
N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 1 of 7

Doc No: N3165=10-0155

Date: 2010-10-15

Authors: Pablo Halpern

 Intel Corp..

 phalpern@halpernwightsoftware.com

Allocator Requirements: Alternatives to US88

Contents

National Body comments and issues .. 1

Document Conventions .. 1

Background ... 1

Argument for NAD ... 2

Size of the problem .. 2

Problem with the resolution proposed in US 88 ... 3

Alternate Resolution: Legacy Allocator Requirements .. 5

Proposed Wording ... 6

Other Alternatives Considered, but Rejected .. 7

Acknowledgements ... 7

References ... 7

National Body comments and issues

This paper addresses comment US 88 to the July, 2010 FCD.

Document Conventions

All section names and numbers are relative to the, August 2010 WP, N3126.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

Background

In comment US 88, it is correctly pointed out that the simplification to the allocator interface

made possible by the use of allocator_traits in the FCD weakens the Allocator

mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3126.pdf

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 2 of 7

Requirements relative to the C++03 standard. The consequence of this weakening is that an

allocator that is written to the minimal FCD specification may not work with a container that is

written to the C++03 specification. The author of US 88 proposes that the Allocator

requirements be restored to the C++03 specification and goes on to describe how an allocator

author is allowed to (and is perhaps encouraged to) inherit the boilerplate for an allocator

from std::allocator.

No existing code is broken by the weakening of the Allocator requirements, but it is

philosophically problematic, in general, to either strengthen or weaken named requirements

between revisions of the standard. Strengthening a named requirement can cause a type that

conforms to the requirement before the change to no longer conform after the change, and thus

no longer work with components that depend on the named requirement. Weakening a named

requirement can cause a component that depends on the requirement before the change to no

longer work with parameters that conform to the (weaker) requirement after the change (as in

the case of the Allocator requirement and containers that depend on Allocator). Thus

weakening a named requirement, even if existing code does not break, is problematic because

future code could be incompatible with existing code.

The question before the committee is whether this philosophical breakage is serious enough in

the case of Allocator to warrant making a change to the WP. If so, what should that change

be?

In this paper, I argue that US 88 should be resolved as NAD. However, if the committee

decides that the philosophical breakage is unacceptable, I also present an alternative resolution

that keeps the Allocator requirements minimal and also provides a model for changing other

named requirements in the future.

Argument for NAD

Size of the problem

As previously stated, no code written to the C++03 standard will break because of the changes

in the Allocator requirements. The standard containers defined in the FCD are, of course,

written to the weaker specification, and would therefore continue to work with existing user-

defined allocators written to the stronger C++03 specification. A new user-defined allocator,

written to the FCD specification, however, may not work with an existing user-defined

container written to the C++03 specification of Allocator.

Viewed as a grid, the allocator-container compatibility chart looks as follows:

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 3 of 7

 user-defined

C++03 container

user-defined

FCD container

standard FCD

container

user-defined C++03 allocator yes yes yes

user-defined FCD allocator no yes yes

standard FCD allocator yes yes yes

In my experience, most user-defined containers either don’t use allocators or are built on top of

standard containers and, therefore, inherit their support of allocators. The inability to create

portable stateful allocators in the past has resulted in allocators being largely ignored by

authors of user-defined containers. I assert that the single case that causes incompatibility

between a user-defined, FCD-compliant allocator and a user-defined C++03-compliant

container is extremely rare.

Problem with the resolution proposed in US 88

The reduced set of requirements for allocators dramatically reduces the complexity of simple

user-defined allocators. To retain some of this simplicity, the current proposed resolution

suggests that users inherit from std::allocator. Applying this suggestion, a simple

allocator might look like this:

template <class Tp>

class MyAllocator : public std::allocator<Tp>

{

public:

 template <class U>

 struct rebind

 {

 typedef MyAllocator<U> other;

 }

 MyAllocator(ctor args);

 template <class U>

 MyAllocator(

 const MyAllocator<U>&);

 Tp* allocate(std::size_t n);

 Tp* allocate(std::size_t,

 const_pointer);

 void deallocate(Tp*, std::size_t);

};

template <class Tp>

bool operator==(const MyAllocator&, const MyAllocator&);

template <class Tp>

bool operator!=(const MyAllocator&, const MyAllocator&);

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 4 of 7

It is my assertion that inheriting from std::allocator was never sound engineering

practice and has resulted in subtle bugs, particularly related to incorrectly inheriting rebind.

Some of these bugs were not seen until a template library was made available to other users.

The situation is worse in the case of stateful allocators because a stateful allocator derived from

std::allocator is likely to have a bug in operator== as well as in rebind. Many of the

changes to allocators in the FCD, including the elimination of weasel words and the addition

of allocator propagation traits, are designed to make stateful allocators more usable. Thus, the

use of std::allocator as a base class does not offer the same simplification as the reduced

allocator requirements and is likely to confuse a novice allocator author and sour him/her on

allocators entirely. (I reject any assertion that allocators are generally written by experts only.

I have seen a number of otherwise-reasonable attempts at allocators where relative novices

were derailed by exactly the subtleties I describe.)

Without the use of any inheritance tricks, we can compare a simple allocator written to the

current FCD requirements against a simple allocator written to the C++03 requirements:

FCD requirements
template <class Tp>

class MyAllocator

{

public:

 typedef Tp value_type;

 MyAllocator(ctor args);

 template <class U>

 MyAllocator(

 const MyAllocator<U>&);

 Tp* allocate(std::size_t n);

 void deallocate(Tp*, std::size_t);

};

template <class Tp>

bool operator==(const MyAllocator&,

 const MyAllocator&);

template <class Tp>

bool operator!=(const MyAllocator&,

 const MyAllocator&);

C++03 requirements
template <class Tp>

class MyAllocator

{

public:

 typedef Tp value_type;

 typedef Tp* pointer;

 typedef const Tp* const_pointer;

 typedef std::size_t size_type;

 typedef std::ptrdiff_t

 difference_type;

 typedef Tp& reference;

 typedef const Tp& const_reference;

 template <class U>

 struct rebind

 {

 typedef MyAllocator<U> other;

 }

 MyAllocator(ctor args);

 template <class U>

 MyAllocator(

 const MyAllocator<U>&);

 size_type max_size() const;

 pointer address(Tp&) const;

 const_pointer

 address(const Tp&) const;

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 5 of 7

 void construct(pointer, Tp&) const;

 void destroy(pointer) const;

 Tp* allocate(std::size_t n);

 Tp* allocate(std::size_t,

 const_pointer);

 void deallocate(Tp*, std::size_t);

};

template <class Tp>

bool operator==(const MyAllocator&,

 const MyAllocator&);

template <class Tp>

bool operator!=(const MyAllocator&,

 const MyAllocator&);

Although the code on the right may not appear horribly onerous, it must be remembered that

each of the 12 functions needs an implementation, no matter how trivial. It is a matter of

opinion as to whether this extra work constitutes a minor inconvenience or a major

inconvenience, but we must also consider how many programmers would be inconvenienced

verses how many would benefit. The original proposed resolution would require that all

allocator authors put in this extra effort, whereas leaving the FCD alone would require such an

effort only by those who wish to keep compatibility with the few user-defined containers that

were written strictly to the C++03 allocator requirements.

Alternate Resolution: Legacy Allocator Requirements

Allocator requirements comprise only one out of many named sets of requirements in both the

C++03 standard and the FCD. If named requirement sets were to be frozen for all time, it

would hamper the Standard Committee’s efforts to create a more expressive standard C++

language and library in the future. Yet, carelessly changing requirements will cause

significant problems for programmers and will slow the adoption of future standards. What is

needed is a graceful way to change requirements going forward. One possible way is to

preserve existing old requirements while defining the new requirements as a subset or

superset of the old ones. If the new requirements are intended to replace the old ones, then the

old ones might be renamed and perhaps deprecated. This approach allows interfaces to older

generic code to continue to be specified in terms of the old requirements, at least during the

transition. The approach described here can also be applied to named Concepts, if and when

concepts are eventually added to the standard.

The proposed wording below applies this deprecation idea to the allocator requirements by

reviving the original C++03 Allocator requirements, renaming them to LegacyAllocator

requirements, and moving them to Appendix D (deprecated features).

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 6 of 7

Proposed Wording

D.11 LegacyAllocator Requirements

Insert the following section into appendix D (Compatibility features):

D.11 LegacyAllocator Requirements [depr.legacy.alloc]

The library defines a standard set of requirements for legacy allocators, which are a superset of the

requirements for allocators defined in [allocator.requirements], Table 42. Specifically, the following optional

allocator members described in Allocator requirements are required (i.e., not optional) in a type that conforms

to the LegacyAllocator requirements:

– pointer

– const_pointer

– size_type

– difference_type

– rebind

– allocate with hint
– max_size

It is likely that reference and const_reference will be added back to table 42. If so, then

they should be added to the list above and removed from the table below.

Table xyz defines additional requirements for legacy allocators. Variables used within this table are described in

Table 41.

Table xyz – LegacyAllocator requirements (in addition to Allocator requirements)

Expression Return type Assertion/note

pre-/post-condition
X::reference T&

X::const_reference const T&

a.address(r) X::pointer a.address(r) == p

a.address(s) X::const_pointer a.address(s) == q

a.construct(p, t) (not used) Effect: Constructs an object of type

T at p. (See note A, below)

a.destroy(p) (not used) Effect: Destroys the object at p. (See

note A, below)

Note A: The actual signatures of the construct and destroy functions may be different from that

specified in the table, provided that they may be called with arguments of the specified types.

The LegacyAllocator requirements may be used to describe parameters of user-defined templates that use

allocators but not allocator_traits. All of the allocators defined in the standard for which pointer is

the same as T* conform to the LegacyAllocator requirements (in addition to the Allocator

requirements). Reference to these requirements is deprecated and they are not referenced elsewhere in this

standard. [Note: users are encouraged to use allocator_traits in order to make their code dependent on

only the (weaker) Allocator requirements – end note]

N3165=10-0155: Allocator Requirements: Alternatives to US88 Page 7 of 7

Other Alternatives Considered, but Rejected

It would be possible to create a legacy_allocator_adaptor that would allow a C++0x

allocator to be used with a container written according to the C++03 Allocator requirements. A

partial implementation of this idea exists and I believe it is viable, but I consider the problem

that such a class would solve to be small enough that it is not worth burdening the standard

with another class. However, if the committee believes that such a class is the preferred

resolution, I would be willing to draft wording and create a reference implementation.

Another way to simplify C++03 compatibility is to provide a base class that supplies the

boilerplate for C++03 Allocator requirements. Such a base class has been fully implemented, in

fact, and even supports generalized pointer types. This approach was seen as inferior to the

adaptor idea, however, because a base-class requires that C++03 compatibility be considered at

class-definition time whereas an adaptor can be used to create compatibility after the fact.

Acknowledgements

Thanks to Howard Hinnant and Daniel Krugler for supporting my efforts to keep allocators

simple for the allocator author. Thanks to Doug Gregor for helping me understand how

Concepts and requirements can evolve between revisions of the standard. Thanks to John

Lakos and others for reviewing and editing this paper.

References

N2982: Allocators post Removal of C++ Concepts

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2982.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3102.pdf

