
James Widman
Doug Gregor
ISO/IEC JTC1 SC22 WG21 N3282=11-0052 ‑ 2011‑03‑25

Resolution for core issues 1207 and 1017

Proposed resolution:

Change 5.1.1 expr.prim.general p2 as indicated and insert the new paragraphs 3, 4, and 5 after that (and move the
example from p2 to the end of the new p5):

2. The keyword this names a pointer to the object for which a non-static member function (9.3.2 class.this) is invoked or a
non-static data member's initializer (9.2 class.mem) is evaluated. The keyword this shall be used only inside the body of a
non-static member function (9.3 class.mfct) of the nearest enclosing class or in a brace-or-equal-initializer for a non-static
data member (9.2 class.mem). The type of the expression is a pointer to the class of the function or non-static data
member, possibly with cv-qualifiers on the class type. The expression is a prvalue.

3. If a declaration declares a member function or member function template of a class X , the expression this is a
prvalue of type "pointer to cv‑qualifier‑seq X" between the optional cv‑qualifier‑seq and the end of the
function‑definition, member‑declarator, or declarator. It shall not appear before the optional cv‑qualifier‑seq and it
shall not appear within the declaration of a static member function (although its type and value category are
defined within a static member function as they are within a non‑static member function). [Note: this is because
declaration matching does not occur until the complete declarator is known. — end note] Unlike the object
expression in other contexts, *this is not required to be of complete type for purposes of class member access
(5.2.5 expr.ref) outside of the member function body. [Note: Only class members declared prior to the declaration
are visible. ‑‑end note] [Example:

struct A {
 char g();
 template<class T> auto f(T t)->decltype(t + g())
 { return t + g();}
};
template auto A::f(int t)->decltype(t + g());

 — end example]

4. Otherwise, if a member‑declarator declares a non‑static data member (9.2 class.mem) of a class X, the expression
this is a prvalue of type "pointer to X" within the optional brace‑or‑equal‑initializer. It shall not appear elsewhere
in the member‑declarator.

5. The expression this shall not appear in any other context. [Example:

class Outer {
 int a[sizeof(*this)]; // error: not inside a member function
 unsigned int sz = sizeof(*this); // OK: in brace-or-equal-initializer

 void f() {
 int b[sizeof(*this)]; // OK

 struct Inner {
 int c[sizeof(*this)]; // error: not inside a member function of Inner
 };
 }
};

 — end example]

Change 5.1.1 expr.prim.general, old‑paragraph‑10, as indicated.

10. An id-expression that denotes a non-static data member or non-static member function of a class can only be used:

as part of a class member access (5.2.5 expr.ref) in which the object-expression refers to the member's class [
Footnote: This also applies when the object expression is an implicit (*this) (9.3.1 class.mfct.non-
static). — end footnote] or
a class derived from that class, or
to form a pointer to member (5.3.1 expr.unary.op), or

in the body of a non-static member function of that class or of a class derived from that class (9.3.1 class.mfct.non-
static), or
...

Change 9.3.1 class.mfct.non-static p3 as indicated:

3. When an id-expression (5.1 expr.prim) that is not part of a class member access syntax (5.2.5 expr.ref) and not used to
form a pointer to member (5.3.1 expr.unary.op) is used in the body of a non-static member function of class X a member
of class X in a context where this can be used (5.1.1 expr.prim.general) , if name lookup (3.4 basic.lookup) resolves
the name in the id-expression to a non-static non-type member of some class C, and if either the id-expression is
potentially evaluated or C is X or a base class of X, the id-expression is transformed into a class member access
expression (5.2.5 expr.ref) using (*this) (9.3.2 class.this) as the postfix-expression to the left of the . operator. [
Note: if C is not X or a base class of X, the class member access expression is ill-formed. — end note] Similarly
during name lookup, when an unqualified-id (5.1) used in the definition of a member function for class X resolves to a
static member, an enumerator or a nested type of class X or of a base class of X, the unqualified-id is transformed into a
qualified-id (5.1) in which the nested-name-specifier names the class of the member function. [Example: [...] — end
example]

