
N3173=10-0163: Terminology for constructing container elements (US115) Page 1 of 8

Doc No: N3173=10-0163

Date: 2010-10-17

Author: Pablo Halpern

 Intel, Corp.

 phalpern@halpernwightsoftware.com

Terminology for constructing container elements (US115)

Contents

National Body comments and issues .. 1

Document Conventions .. 1

Discussion ... 1

Proposed Wording ... 2

Example changes .. 6

References ... 8

National Body comments and issues

This paper proposes a complete resolution for comment US 115 to the July, 2010 FCD.

Document Conventions

All section names and numbers are relative to the August 2010 WP, N3126.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

Discussion

The resolution to LWG issue 704 (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-

defects.html#704) added a number of requirements to the container operations in order to

properly constrain the elements of the containers. Unfortunately, the current wording

effectively redefines the terms CopyConstructible and MoveConstructible and the phrase

“constructible with args” so that they have different meanings in the containers section than in

N3173=10-0163: Terminology for constructing container elements (US115) Page 2 of 8

the rest of the standard. This use of terminology is not only confusing and vague, it is also not

applied correctly through the section. There are some cases, in fact, when the terms

CopyConstructible and MoveConstructible are used with their original meanings, but the

reader would have no way to know that.

The best solution is to choose an entirely new and more precise set of terms and apply them

consistently and correctly in the containers section. This paper presents such a solution. It

expands on the partial resolution presented in the Additional Details section for US 115. The

suggested terms in this proposal differ from the terms suggested in the Additional Details

section for US 115. The following table shows the mapping between the terms used in the

current WP, the terms proposed in this paper, and (for reference), the terms originally

proposed in US 115:

Current WP/FCD US 115 Proposed

T is CopyConstructible X can copy-insert T T is CopyInsertable into X

T is MoveConstructible X can move-insert T T is MoveInsertable into X

T is constructible from args X can construct-insert T from

args

T is EmplaceConstructible

into X from args

Proposed Wording

Modify the following rows of 23.2.1, [container.requirements.general] Table 93:

Table 93 – Container requirements

expression return type operational

semantics

assertion/note

pre/post-condition

complexity

…
X(a); Requires: T is

CopyConstructible

CopyInsertable into

X (see below).
a == X(a)

linear

X u(a);

X u = a;

 Requires: T is

CopyConstructible

CopyInsertable into

X (see below).

post: u == a;

linear

N3173=10-0163: Terminology for constructing container elements (US115) Page 3 of 8

expression return type operational

semantics

assertion/note

pre/post-condition

complexity

X u(rv);

X u = rv;

 Requires: T is

MoveConstructible.

post: u shall be equal to

the value that rv had

before this construction.

(Note B)

I was hoping to avoid making a forward reference to the new term CopyInsertable, but

could not find a way to do it without rewriting the entire section.

With the exception of array, most containers do not require that their elements be

MoveConstructible in order to do a move. Thus, the last row above does not replace the

MoveConstructible requirement with the new MoveInsertable requirement.

Replace 23.2.1 [container.requirements.general], paragraph 15 as follows:

15 The descriptions of the requirements of the type T in this section use the terms CopyConstructible,

MoveConstructible, constructible from *i, and constructible from args. These terms are equivalent to the

following expression using the appropriate arguments:

 allocator_traits<allocator_type>::contruct(x.get_allocator(), q, args…);

where x is a non-const lvalue of some container type X and q has type X::value_type*. [Example: The

container is going to move construct a T, so will call:

 allocator_traits<allocator_type>::construct(x.get_allocator(), q, std::move(t));

The default implementation of construct will call:

 ::new (q) T(std::forward<T>(t)); // where forward is the same as move here, cast to rvalue

But the allocator author may override the above definition of construct and do the construction of T by some

other means. —end example]

Given a container type X having an allocator_type of A and a value_type of T and given an lvalue m

of type A, a pointer p of type T*, a value v of type T, or a value rv of type rvalue-of-T, the following terms are

defined. (If X is not allocator-aware, the terms below are defined as if A were std::allocator<T>.):

T is CopyInsertable into X means that the following expression is well-formed:

allocator_traits<A>::contruct(m, p, v);

T is MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::contruct(m, p, rv);

T is EmplaceConstructible into X from args, for zero or more arguments, args, means that the following

expression is well-formed:

allocator_traits<A>::contruct(m, p, args);

[Note: A container calls allocator_traits<A>::contruct(m, p, args) to construct an element

at p using args. The default of contruct in std::allocator will call ::new((void*) p) T(args)

but specialized allocators may choose a different definition. – end note]

N3173=10-0163: Terminology for constructing container elements (US115) Page 4 of 8

In section 23.2 [container.requirements], starting at Table 96, make the following text

replacements. Those entries marked do not change are exceptions to the other rules:

Original text, in WP Replacement text

key_compare is
CopyConstructible

do not change

hasher is
CopyConstructible

do not change

hasher and key_equal

are CopyConstructible

do not change

CopyConstructible CopyInsertable into X

MoveConstructible MoveInsertable into X

shall be constructible from shall be EmplaceConstructible into X from

is constructible from is EmplaceConstructible into X from

I have checked that no incorrect replacements will result if these rules are applied only to

section 23.2, starting at Table 96. Specifically, the following tables are affected:

 23.2.1 [container.requirements.general], Table 96 (shown below)

 23.2.3 [sequence.reqmts], Table 97 (shown below)

 23.2.3 [sequence.reqmts], Table 98

 23.2.4 [associative.reqmts], Table 99. Note to editor: several entries in Table 99 use the

identifier T. I believe all of them should be value_type.

 23.2.5 [unord.req], Table 100. Note to editor: several entries in Table 100 use the

identifier T. I believe all of them should be value_type.

(A couple of example tables can be found in the Example Changes section, below, to illustrate

the replacements.)

In sections 23.3 [sequences] through 23.4.1 [vector], make the following text substitutions:

Original text, in WP Replacement text

N3173=10-0163: Terminology for constructing container elements (US115) Page 5 of 8

non-

CopyConstructible

non-CopyInsertable

CopyConstructible CopyInsertable into *this

I have checked that no incorrect replacements will result if these rules are applied only to

sections 23.3 through 24.4.1. Specifically, the following paragraphs are affected:

 23.3.2.1 [deque.cons]/7 (constructor)

 23.3.2.2 [deque.capacity]/4 (resize)

 23.3.2.3 [deque.modifiers]/2 (push_back, etc.)

 23.3.3.1 [forwardlist.cons]/7 (constructor)

 23.3.4.1 [list.cons]/7 (constructor)

 23.3.4.2 [list.capacity]/4 (resize)

 23.4.1.1 [vector.cons]/7 (constructor)

 23.4.1.2 [vector.capacity]/2 (reserve) and /12 (resize). To make this readable, use “non-

CopyInsertable” instead of “non-CopyInsertable into X.”

 23.4.1.2 [vector.capacity]/10

 23.4.1.4 [vector.modifiers]/1 (push_back et al.). To make this readable, use “non-

CopyInsertable” instead of “non-CopyInsertable into X.”

Note that no changes are needed for the associative and unordered containers. Although these

containers make reference to CopyConstructible and MoveConstructible, they are in the

context of constructing a temporary value_type object before inserting it into the container.

In section 23.3.1.1 [array.cons], Add move requirements for array:

23.3.1.1 array constructors, copy, and assignment [array.cons]

The conditions for an aggregate (8.5.1) shall be met. Class array relies on the implicitly-declared special

member functions (12.1, 12.4, and 12.8) to conform to the container requirements table in 23.2. In addition to

the requirements specified in the container requirements table, the implicit move constructor and move

assignment operator for array require that T be MoveConstructible or MoveAssignable,

respectively.

N3173=10-0163: Terminology for constructing container elements (US115) Page 6 of 8

If we eliminate implicitly-defined move operations, will array lose its move constructor and

move-assignment operator? How will the above paragraph be affected?

Example changes

The changes listed below are covered by the general search-and-replace rules above. They are

explicitly shown here as examples to illustrate the nature of the change.

In section 23.2.1 [container.requirements.general], Table 96, modify the third column of

selected rows as follows:

Table 96 – Allocator-aware container requirements

expression return type assertion/note

pre/post-condition

complexity

…

X(t,m)

X u(t,m);

 Requires: CopyConstructible

CopyInsertable into X.
post: u == a,

get_allocator() == m

linear

…

X(rv,m)

X u(rv,m);

 requires: T shall be

MoveConstructible

MoveInsertable into X.

post: u shall have the same elements,

or copies of the elements, that rv had

before this construction,
get_allocator() == m

constant if m ==
rv.get_alloca

tor(), else linear

a = t X& Requires: T is CopyConstructible

CopyInsertable into X and

CopyAssignable.

post: a == t

linear

a = rv X& Requires: If allocator_-
traits<allocator_type>

::propagate_on_container_-

move_assignment::value is

false, T is MoveConstructible

MoveInsertable into X and

MoveAssignable. All existing

elements of a are either move assigned

to or destroyed.

post: a shall be equal to the value that

rv had before this assignment.

linear

In section 23.2.3 [sequence.reqmts], modify rows of table 97 as follows:

Table 97 – Sequence container requirements (in addition to container)

N3173=10-0163: Terminology for constructing container elements (US115) Page 7 of 8

Expression Return type Assertion/note

pre-/post-condition

X(n, t)

X a(n, t)

 Requires: T shall be CopyConstructible

CopyInsertable into X.

post: distance(begin(),end())== n

Constructs a sequence container with n copies

of t
X(i, j)

X a(i, j)

 Requires: T shall be constructible

EmplaceConstructible into X from *i.

For vector, if the iterator does not meet the

forward iterator requirements (24.2.5), T shall

also be MoveConstructible

MoveInsertable into X. Each iterator in

the range [i,j) shall be dereferenced

exactly once.

post: distance(begin(), end()) ==
distance(i, j)

Constructs a sequence container equal to the

range [i, j)

X(il); Equivalent to
X(il.begin(),il.end())

a = il; X& Requires: T is CopyConstructible

CopyInsertable into X and

CopyAssignable. Assigns the range

[il.begin(),il.end()) into a. All

existing elements of a are either assigned to

or destroyed.

Returns: *this.

a.emplace(p,args) iterator Requires: T is constructible

EmplaceConstructible into X from

args. For vector and deque, T is also

MoveConstructible MoveInsertable and

MoveAssignable.

Effects: Inserts an object of type T constructed

with std::forward<Args>(args)...

before p.

a.insert(p,t) iterator Requires: T shall be CopyConstructible

CopyInsertable into X. For vector and

deque, T shall also be CopyAssignable.

Effects: Inserts a copy of t before p.

a.insert(p,rv) iterator Requires: T shall be MoveConstructible

MoveInsertable into X. For vector and

deque, T shall also be MoveAssignable.

Effects: Inserts a copy of rv before p.

a.insert(p,n,t) iterator Requires: T shall be CopyConstructible

CopyInsertable into X and

CopyAssignable.

Effects: Inserts n copies of t before p.

N3173=10-0163: Terminology for constructing container elements (US115) Page 8 of 8

a.insert(p,i,j) iterator Requires: T shall be constructible

EmplaceConstructible into X from *i.

For vector, if the iterator does not meet the

forward iterator requirements (24.2.5), T shall

also be MoveConstructible

MoveInsertable into X and

MoveAssignable. Each iterator in the range

[i,j) shall be dereferenced exactly once.

pre: i and j are not iterators into a.

Effects: Inserts copies of elements in [i, j)

before p
a.insert(p, il); iterator a.insert(p,il.begin(),il.end())

…

a.assign(i,j) void Requires: T shall be constructible

EmplaceConstructible into X from *i

and assignable from *i. For vector, if the

iterator does not meet the forward iterator

requirements (24.2.5), T shall also be

MoveConstructible MoveInsertable

into X. Each iterator in the range [i,j)

shall be dereferenced exactly once.

pre: i, j are not iterators into a.

Effects: Replaces elements in a with a copy of

[i, j).

a.assign(il) void a.assign(il.begin(),il.end()).

a.assign(n,t) void Requires: T shall be CopyConstructible

CopyInsertable into X and

CopyAssignable.

pre: t is not a reference into a.

Effects: Replaces elements in a with n copies

of t.

Editorial note: This table is inconsistent in its used of the Effects label. I added them as I ran

across them, but they are unimportant to the content of this proposal.

References

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

