtflags(int(lhs) | int(rhs)).

Make the following changes to 27.5.2.1.3:

 typedef T2 iostate;
 enum iostate;

1 The type iostate is a bitmask type (17.5.2.1.3) that contains the elements indicated in
Table 114.

 constexpr iostate ios_base::operator~(iostate f);

2 Returns: iostate(f).

 constexpr iostate ios_base::operator&(iostate lhs, iostate rhs);

3 Returns: iostate(int(lhs) & int(rhs)).

 constexpr iostate ios_base::operator|(iostate lhs, iostate rhs);

4 Returns: iostate(int(lhs) | int(rhs)).

Make the following changes to 27.5.2.1.4:

FCD 14882: GB 53
Page 8 of 12

 typedef T3 openmode;
 enum openmode;

1 The type openmode is a bitmask type (17.5.2.1.3). It contains the elements indicated in
Table 115.

 constexpr openmode ios_base::operator~(openmode f);

2 Returns: openmode(f).

 constexpr openmode ios_base::operator&(openmode lhs, openmode rhs);

3 Returns: openmode(int(lhs) & int(rhs)).

 constexpr openmode ios_base::operator|(openmode lhs, openmode rhs);

4 Returns: openmode(int(lhs) | int(rhs)).

Make the following changes to 27.5.2.1.5:

 typedef T4 seekdir;
 enum seekdir;

1 The type seekdir is an enumerated type (17.5.2.1.2) that contains the elements indicated in
Table 116.

 constexpr seekdir ios_base::operator~(seekdir f);

2 Returns: seekdir(f).

 constexpr seekdir ios_base::operator&(seekdir lhs, seekdir rhs);

3 Returns: seekdir(int(lhs) & int(rhs)).

 constexpr seekdir ios_base::operator|(seekdir lhs, seekdir rhs);

4 Returns: seekdir(int(lhs) | int(rhs)).

Modifications to Bitmask Type regex_constants::syntax_option_type

Make the following changes to 28.5.1:

namespace std {
 namespace regex_constants {
 typedef bitmask_type syntax_option_type;

FCD 14882: GB 53
Page 9 of 12

 constexpr syntax_option_type icase = unspecified;
 constexpr syntax_option_type nosubs = unspecified;
 constexpr syntax_option_type optimize = unspecified;
 constexpr syntax_option_type collate = unspecified;
 constexpr syntax_option_type ECMAScript = unspecified;
 constexpr syntax_option_type basic = unspecified;
 constexpr syntax_option_type extended = unspecified;
 constexpr syntax_option_type awk = unspecified;
 constexpr syntax_option_type grep = unspecified;
 constexpr syntax_option_type egrep = unspecified;

 enum syntax_option_type {
 icase = implementation-defined,
 nosubs = implementation-defined,
 optimize = implementation-defined,
 collate = implementation-defined,
 ECMAScript = implementation-defined,
 basic = implementation-defined,
 extended = implementation-defined,
 awk = implementation-defined,
 grep = implementation-defined,
 egrep = implementation-defined,
 };
 constexpr syntax_option_type operator~(syntax_option_type f);
 constexpr syntax_option_type operator&(syntax_option_type lhs,
syntax_option_type rhs);
 constexpr syntax_option_type operator|(syntax_option_type lhs,
syntax_option_type rhs);
 }
}

1 The type syntax_option_type is an implementation-defined bitmask type (17.5.2.1.3).
Setting its elements has the effects listed in table 128. A valid value of type
syntax_option_type shall have exactly one of the elements ECMAScript, basic,
extended, awk, grep, egrep, set.

 constexpr syntax_option_type operator~(syntax_option_type f);

2 Returns: syntax_option_type(f).

 constexpr syntax_option_type operator&(syntax_option_type lhs,
syntax_option_type rhs);

3 Returns: syntax_option_type(int(lhs) & int(rhs)).

 constexpr syntax_option_type operator|(syntax_option_type lhs,
syntax_option_type rhs);

4 Returns: syntax_option_type(int(lhs) | int(rhs)).

Modifications to Bitmask Type regex_constants::syntax_option_type

FCD 14882: GB 53
Page 10 of 12

Make the following changes to 28.5.2:

namespace std {
 namespace regex_constants{
 typedef bitmask_type match_flag_type;
 constexpr match_flag_type match_default{ 0 };
 constexpr match_flag_type match_not_bol = unspecified;
 constexpr match_flag_type match_not_eol = unspecified;
 constexpr match_flag_type match_not_bow = unspecified;
 constexpr match_flag_type match_not_eow = unspecified;
 constexpr match_flag_type match_any = unspecified;
 constexpr match_flag_type match_not_null = unspecified;
 constexpr match_flag_type match_continuous = unspecified;
 constexpr match_flag_type match_prev_avail = unspecified;
 constexpr match_flag_type format_default{ 0 };
 constexpr match_flag_type format_sed = unspecified;
 constexpr match_flag_type format_no_copy = unspecified;
 constexpr match_flag_type format_first_only = unspecified;

 enum match_flag_type {
 match_default = 0,
 match_not_bol = implementation-defined,
 match_not_eol = implementation-defined,
 match_not_bow = implementation-defined,
 match_not_eow = implementation-defined,
 match_any = implementation-defined,
 match_not_null = implementation-defined,
 match_continuous = implementation-defined,
 match_prev_avail = implementation-defined,
 format_default = 0,
 format_sed = implementation-defined,
 format_no_copy = implementation-defined,
 format_first_only = implementation-defined,
 };
 constexpr match_flag_type operator~(match_flag_type f);
 constexpr match_flag_type operator&(match_flag_type lhs,
match_flag_type rhs);
 constexpr match_flag_type operator|(match_flag_type lhs,
match_flag_type rhs);
 }
}

1 The type regex_constants::match_flag_type is an implementation-defined bitmask
type (17.5.2.1.3). Matching a regular expression against a sequence of characters
[first,last) proceeds according to the rules of the grammar specified for the regular
expression object, modified according to the effects listed in table 129 for any bitmask
elements set.

 constexpr match_flag_type operator~(match_flag_type f);

2 Returns: match_flag_type(f).

FCD 14882: GB 53
Page 11 of 12

 constexpr match_flag_type operator&(match_flag_type lhs,
match_flag_type rhs);

3 Returns: match_flag_type(int(lhs) & int(rhs)).

 constexpr match_flag_type operator|(match_flag_type lhs,
match_flag_type rhs);

4 Returns: match_flag_type(int(lhs) | int(rhs)).

Modifications to Bitmask Type regex_constants::error_type

Make the following changes to 28.5.3:

namespace std {
 namespace regex_constants {
 typedef implementation-defined error_type;
 constexpr error_type error_collate = unspecified;
 constexpr error_type error_ctype = unspecified;
 constexpr error_type error_escape = unspecified;
 constexpr error_type error_backref = unspecified;
 constexpr error_type error_brack = unspecified;
 constexpr error_type error_paren = unspecified;
 constexpr error_type error_brace = unspecified;
 constexpr error_type error_badbrace = unspecified;
 constexpr error_type error_range = unspecified;
 constexpr error_type error_space = unspecified;
 constexpr error_type error_badrepeat = unspecified;
 constexpr error_type error_complexity = unspecified;
 constexpr error_type error_stack = unspecified;

 enum error_type {
 error_collate = implementation-defined,
 error_ctype = implementation-defined,
 error_escape = implementation-defined,
 error_backref = implementation-defined,
 error_brack = implementation-defined,
 error_paren = implementation-defined,
 error_brace = implementation-defined,
 error_badbrace = implementation-defined,
 error_range = implementation-defined,
 error_space = implementation-defined,
 error_badrepeat = implementation-defined,
 error_complexity = implementation-defined,
 error_stack = implementation-defined,
 };
 constexpr error_type operator~(error_type f);
 constexpr error_type operator&(error_type lhs, error_type rhs);
 constexpr error_type operator|(error_type lhs, error_type rhs);
 }
}

FCD 14882: GB 53
Page 12 of 12

1 The type error_type is an implementation-defined enumerationed type (17.5.2.1.2).
Values of type error_type represent the error conditions described in table 130:

 constexpr error_type operator~(error_type f);

2 Returns: error_type(f).

 constexpr error_type operator&(error_type lhs, error_type rhs);

3 Returns: error_type(int(lhs) & int(rhs)).

 constexpr error_type operator|(error_type lhs, error_type rhs);

4 Returns: error_type(int(lhs) | int(rhs)).

FCD 14882
GB 80

A) Reads of indeterminate value result in undefined behaviour
--

In 20.2.3, NullablePointer requirements
[nullablepointer.requirements], the standard specifies the behaviour
of programs that read indeterminate values:

 ... A default-initialized object of type P may have an
 indeterminate value. [Note: Operations involving indeterminate
 values may cause undefined behaviour. end note]

The note uses the word "may", but we believe the intention is that
such reads will cause undefined behaviour, but implementations are not
required to produce an error. We suggest changing the note to:

 [Note: Operations involving indeterminate values cause undefined
 behaviour. end note]

FCD 14882
GB 122

D) Imposed happens-before edges are not made transitive
--

At various points in the standard new edges are added to
happens-before, for example 27.2.3:2 adds happens-before edges between
writes and reads from a stream:

 If one thread makes a library call a that writes a value to a
 stream and, as a result, another thread reads this value from the
 stream through a library call b such that this does not result in a
 data race, then a happens before b.

Happens-before is defined in 1.10:11 in a deliberate way that makes it
not explicitly transitively closed. Adding edges to happens-before
directly, as in 27.2.3:2, does not provide transitivity with
sequenced-before or any other existing happens-before edge. This lack
of transitivity seems to be unintentional. In order to achieve
transitivity we suggest each edge be added to
inter-thread-happens-before as a synchronises-with edge (as per
conversation with Hans Boehm). In the standard, each use of the words
"happens-before" should be replaced with the words "synchronizes-with"
in the following sentences:

 27.2.3:2
 30.3.1.2:6
 30.3.1.5:7
 30.6.4:7
 30.6.9:5
 30.6.10.1:23

FCD 14882
GB 131

H) Overlapping evaluations are allowed

29.3:8 states:

 "An atomic store shall only store a value that has been computed
 from constants and program input values by a finite sequence of
 program evaluations, such that each evaluation observes the values
 of variables as computed by the last prior assignment in the
 sequence."

... but 1.9.13 states:

 "If A is not sequenced before B and B is not sequenced before A,
 then A and B are unsequenced. [Note: The execution of unsequenced
 evaluations can overlap. -end note]"

Overlapping executions can make it impossible to construct the sequence
described in 29.3:8. We are not sure of the intention here and do not
offer a suggestion for change, but note that 29.3:8 is the condition
that prevents out-of-thin-air reads.

FCD 14882
GB 136

K) Initialisation of atomics

We believe the intent is that for any atomics there is a distinguished
initialisation write, but that this need not happens-before all the
other operations on that atomic - specifically so that the
initialisation write might be non-atomic and hence give rise to a data
race, and hence undefined behaviour, in examples such as this (from
Hans):

 atomic< atomic<int> * > p
 f() |
 { atomic<int>x; | W_na x
 p.store(&x,mo_rlx); | W_rlx p=&x
 } |

(where na is nonatomic and rlx is relaxed). We suspect also that no
other mixed atomic/nonatomic access to the same location is intended
to be permitted. Either way, a note would probably help.

FCD 14882: GB 138

Date: 2010-04-20

Author: Anthony Williams
Just Software Solutions Ltd

Lockable requirements for C++0x
This paper provides a proposed resolution for LWG issue 1268. The basic premise of that issue
is that the "Mutex requirements" from the current working draft are worded as if they are
requirements on all lockable types, including user-defined mutexes and instantiations of
unique_lock. However, the requirements really only need apply to the standard mutex types
such as std::mutex, and are too strong when applied to user-defined mutex types.

This paper therefore proposes to separate the existing requirements on the standard mutex types
from the general requirements on all lockable types.

Proposed wording
Add a new section to 30.2 [thread.req] after 30.2.4 [thread.req.timing] as follows:

30.2.5 Requirements for Lockable types

The standard library templates unique_lock (30.4.3.2 [thread.lock.unique]),
lock_guard (30.4.3.1 [thread.lock.guard]), lock, try_lock (30.4.4
[thread.lock.algorithm]) and condition_variable_any (30.5.2
[thread.condition.condvarany]) all operate on user-supplied lockable objects. Such
an object must support the member functions specified for either the
BasicLockable requirements, the Lockable requirements or the TimedLockable
requirements as appropriate to acquire or release ownership of a lock by a given
thread. [Note: the nature of any lock ownership and any synchronization it may
entail are not part of these requirements. — end note]

30.2.5.1 BasicLockable Requirements

In order for a type L to qualify as a BasicLockable type, the following
expressions must be supported, with the specified semantics, where m denotes a
value of type L:

The expression m.lock() shall be well-formed and have the following semantics:

Effects:

Block until a lock can be acquired for the current thread. If an exception is
thrown then a lock shall not have been acquired for the current thread.

Return type:
void

The expression m.unlock() shall be well-formed and have the following
semantics:

Effects:
Release a lock on m held by the current thread.

Return type:
void

Throws:
Nothing if the current thread holds a lock on m.

30.2.5.2 Lockable Requirements

In order for a type L to qualify as a Lockable type, it must meet the
BasicLockable requirements. In addition, the following expressions must be
supported, with the specified semantics, where m denotes a value of type L:

The expression m.try_lock() shall be well-formed and have the following
semantics:

Effects:
Attempt to acquire a lock for the current thread without blocking. If an
exception is thrown then a lock shall not have been acquired for the
current thread.

Return type:
bool

Returns:
true if the lock was acquired, false otherwise.

30.2.5.3 TimedLockable Requirements

For a type TL to qualify as TimedLockable it must meet the Lockable
requirements, and additionally the following expressions must be well-formed,
with the specified semantics, where m is an instance of a type TL, rel_time
denotes instantiation of duration (20.10.3 [time.duration]) and abs_time
denotes an instantiation of time_point (20.10.4 [time.point])

The expression m.try_lock_for(rel_time) shall be well-formed and have the
following semantics:

Effects:

Attempt to acquire a lock for the current thread within the specified time
period. If an exception is thrown then a lock shall not have been acquired
for the current thread.

Return type:
bool

Returns:
true if the lock was acquired, false otherwise.

The expression m.try_lock_until(abs_time) shall be well-formed and have
the following semantics:

Effects:
Attempt to acquire a lock for the current thread before the specified point
in time. If an exception is thrown then a lock shall not have been acquired
for the current thread.

Return type:
bool

Returns:
true if the lock was acquired, false otherwise.

Replace 30.4.1 [thread.mutex.requirements] paragraph 2 with the following:

2 This section describes requirements on template argument types used to
instantiate templates defined in the mutex types supplied by the C++ standard
library. The template definitions in the C++ standard library refer These types
shall conform to the named Mutex requirements whose details are set out below.
In this description, m is an object of a Mutex type one of the standard library
mutex types std::mutex, std::recursive_mutex, std::timed_mutex or
std::recursive_timed_mutex..

Add the following paragraph after 30.4.1 [thread.mutex.requirements] paragraph 2:

A Mutex type shall conform to the Lockable requirements (30.2.5.2).

Replace 30.4.2 [thread.timedmutex.requirements] paragraph 1 with the following:

The C++ standard library TimedMutex types std::timed_mutex and
std::recursive_timed_mutex A TimedMutex type shall meet the requirements
for a Mutex type. In addition, itthey shall meet the requirements set out in this
Clause 30.4.2below, where rel_time denotes an instantiation of duration
(20.10.3 [time.duration]) and abs_time denotes an instantiation of time_point
(20.10.4 [time.point]).

Add the following paragraph after 30.4.2 [thread.timedmutex.requirements] paragraph 1:

A TimedMutex type shall conform to the TimedLockable requirements (30.2.5.3).

Add the following paragraph following 30.4.3.1 [thread.lock.guard] paragraph 1:

The supplied Mutex type shall meet the Lockable requirements (30.2.5.2).

Add the following paragraph following 30.4.3.2 [thread.lock.unique] paragraph 1:

The supplied Mutex type shall meet the Lockable requirements (30.2.5.2).
unique_lock<Mutex> meets the Lockable requirements. If Mutex meets the
TimedLockable requirements (30.2.5.3) then unique_lock<Mutex> also meets
the TimedLockable requirements.

Replace the use of "mutex" or "mutex object" with "lockable object" throughout clause 30.4.3.
30.4.3 [thread.mutex.locks] paragraph 1:

1 A lock is an object that holds a reference to a mutexlockable object and may
unlock the mutexlockable object during the lock’s destruction (such as when
leaving block scope). A thread of execution may use a lock to aid in managing
mutex ownership of a lockable object in an exception safe manner. A lock is said
to own a mutexlockable object if it is currently managing the ownership of that
mutexlockable object for a thread of execution. A lock does not manage the
lifetime of the mutexlockable object it references. [Note: Locks are intended to
ease the burden of unlocking the mutexlockable object under both normal and
exceptional circumstances. — end note]

30.4.3 [thread.lock] paragaph 2:

2 Some lock constructors take tag types which describe what should be done with
the mutexlockable object during the lock’s constuction.

30.4.3.1 [thread.lock.guard] paragaph 1:

1 An object of type lock_guard controls the ownership of a mutexlockable object
within a scope. A lock_guard object maintains ownership of a mutexlockable
object throughout the lock_guard object’s lifetime. The behavior of a program is
undefined if the mutexlockable object referenced by pm does not exist for the
entire lifetime (3.8) of the lock_guard object. Mutex shall meet the Lockable
requirements (30.2.5.2).

30.4.3.2 [thread.lock.unique] paragaph 1:

1 An object of type unique_lock controls the ownership of a mutexlockable
object within a scope. Mutex oOwnership of the lockable object may be acquired
at construction or after construction, and may be transferred, after acquisition, to
another unique_lock object. Objects of type unique_lock are not copyable but
are movable. The behavior of a program is undefined if the contained pointer pm
is not null and the mutex pointed to by pm does not exist for the entire remaining

lifetime (3.8) of the unique_lock object. Mutex shall meet the Lockable
requirements (30.2.5.2).

Add the following to the precondition of unique_lock(mutex_type& m, const
chrono::time_point<Clock, Duration>& abs_time) in 30.4.3.2.1 [thread.lock.unique.cons]
paragraph 18:

template <class Clock, class Duration>
 unique_lock(mutex_type& m, const chrono::time_point<Clock,
Duration>& abs_time);

18 Requires: If mutex_type is not a recursive mutex the calling
thread does not own the mutex. The supplied mutex_type type
shall meet the TimedLockable requirements (30.2.5.3).

Add the following to the precondition of unique_lock(mutex_type& m, const
chrono::duration<Rep, Period>& rel_time) in 30.4.3.2.1 [thread.lock.unique.cons]
paragraph 22

22 Requires: If mutex_type is not a recursive mutex the calling thread does not
own the mutex. The supplied mutex_type type shall meet the TimedLockable
requirements (30.2.5.3).

Add the following as a precondition of bool try_lock_until(const
chrono::time_point<Clock, Duration>& abs_time) before 30.4.3.2.2
[thread.lock.unique.locking] paragraph 10

template <class Clock, class Duration>
 bool try_lock_until(const chrono::time_point<Clock, Duration>&
abs_time);

Requires: The supplied mutex_type type shall meet the
TimedLockable requirements (30.2.5.3).

Add the following as a precondition of bool try_lock_for(const chrono::duration<Rep,
Period>& rel_time) before 30.4.3.2.2 [thread.lock.unique.locking] paragraph 15

template <class Rep, class Period>
 bool try_lock_for(const chrono::duration<Rep, Period>&
rel_time);

Requires: The supplied mutex_type type shall meet the
TimedLockable requirements (30.2.5.3).

Replace 30.4.4 [thread.lock.algorithm] p1 with the following:

template <class L1, class L2, class... L3> int try_lock(L1&, L2&,
L3&...);

1 Requires: Each template parameter type shall meet the Mutex
Lockable requirements (30.2.5.2)., except that a call to
try_lock() may throw an exception. [Note: The unique_lock
class template meets these requirements when suitably instantiated.
— end note]

Replace 30.4.4 [thread.lock.algorithm] p4 with the following:

template <class L1, class L2, class... L3> void lock(L1&, L2&,
L3&...);

4 Requires: Each template parameter type shall meet the Mutex
Lockable requirements (30.2.5.2)., except that a call to
try_lock() may throw an exception. [Note: The unique_lock
class template meets these requirements when suitably instantiated.
— end note]

Replace 30.5.2 [thread.condition.condvarany] paragraph 1 with:

1 A Lock type shall meet the requirements for a Mutex type, except that try_lock
is not required BasicLockable requirements (30.2.5.1). [Note: All of the standard
mutex types meet this requirement. — end note]

FCD 14882

FINLAND (FI)

ADDITIONAL DETAILS TO BALLOT COMMENTS

Defaulting non-public special member
functions on first declaration

Date: 2010-06-13

Version: FCD14882: FI-1, FI-2, FI-3

Authors: Ville Voutilainen <ville.voutilainen@gmail.com>

Abstract

The resolution of Core Issue 906 forbids defaulting a non-public special
member function on its first declaration. I believe this resolution to be
incorrect, and this document explains why. This document proposes that
defaulting a non-public special member function on its first declaration
is an important part of design vocabulary, and is an important facility
for writing readable code. This document is to be considered as
supplemental explanatory document for FCD NB comments FI-1, FI-2
and FI-3. Triviality concerns are left out of this document, focusing just
on the avoidance of having to specify defaulting on the definition
outside the class body. The examples illustrate cases where the special
member functions are non-public, but the same arguments (readability,
code that's easy to write) also apply to being able to default virtual or
explicit special member functions on their first declaration.

I wish to thank Daniel Krügler for performing a sanity check for an earlier version of this paper,
and Lawrence Crowl for reviewing those papers and providing feedback and suggestions for
improvement.

The problem explained
I think it's problematic that non-public special member functions can't be defaulted on their first
declaration. The defaulting is something that people do when they want to mark a special

member function defaulted regardless of the access of said member function, and people want to
do it in a simple and concise manner, without having to write boiler-plate code. Forbidding
defaulting on first declaration seems to restrict the design vocabulary considerably.

I shall repeat the use cases provided on the mailing list. Let's first consider a case where a copy
constructor is protected and defaulted:

struct B
{
protected:
 B(const B&) = default;
};

struct D : B
{
};

The use case for this defaulting would be that the user is attempting to forbid slicing copies from
D to B. Having to write the defaulting outside the class is tedious:

struct B
{
protected:
 B(const B&);
};
B::B(const B&) = default;

When the design evolves, the user decides that instances of the base are harmful, so she modifies
the base thus:

struct B
{
protected:
 B() = default;
 B(const B&) = default;
};

Having to write the defaulting outside is once again tedious:

struct B
{
protected:
 B();
 B(const B&);
};
B::B(const B&) = default;
B::B() = default;

For other subobjects besides base classes, let's consider the following case where private
constructor and copy constructor are defaulted:

struct part

{
friend class aggregate;
private:
 part() = default;
 part(const part&) = default;
};

struct aggregate
{
 part x;
};

The defaulting is equally tedious as in previous examples. Templates make the situation worse:

template<class T> struct TX
{
 template<class U> struct TY
 {
 protected:
 TY();
 };
protected:
 TX();
};
template<class T> TX<T>::TX() = default;
template<class T>
template<class U>
TX<T>::TY<U>::TY() = default;

In comparison, if the defaulting is allowed on the first declaration, the example is arguably much
more readable:

template<class T> struct TX
{
 template<class U> struct TY
 {
 protected:
 TY() = default;
 };
protected:
 TX() = default;
};

According to my surveys, users understand that defaulting possibly affects e.g. triviality.
Regardless of that, they want to do the defaulting concisely, and they don't want to be forced to
write it outside the class. It seems to be a relatively common case to mark a special member
function protected or private, default it, and move on. Forcing the defaulting to be done outside
the class definition is cumbersome.

I consider forbidding defaulting non-public special member functions on first declaration to be
overkill for what it's seemingly trying to achieve. Forcing users to write code outside of class
definitions for defaulting, when they are never forced to do that for any other reason, is difficult
to explain, difficult to teach, and is going to lead to people having to write error-prone out-of-line

declarations. For these reasons, Finnish NB comments FI-1/FI-2/FI-3 propose removing the
restrictions for defaulting special member functions on their first declaration.

Triviality of non-public special member
functions defaulted on first declaration

Date: 2010-06-17

Version: FCD14882: FI-4, FI-5

Authors: Ville Voutilainen <ville.voutilainen@gmail.com>

Abstract

The resolution of Core Issue 906 forbids defaulting a non-public special
member function on its first declaration. I believe this resolution to be
incorrect, and this document explains why. This document proposes that
defaulting a non-public special member function on its first declaration
should not be considered as something that affects triviality. Defaulting
should retain triviality, or retain the lack of triviality, and people
shouldn't expect defaulting to bring forth triviality. Furthermore, non-
public special member functions defaulted on first declaration should
not be considered user-provided. This document is to be considered as
supplemental explanatory comment for FCD NB comments FI-4 and
FI-5.

I wish to thank Daniel Krügler for performing a sanity check for this paper, and Lawrence Crowl
for reviewing the paper and providing feedback and suggestions for improvement.

Background
N2346 states that "A special member function is user-provided if it is user-declared and not
explicitly defaulted on its first declaration." Further, N3000 states in 12.8 Copying class objects
[class.copy] p6 that "A copy constructor for class X is trivial if it is not user-provided".
Therefore, I would assume that if it's allowed to default a non-public copy constructor on its first
declaration, a non-public copy constructor could be trivial. For constructors, 12.1 Constructors

[class.ctor] p5 states that "A default constructor is trivial if it is not user-provided". Therefore, I'd
assume that if it's allowed to default a non-public constructor on its first declaration, a non-public
default constructor could be trivial.

The current status quo is that in order to be defaulted on the first declaration, a special member
function must be public. During the discussion of Core Issue 906 in Santa Cruz it was suggested
by John Spicer that triviality should be made more explicit by forcing the user to do the
defaulting after the first declaration, assuming that defaulting a non-public member function will
remove triviality because such a function would be considered user-provided.

Jason Merrill and I were of the opinion that access should not be the deciding factor when
allowing defaulting on the first declaration, but it should be decided on whether the defaulted
special member function is considered user-provided. It seems to me that N2346 strongly
suggests that a defaulted special member function should not be considered user-provided, and
thus non-public member functions should not affect triviality if they are defaulted.

Jens Maurer thought in message 15490 that a base class with a protected copy constructor makes
a derived class not trivially copyable, because it has a subobject that is not trivially copyable.
Mike Miller asked for a use case, which was provided later in reflector discussions, in message
15492 on the core reflector.

The problem, cases that should be allowed
and trivial
As a simple rule, if an implicitly declared, or explicitly defaulted special member function is
(indirectly or directly) accessible, I'd expect triviality to follow. All cases where triviality would
be lost would be cases where access is lost as well and offending code becomes ill-formed, so I
don't see cases where triviality would be subtly lost. Cases that make classes non-trivial today
(adding a non-trivial subobject) would still be non-trivial even with defaulted non-public special
member functions.

I think it's problematic that non-public special member functions can't be defaulted on their first
declaration. The defaulting is something that people do when they want to retain triviality if
possible. The access control is orthogonal to that, because access control in this case is a design
tool. Forbidding defaulting on first declaration seems to restrict the design vocabulary
considerably.

Furthermore, regarding the concern by Jens Maurer, a base class with a protected copy
constructor is not CopyConstructible to begin with; a derived class can be, however, if the
derived class has a public copy constructor. My take on that is that a derived class can be
trivially copyable, even if the base class alone would not be, as long as the copy constructor of
the base is accessible to the derived class, and as long as neither copy constructor is user-
provided.

This applies to all subobjects, a class aggregating a subobject having a private copy constructor
can still be trivially copyable if the aggregating class is the friend of the aggregated class.

I shall repeat the use cases provided on the mailing list. Let's first consider a case where a copy
constructor is protected and defaulted:

struct B
{
protected:
 B(const B&) = default;
};

struct D : B
{
};

The use case for this defaulting would be that the user is attempting to forbid slicing copies from
D to B, but still retaining triviality.

When the design evolves, the user decides that instances of the base are harmful, so she modifies
the base thus:

struct B
{
protected:
 B() = default;
 B(const B&) = default;
};

There's still no reason for the user to assume that D wouldn't be trivially copyable, because
there's no user-provided function in sight. D should also be trivially constructible, for the same
reason.

For other subobjects besides base classes, let's consider the following:

struct part
{
friend class aggregate;
private:
 part() = default;
 part(const part&) = default;
};

struct aggregate
{
 part x;
};

I'd expect it to be perfectly reasonable for the user to assume aggregate to be trivially copyable
(and trivially constructible).

If we apply the previous rule, even the following should be trivial:

struct B
{
protected:
 B() = default;
 B(const B&) = default;
};

struct D : B
{
protected:
 D() = default;
 D(const D&) = default;
};

struct DD : D
{
};

The subobjects of DD have accessible (to DD) special member functions, which are defaulted.
Further, the subobjects of D have accessible (to D) special member functions, which are
defaulted. This should result in DD being both trivially constructible and trivially copyable. The
rule seems generic, and implementations need to walk the subobject chains anyway to check for
access violations and triviality, so I'd think it's feasible to take the defaulting into account when
computing whether a given class is trivial. B and D aren't trivial in isolation, and I don't propose
changing that. The crux of the matter is allowing examples like DD to be trivial. Previously this
was practically impossible because the only trivial things were implicitly declared special
member functions. When defaulting is added, it would be good to allow triviality for cases where
user-declared (but not user-provided) special member functions can retain triviality.

Some cases that should be allowed but aren't
trivial
Let's consider the following example:

struct base
{
 std::shared_ptr<int> member;
};

The implicitly declared copy constructor will not be trivial, since shared_ptr's copy constructor
isn't. Now, if this is a base class that people don't want to have instances of, we may write

struct base
{
 std::shared_ptr<int> member;
protected:
 base() = default;

 base(const base&) = default;
};

This shouldn't affect the triviality in any way. Yet users expect it to be allowed. While
destructors work just fine with an empty definition, copy constructors don't. Thus the brevity of
being able to default on first declaration seems superior to the alternatives. Consider the
following:

struct base
{
 std::shared_ptr<int> member;
protected:
 base(const base&) {} // doesn't work at all!
};

Another, correct attempt would be this:

struct base
{
 std::shared_ptr<int> member;
protected:
 base(const base&);
};

base::base(const base&) = default; // tedious to write outside the
class definition

Conclusion
As suggested by this paper, I don't think a protected or even private special member function
should result in loss of triviality, and most importantly, such a function should definitely not be
considered user-provided just because it has different access than the implicitly declared function
would have.

I'm inclined to think it's a quality-of-implementation issue to diagnose the lack of triviality,
whether in the case of implicitly declared special member functions or in the case of special
member functions defaulted on first declaration. I consider forbidding defaulting non-public
special member functions on first declaration to be overkill for what it's seemingly trying to
achieve, and I consider it grossly incorrect from the design vocabulary point of view.

