Document Number: N3035=10-0025

Date: 2010-02-16
Revises: N3000=09-0190
Reply to: Pete Becker

Roundhouse Consulting, Ltd.
pete@versatilecoding.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC

Contents

Contents
List of Tables
List of Figures

1 General

1.1 Scope ..o
1.2 Normative references
1.3 Definitions
14 Implementation compliance
1.5 Structure of this International Standard
1.6 Syntax notation L oL
1.7 The C++ memory model
1.8 The C++ object model
1.9 Program execution
1.10 Multi-threaded executions and data races
1.11 Acknowledgments oL
2 Lexical conventions
2.1 Separate translation oL
2.2 Phases of translation o000
2.3 Character sets e
2.4 Trigraph sequences
2.5 Preprocessing tokens Lo oL L
2.6 Alternative tokens
2.7 Tokens
2.8 Comments e e
2.9 Header names
2.10 Preprocessing numbers
2.11 Identifiers
212 Keywords
2.13 Operators and punctuators
2.14 Literals e
3 Basic concepts
3.1 Declarations and definitions
3.2 One definition rule
3.3 Scope ...
3.4 Name lookup
3.5 Program and linkage
3.6 Start and termination
3.7 Storage duration
3.8 Object lifetime o
3.9 Types . ..o
3.10 Lvaluesand rvalues

CONTENTS

N3035=10-0025

ii

xiv

15

................ 15
................ 15
................ 16
................ 17
................ 18
................ 18
................ 19
................ 19
................ 19
................ 20
................ 20
................ 21
................ 21
................ 22

31

................ 31
................ 33
................ 35
................ 41
................ 59
................ 58
................ 61
................ 65
................ 68
................ 74

ii

©ISO/IEC N3035=10-0025

3.11 Alignment L e e 75
4 Standard conversions 77
4.1 Lvalue-to-rvalue conversion L e 78
4.2 Array-to-pointer conversiono e e 78
4.3 Function-to-pointer conversion 78
4.4 Qualification conversions L. 78
4.5 Integral promotions L 79
4.6 Floating point promotion Lo 80
4.7 Integral cOnNversionso e e e e e e e e 80
4.8 Floating point conversions Lo 80
4.9 Floating-integral conversions L oL L 80
4.10 Pointer conversionso e e e e e e 81
4.11 Pointer to member conversions Lo e 81
4.12 Boolean conversions o i e e e e e e e 82
4.13 Integer conversion ranko Lo 82
5 Expressions 83
5.1 Primary expressions e e e 85
5.2 Postfix expressions 92
5.3 Unary expressions.l 104
5.4 Explicit type conversion (cast notation) Lo Lo 111
5.9 Pointer-to-member operators oL 112
5.6 Multiplicative operators 113
5.7 Additive operators L. 113
5.8 Shift operators L L 114
5.9 Relational operators 115
5.10 Equality operators L 116
5.11 Bitwise AND operator 117
5.12 Bitwise exclusive OR operator 117
5.13 Bitwise inclusive OR operator 117
5.14 Logical AND operator e 117
5.15 Logical OR operator e 118
5.16 Conditional operator e 118
5.17 Assignment and compound assignment operatorso 119
5.18 Comma operator e e e e e 120
5.19 Constant expressionso i e e e e e e 121
6 Statements 123
6.1 Labeled statement L 123
6.2 Expression statement oL oL 123
6.3 Compound statement or block L 123
6.4 Selection statements L 124
6.5 Iteration statements Lo 126
6.6 Jump statements L L e 129
6.7 Declaration statement 130
6.8 Ambiguity resolution Lo 131
7 Declarations 133
7.1 Specifiers L 134
7.2 Enumeration declarationso L 148

CONTENTS iii

©ISO/IEC N3035=10-0025
7.3 NamesSpacCes v v v i e e e e e e 151
7.4 The asm declarationo 164
7.5 Linkage specifications L e 165
7.6 Attributes L e 168

8 Declarators 174
8.1 Typenames L 175
8.2 Ambiguity resolutiono 176
8.3 Meaning of declarators 177
8.4 Function definitions e 190
8.5 Initializers e e e e e 192

9 Classes 206
9.1 Class NAINES o o e 208
9.2 Class members 210
9.3 Member functions L 212
94 Static members L 215
9.5 Unions e 217
9.6 Bit-fields e 218
9.7 Nested class declarations e e e e e e 219
9.8 Local class declarations 220
9.9 Nested type names L e 221

10 Derived classes 222
10.1 Multiple base classes 223
10.2 Member name lookupo 225
10.3 Virtual functions e e e e 228
10.4 Abstract classes e e e 232

11 Member access control 234
11.1 Access specifiers L L 236
11.2 Accessibility of base classes and base class members 237
11.3 Access declarations 239
11.4 Friends s 240
11.5 Protected member access 243
11.6 Access to virtual functions 244
11.7 Multiple access e e 245
11.8 Nested classes o e e e e e 245

12 Special member functions 246
12.1 Constructors e e e 246
12.2 Temporary objects L 248
12.3 Conversions e 250
12,4 Destructors e e e e e e e e e e e e 253
12.5 Freestore e 256
12.6 Imitialization e e 258
12.7 Construction and destruction e 263
12.8 Copying class objects L 266
12.9 Inheriting Constructors. L 272

13 Overloading 276
CONTENTS iv

©ISO/IEC

13.1
13.2
13.3
13.4
13.5
13.6

Overloadable declarations
Declaration matching L 0L
Overload resolution
Address of overloaded function
Overloaded operators
Built-in operatorso L L

14 Templates

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Exported templates L oL
Template parameters
Names of template specializations
Template arguments L.
Type equivalence
Template declarations
Name resolution oo
Template instantiation and specialization
Function template specializations

15 Exception handling

15.1
15.2
15.3
15.4
15.5

Throwing an exception
Constructors and destructors
Handling an exception
Exception specifications
Special functions oL o oL

16 Preprocessing directives

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Conditional inclusion
Source file inclusion L.
Magcro replacement oL oo
Line control
Error directive
Pragma directive o
Null directive
Predefined macronames
Pragma operator L oo

17 Library introduction

17.1
17.2
17.3
17.4
17.5
17.6

General
The C standard library
Definitions
Additional definitions oL
Method of description (Informative)
Library-wide requirements

18 Language support library

18.1
18.2
18.3
18.4
18.5
18.6

General
Types o
Implementation properties
Integer typeso
Start and termination Lo
Dynamic memory management

CONTENTS

N3035=10-0025

308

................ 309
................ 309
................ 312
................ 314
................ 320
................ 321
................ 336
................ 349
................ 361

380

................ 381
................ 383
................ 383
................ 385
................ 387

390

................ 392
................ 393
................ 394
................ 399
................ 400
................ 400
................ 400
................ 400
................ 401

403

................ 403
................ 404
................ 404
................ 407
................ 407
................ 414

424

................ 424
................ 424
................ 425
................ 434
................ 435
................ 437

©ISO/IEC N3035=10-0025

18.7 Type identification L 442
18.8 Exception handlingo 444
18.9 Imitializer lists 450
18.10 Other runtime support L 451
19 Diagnostics library 453
19.1 General L 453
19.2 Exception classes e 453
193 ASSertions e 457
19.4 Error numbers e e 458
19.5 System error SUpport L. L e 458
20 General utilities library 470
20.1 General e e 470
20.2 Requirementso e e e 470
20.3 Utility components 477
204 Tuples . . . Lo e 484
20.5 Class template bitset e e 493
20.6 Compile-time rational arithmetic 500
20.7 Metaprogramming and type traits L L 502
20.8 Function objects 516
209 Memory 536
20.10 Time utilities L e 577
20.11 Date and time functions L 591
20.12 Class type_indexo 591
21 Strings library 594
21.1 General 594
21.2 Character traitS e e e e 594
21.3 String classes L. e e 600
21.4 Class template basic_string Lo 603
21.5 Numeric Conversions e 630
21.6 Null-terminated sequence utilities L L o oo 631
22 Localization library 635
22.1 General e 635
22.2 Header <locale> SYNOPSIS« v v v v vt e e e e e e e e e 635
22.3 Locales e 636
22.4 Standard locale categorieso e 648
22.5 Standard code conversion facets 688
22.6 CLibrary Locales e 690
23 Containers library 691
23.1 General e 691
23.2 Container requirements Lo e e e e 691
23.3 Sequence containers i i e e e e 713
23.4 Associative containers L. e 750
23.5 Unordered associative containers 768
24 Tterators library 782
24.1 General e e e 782

CONTENTS vi

©ISO/IEC

24.2
24.3
24.4
24.5
24.6

Tterator requirements
Header <iterator> synopsis
Iterator primitives
Iterator adaptors
Stream iterators

25 Algorithms library

25.1
25.2
25.3
25.4
25.5

General
Non-modi
Mutating

C library

fying sequence operations
sequence operations
Sorting and related operations
algorithms o Lo

26 Numerics library

26.1 General
26.2 Numeric type requirements
26.3 The floating-point environment
26.4 Complex numbers Lo
26.5 Random number generation
26.6 Numeric arrays Lo e
26.7 Generalized numeric operations
26.8 CLibrary
27 Input/output library
271 General
27.2 Jostreams requirements oL
27.3 Forward declarationso Lo
27.4 Standard iostream objects Lo
27.5 Jostreams base classes
27.6 Stream buffers.o
27.7 Formatting and manipulators00 L.
27.8 String-based streams oL
279 File-based streams Lo oL
28 Regular expressions library

28.1 General
28.2 Definitions
28.3 Requirements Lo
28.4 Header <regex> synopsis.
28.5 Namespace std::regex_constants.
28.6 Class regex_error
28.7 Class template regex_traits
28.8 Class template basic_regex
28.9 Class template sub_match
28.10 Class template match_results
28.11 Regular expression algorithms
28.12 Regular expression Iterators
28.13 Modified ECMAScript regular expression grammar

29 Atomic operations library

29.1

General

CONTENTS

N3035=10-0025

816

................ 816
................ 826
................ 830
................ 839
................ 853

855

................ 855
................ 855
................ 856
................ 857
................ 867
................ 911
................ 931
................ 935

940

................ 940
................ 941
................ 941
................ 943
................ 945
................ 965
................ 975
................ 1002
................ 1013

1028

................ 1028
................ 1028
................ 1029
................ 1031
................ 1037
................ 1042
................ 1042
................ 1045
................ 1050
................ 1056
................ 1060
................ 1064
....................... 1070

1073

................ 1073

vii

©ISO/IEC

29.2
29.3
294
29.5
29.6
29.7
29.8

Header <atomic> synopsis
Order and Consistency,
Lock-free Property
Atomic Types
Operations on Atomic Types
Flag Type and Operations
Fences

30 Thread support library

30.1
30.2
30.3
30.4
30.5
30.6

General
Requirements oo
Threads
Mutual exclusion
Condition variables
Futures

A Grammar summary

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
A1l
A12
A3
A.14

Keywords
Lexical conventions
Basicconcepts. o o
Expressions Lo
Statements
Declarations
Declarators
Classes v o i e e
Derived classes
Special member functions
Overloading
Templates
Exception handling
Preprocessing directives

B Implementation quantities

C Compatibility

Cl Ct++tandISOC
C.2 Standard C library
D Compatibility features
D.1 Increment operator with bool operand
D.2 statickeyword.
D.3 Access declarations L
D4 register keyword L.
D.5 C standard library headers
D.6 Old iostreams members
D.7 charkstreams. o
D.8 Binders
D.9 auto_ptr

E Cross references

Index

CONTENTS

N3035=10-0025

©ISO/IEC N3035=10-0025

Index of Grammar Productions 1233
Index of Library Names 1236
Index of Implementation Defined Behavior 1270

CONTENTS ix

©ISO/IEC N3035=10-0025

List of Tables

N O Uk W N

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39

Trigraph sequences L L 17
Alternative tokens L L 19
Keywords e e 21
Alternative representations L e 21
Types of integer constants L 23
Escape sequences L e e 25
String literal concatenations oL Lo 28
Relations on const and volatile Lo 73
simple-type-specifiers and the types they specify oo oL 145
Relationship between operator and function call notation 284
Conversionso e e e e 292
Library categories e 403
Ct++ library headers e e 415
CH+ headers for C library facilities 415
C++ headers for freestanding implementations 416
Language support library summaryo L 424
Header <cstddef> synopsis o o e e e e e e e 424
Header <climits> Synopsis o v i i e e e e e e e e e e 434
Header <cfloat> SYyNopsis v v v vt i e e e e 434
Header <cstdlib> Synopsis o o oo i it e e 435
Header <cstdarg> synopsis e 451
Header <csetjmp> Synopsis L e 451
Header <ctime> Synopsis e e e 451
Header <csignal> Synopsis o vt i it e e e e e e e 452
Header <cstdlib> Synopsis o o v v it e e e 452
Header <cstdbool> SYNOPSIS . .+« v v v v v v i e e e e e e e 452
Diagnostics library summary oL L 453
Header <cassert> Synopsis o e 457
Header <cerrno> synopsis 458
General utilities library summary L. 470
EqualityComparable requirements o 471
LessThanComparable requirements oo it e e 471
MoveConstructible requirements L. Lo e 471
CopyConstructible requirements L L e 471
MoveAssignable requirements 471
CopyAssignable requirements L Lo e 472
Swappable requirements Lo 472
Destructible requirements Lo Lo e e e 472
Descriptive variable definitions o 472

List of Tables List of Tables X

©ISO/IEC N3035=10-0025

40
41
42
43
44
45
46
47
48
49
50
51
52
593
o4
95

56
o7
o8
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74

75
76
7
78
79
80
81
82
83
84
85
86
87

Allocator requirements L. e e e e e e e 474
Primary type category predicates Lo e 505
Composite type category predicates L oL L 506
Type property predicates L 507
Type property queries L Lo e e e e 510
Type relationship predicates e e 511
Const-volatile modifications 512
Reference modifications L 512
Sign modificationso 513
Array modifications 513
Pointer modificationso 514
Other transformations e 514
Header <cstdlib> Synopsis o v v v i i e e e e 577
Header <cstring> SynopsiS v v v v v v v it e 577
Clock requirements oL e e 580
Header <ctime> Synopsis o e e e 591
Strings library summary oL L e 594
Character traits requirements L L e 595
basic_string(const Allocator&) effects 608
basic_string(const basic_string&) effectso oL 608
basic_string(const basic_string&, size_type, size_type, const Allocator&) effects . 609
basic_string(const charT#, size_type, const Allocator&) effects. 609
basic_string(const charT#*, const Allocator&) effects 609
basic_string(size_t, charT, const Allocator&) effects 610
basic_string(const basic_string&, const Allocator&) and basic_string(basic_string&&,

const Allocator&) effects 610
operator=(const basic_string<charT, traits, Allocator>&) effects 611
operator=(const basic_string<charT, traits, Allocator>&&) effects 611
compare() results 624
Potential mbstate_t dataraces L 633
Header <cctype> Synopsis« .« v v i it e e e e e 633
Header <cwctype> Synopsis oo e e e e 633
Header <cstring> SynopSiS v v v v v v v vt e e e 633
Header <cwchar> Synopsis o o v i i e e e e e e e e e 633
Header <cstdlib> synopsis oL e e e e 634
Header <cuchar> Synopsis o o 0 o e e e e e e 634
Localization library summary L 635
Locale category facets e 639
Required specializations 640
do_in/do_out result values e 658
do_unshift result values e 658
Integer conversions L L e e 662
Length modifier 662
Integer conversions L e e e e 666
Floating-point conversions L e e e 666
Length modifier e 667
Numeric COnversions o . o vt e e e e e e e e e 667
Fill padding o o e e 668
do_get_date effects L L 675

List of Tables List of Tables xi

©ISO/IEC N3035=10-0025

88
89

90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105

106
107

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129

130
131
132

Header <clocale> Synopsis o v v i i i e e e e e e e e 690
Potential setlocale dataraces L. 690
Containers library summary oo e e 691
Container requirementso e e 692
Reversible container requirements L. L L e e e e 694
Allocator-aware container requirements en e 695
Sequence container requirements (in addition to container) L. 697
Optional sequence container operations Lo 700
Associative container requirements (in addition to container) 702
Container requirements that are not required for unordered associative containers. 706
Unordered associative container requirements (in addition to container) 707
Iterators library summary L. oL e e e 782
Relations among iterator categories Lo 782
Input iterator requirements Lo Lo 784
Output iterator requirementso e 784
Forward iterator requirements oL Lo 785
Bidirectional iterator requirements (in addition to forward iterator). 786
Random access iterator requirements (in addition to bidirectional iterator) 787
Algorithms library summaryo e e e 816
Header <cstdlib> Synopsis« o o v v i i e e e e e e e e 853
Numerics library summaryo e e e 855
Header <cmath> Synopsis L e e e 935
Header <cstdlib> Synopsis v o v v i i e e e 935
Input/output library summary 940
fmtflags effects L 951
fmtflags constants L 951
iostate effects L L 951
openmode effects L 952
seekdir effects L L 952
Position type requirements L oL oL e 957
basic_ios::init() effects e 959
basic_ios::copyfmt() effects Lo 961
seekoff positioning 1007
newoff values L L e 1007
File open modes e e e 1017
seekoff effects L 1019
Header <cstdio> Synopsis o o e 1026
Header <cinttypes> Synopsis« . . . i e e e 1027
Regular expressions library summaryo Lo 1028
Regular expression traits class requirements oL 1029
syntax_option_type effects 1038
regex_constants: :match_flag_type effects when obtaining a match against a character con-

tainer sequence [first,last). Lo e 1040
error_type values in the C locale L 1041
match_results assignment operator effects o oo 1057
Effects of regex_match algorithm o000 1060

List of Tables List of Tables xii

©ISO/IEC N3035=10-0025

133

134
135
136
137

138

139
140
141
142
143

144
145
146
147
148
149

Effects of regex_search algorithm L oL 1062
Atomics library summary Lo e 1073
Atomics for built-in types 1083
Atomics for standard typedef types 1084
Atomic arithmetic computations 1090
Thread support library summary L L 1094
Standard macros e e e 1171
Standard valueso 1171
Standard types e e e e 1171
Standard structs L L e e e e e 1171
Standard functions L e e e e 1172
Cheaders e e 1175
strstreambuf (streamsize) effects Lo 1179
strstreambuf (void* (%) (size_t), void (%) (voidx*)) effects 1179
strstreambuf (charT#*, streamsize, charTx) effects 1179
seekoff positioning 1182
newoff values L L e 1182

List of Tables List of Tables xiii

©ISO/IEC N3035=10-0025

List of Figures

1 Directed acyclic graph e e 223
2 Non-virtual base L 224
3 Virtual base e 225
4 Virtual and non-virtual base L Lo 225
5 Name lookup L e e 227
6 Stream position, offset, and size types [non-normative] Lo 940

List of Figures List of Figures Xiv

©ISO/IEC N3035=10-0025

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:199089 Programming languages — C' (hereinafter referred to as the C' standard). In addition
to the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, name-
spaces, inline functions, operator overloading, function name overloading, references, free store management
operators, and additional library facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C

— ISO/IEC 9899:1999/Cor.2:2004, Programming languages — C

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C' to support new character
data types

§1.2 1

©ISO/IEC N3035=10-0025

The library described in Clause 7 of ISO/IEC 9899:1999 and Clause 7 of ISO/IEC 9899:1999/Cor.1:2001
and Clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the C99 standard library.?

The library described in ISO/TEC TR 19769:2004 is hereinafter called the C Unicode TR.
The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.3 defines additional terms that are used only in Clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 [defns.argument]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual
parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [Note: Each implementation
documents all conditionally-supported constructs that it does not support. — end note]

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.4 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [Example:
if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived from
B (Clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly. — end
example] The dynamic type of an rvalue expression is its static type.

1.3.5 [defns.ill.formed]
ill-formed program

- a wannabe C++ program that is not

well-formed.

2) With the qualifications noted in Clauses 18 through 30 and in C.2, the C standard library is a subset of the C++ standard
library.

§1.3 2

©ISO/IEC N3035=10-0025

1.3.6 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents.

1.3.7 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.3).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch Clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter type list (8.3.5) of a function, as well as the class or namespace of which it
is a member. If a function or function template is a class member its signature additionally includes the
cv-qualifiers (if any) and the ref-qualifier (if any) on the function or function template itself. The signature
of a function template additionally includes its return type and its template parameter list. The signature
of a function template specialization includes the signature of the template of which it is a specialization
and its template arguments (whether explicitly specified or deduced). [Note: Signatures are used as a basis
for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type

the type of an expression (3.9), which type results from analysis of the program without considering execution
semantics. The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible

§1.3 3

©ISO/IEC N3035=10-0025

undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance
of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note|

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard. — end note]

1.3.15 [defns.well.formed]
well-formed program

a Ct++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming imple-
mentation shall, within its resource limits, accept and correctly execute® that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access
to these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete CH++ program (2.2).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which

3) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

§1.4 4

©ISO/IEC N3035=10-0025

execution may take place without the benefit of an operating system, and has an implementation-defined
set of libraries that includes certain language-support libraries (17.6.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the templates, classes, functions, constants, and macros that constitute the
library, in a form described in Clause 17.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this International Standard, each example is introduced by “[Ezample:” and terminated by
“ —end ezample]”. Each note is introduced by “[Note:” and terminated by “ — end note]”. Examples and
notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of.” If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional

b2

terminal or nonterminal symbol is indicated by the subscript “,,; 7, so
{ expressionop: ¥
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X'’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

4) This documentation also defines implementation-defined behavior; see 1.9.

©ISO/IEC N3035=10-0025

1.7 The C++ memory model [intro.memory]|

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain any member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

[Note: the representation of types is described in 3.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
non-zero width. [Note: Various features of the language, such as references and virtual functions, might
involve additional memory locations that are not accessible to programs but are managed by the imple-
mentation. — end note| Two threads of execution (1.10) can update and access separate memory locations
without interfering with each other.

[Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by
a zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

[Example: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢
together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end ezample]

1.8 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. — end note] An object is created by a definition (3.1), by a new-expression (5.3.4) or
by the implementation (12.2) when needed. The properties of an object are determined when the object is
created. An object can have a name (Clause 3). An object has a storage duration (3.7) which influences
its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object
is created. Some objects are polymorphic (10.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 5)
used to access them.

©ISO/IEC N3035=10-0025

Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

[Note: Ct++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution)]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.”

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof (int)). These constitute the parameters of the abstract ma-
chine. Each implementation shall include documentation describing its characteristics and behavior in these
respects. Such documentation shall define the instance of the abstract machine that corresponds to that
implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this International
Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution for a given
program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior
as one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this International
Standard places no requirement on the implementation executing that program with that input (not even
with regard to operations preceding the first undefined operation).

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

§ 1.9 7

©ISO/IEC N3035=10-0025

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which
are neither

— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)

are unspecified, and the value of any object not in either of these two categories that is modified by the
handler becomes undefined.

An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device
is implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: more stringent corre-
spondences between abstract and actual semantics may be defined by each implementation. — end note]

[Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.” For example, in the following fragment

int a, b;

Sk

a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which
overflows produce an exception and in which the range of values representable by an int is [-32768,+32767],
the implementation cannot rewrite this expression as

a = ((a +Db) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a ((a + 32765) + b);

or

a (a + (b + 32765));

7) Overloaded operators are never assumed to be associative or commutative.

10

11

12

13

©ISO/IEC N3035=10-0025

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note|

A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. A call to a destructor generated at the end of the lifetime of
an object other than a temporary object is an implicit full-expression. Conversions applied to the result of
an expression in order to satisfy the requirements of the language construct in which the expression appears
are also considered to be part of the full-expression.

[Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::8(int)
S s2 = 2; // full-expression is call of S::8(int)
void £() {
if (8(3).v()) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{7
}

— end example]

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. — end note]

Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. FEwvaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for lvalue evaluation and fetching
a value previously assigned to an object for rvalue evaluation) and initiation of side effects. When a call to
a library I/O function returns or an access to a volatile object is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B, if
A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before
B and B is not sequenced before A, then A and B are unsequenced. [Note: The execution of unsequenced

evaluations can overlap. — end note] Evaluations A and B are indeterminately sequenced when either A
is sequenced before B or B is sequenced before A, but it is unspecified which. [Note: Indeterminately
sequenced evaluations cannot overlap, but either could be executed first. — end note]

§ 1.9 9

14

15

©ISO/IEC N3035=10-0025

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note| The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.

[Example:

void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9

i=i++ + 1; // the behavior is undefined
i=1i+1; // the value of i is incremented

£f(1i = -1, i = -1); // the behavior is undefined
}

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. [Note: Value
computations and side effects associated with