
Doc no: N3002=09-0192
Date: 2009-10-23
Reply-To: Gabriel Dos Reis

gdr@cs.tamu.edu

Gaussian Integers in the Standard Library

Gabriel Dos Reis

Texas A&M University

Abstract

This document addresses an often requested and overdue support
for complex integers in the Standard Library. The proposed wording
is based on LIA-3, the third part of the ISO standard for language in-
dependent arithmetic dealing specifically with Gausian integers and
floating point complex numbers.

1 Generalities

Replace paragraph 26.4/2 with

The effect of instantiating the template complex for any type other than
the arithmetic types (except bool and char) is unspecified. Each in-
stantiation complex<T> is a literal type if the template argument T is a
literal type.

The LIA-3 standard calls for a datatype for purely imaginary complex num-
bers. This document does not add one, deferring to the user-defined literal
proposal to use the suffix i for imaginary complex literals. Please, note the
constexpr construct make it possible to define such a literal class with the
same efficiency as a builtin one.

2 Synopsis

Add the following specializations to the header synopsis 26.4.1

1



N3002=09-0192

template<> class complex<signed char>;
template<> class complex<unsigned char>;
template<> class complex<short>;
template<> class complex<unsigned short>;
template<> class complex<int>;
template<> class complex<unsigned>;
template<> class complex<long>;
template<> class complex<unsigned long>;
template<> class complex<long long>;
template<> class complex<unsigned long long>;

The Annex C.3 of LIA-3 does not explicitly mention bindings for the (in-
teger type) template argument T of precision less than int or greater than
long long. However, for practical purposes (e.g. embedded systems, DSP,
etc.) this document allows T to be either signed char, unsigned char,
short, unsigned short, long long and unsigned long long.

3 Complex specializations

Add the following explicit specializations to 26.4.3 for each arithmetic type
T other than bool and char:

template<> class complex<T> {
typedef T value_type;
constexpr complex(T re = T(), T im = T());

constexpr T real();
void real(T);
constexpr T imag();
void imag(T);

complex<T>& operator=(T);
complex<T>& operator+=(T);
complex<T>& operator-=(T);
complex<T>& operator*=(T);

template<typename X>
complex<T>& operator=(const complex<X>&);

template<typename X>
complex<T>& operator+=(const complex<X>&);

template<typename X>
complex<T>& operator-=(const complex<X>&);

template<typename X>
complex<T>& operator*=(const complex<X>&);

};

Note: Because of the new narrowing rules, I believe that it is no longer nec-
essary to add explicit constructors to convert from wider precision integers

Dos Reis 2



N3002=09-0192

to narrower precision complex integers.

4 complex non-member operations

Add the following paragraph to 26.4.6:

The effect of instantiating non-member operations on complex inte-
gers other than I/O operations, ring operations, comparison opera-
tions is unspecified.

Note: This rules out division on complex integers.

5 complex value operations

Add the following paragraph to 26.4.7:

The effect of instantiating abs, arg, proj, and polar on complex inte-
gers is unspecified.

6 complex transcendentals

Add the following paragraph to 26.4.8:

The effect of instantiating transcendental functions other than pow(const
complex<T>&, const T&) on complex integers is unspecified.

Dos Reis 3


