
N2981=09-0171: Proposal to Simplify pair (rev 3) Page 1 of 6 

Doc No: N2981=09-0171 

Date: 2009-10-23 

Authors: Pablo Halpern 

 Intel Corp.. 

 phalpern@halpernwightsoftware.com 

Proposal to Simplify pair (rev 3) 

Contents 

Background ............................................................................................................................................... 1 

Changes from N2945 ............................................................................................................................... 2 

Changes from N2834 ............................................................................................................................... 2 

Document Conventions .......................................................................................................................... 2 

Discussion ................................................................................................................................................. 2 

Proposed Wording ................................................................................................................................... 3 

References ................................................................................................................................................. 6 

Background 

In the C++98 standard, the pair class template had only three constructors, excluding the 

compiler-generated copy-constructor. It was a very simple class template that could be easily 

understood. A number of language and library features were introduced since then. 

Constructors were added to take advantage of new language features as well as to implement 

new features in the map, multimap, unordered_map and unordered_multimap 

containers, for which pair plays a central role. Basically, these new constructors were added 

to support: 

 Conversion-construction of the first and second members 

 Move-construction of the pair as a whole, and of its individual members 

 emplace functions in the map containers 

 Passing an allocator to the first and second members for support of scoped 

allocators. 

Unfortunately, most of these new features were orthogonal, nearly causing a doubling of the 

number of constructors to support each one. At one point, pair had 14 constructors 

(excluding the compiler-generated copy constructor)! That number has since been reduced to 9 

by identifying redundant constructors. The previous version of this paper (N2834) proposed a 

mailto:phalpern@halpernwightsoftware.com


N2981=09-0171: Proposal to Simplify pair (rev 3) Page 2 of 6 

number of approaches that could be used to reduce the number of constructors, if not back to 

the 1998 set, at least to a manageable number. 

Changes from N2945 

Fixed incorrect description of scoped_allocator_adapator::construct for pairs.  

(Description now matches reference implementation.)  Miscellaneous corrections. 

Changes from N2834 

This revision reflects guidance from a straw poll of the LWG (at the March 2009 meeting in 

Summit, NJ) expressing interest in proposal 1, 2 and 3 of N2834. Proposal 0 (to do nothing) and 

proposal 4 (to create a general-purpose way to construct pair with arbitrary arguments) were 

removed. Concepts were removed and some additional normative text has been added to the 

scoped_allocator_adaptor section. 

Document Conventions 

All section names and numbers are relative to the, March 2009 WP, N2857. 

Existing working paper text is indented and shown in dark blue.  Edits to the working paper are shown with 

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text. 

Comments and rationale mixed in with the proposed wording appears as shaded text. 

Requests for LWG opinions and guidance appear with light (yellow) shading.  It is expected 

that changes resulting from such guidance will be minor and will not delay acceptance of this 

proposal in the same meeting at which it is presented. 

Discussion 

Part of the problem with containers that are defined in terms of pair is the need to pass 

constructor arguments to both the first and second data members. This need resulted in a 

number of pair constructors that mirror the individual constructors of the data members and 

have nothing to do with pair itself. For example, the emplace proposal added a variadic 

constructor for the second part of the pair, even though such a constructor is not natural or 

otherwise useful.  Similarly, the scoped allocator proposal added constructors that may supply 

an allocator argument to the construction of first and/or second. By constructing the 

members of pair separately (without calling a pair constructor) we can eliminate the need 

for these extra constructors. 



N2981=09-0171: Proposal to Simplify pair (rev 3) Page 3 of 6 

This proposal is to eliminate the pair constructors with variadic arguments and the pair 

constructors with allocator arguments. Instead, the emplace methods of ordered and 

unordered maps and multimaps will pass their variadic argument lists directly to the 

constructor of second and four new overloads of the construct methods of 

scoped_allocator_adaptor will pass the inner allocator directly to constructors of first 

and second, without calling the pair constructor.  In this way, the logic necessary to 

implement emplace and scoped allocators is put in the appropriate place, without distorting 

the pair interface. 

Removing the variadic constructors from pair requires adding an r-value reference 

constructor for move-construction of first and second. (This functionality was handled by one 

of the variadic versions.) The effective change to pair in this proposal is the elimination of five 

constructors and the reinstatement of one constructor, for a net reduction of four constructors. 

Proposed Wording 

Note to the editor: this paper may be easier to integrate after N2946, if both are accepted. 

20.2.3 Pairs [pairs] 

Add language to the introduction in ¶ 1 as follows: 

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching 

function template to simplify their construction and several templates that provide access to pair objects as 

if they were tuple objects (see 20.4.1.4 and 20.4.1.5).  

The following text from previous versions of this document has been removed: 

As an alternative to the constructors provided, an object of a pair specialization may be 

constructed in uninitialized memory of the correct size and alignment by separately 

constructing the first and second members, e.g., using placement new (18.6.1.3 

[new.delete.placement]) and may similarly be destroyed separately by separately 

calling destructors on first and second. [Example: 

  pair<X, Y> *p = ::operator new(sizeof(pair<X,Y>)); 

  try { 

    ::new ((void*)&p->first) X(arg1, arg2, arg3); 

    try { 

      ::new ((void*)&p->second) Y(arg4, arg5); 

    } 

    catch (...) { 

      p->first.~X(); // exception in Y constructor 

      throw; 

    } 



N2981=09-0171: Proposal to Simplify pair (rev 3) Page 4 of 6 

  } 

  catch (...) { 

    ::operator delete(p); // exception in X or Y constructor 

    throw; 

  } 

  // *p is now fully constructed 

– end example] 

It is hard to imagine an implementation where the above example would not “just work,” but 

there is nothing in the standard that allows an object to be constructed in pieces like this, even 

if the object being constructed has no virtual functions and no virtual inheritance. The LWG 

agrees that a general language feature would be preferable to special treatment for pair and 

would prefer to see such a feature adopted by Core.  The absence of such a feature effectively 

prevents a user from writing a standard-conforming container that exactly matches the 

interface for map, multimap, etc..  For this reason, we believe it is vital to adopt some wording 

before CD2  in order to avoid a NB comment demanding it after the CD. 

In struct pair remove the variadic and allocator-extended constructors and add a member-

wise move constructor: 

template<class U, class V> 

    pair(U&& x, V&& y); 

template<class U, class... Args> 

    pair(U&& x, Args&&... args); 

 

// allocator-extended constructors 
template<class Alloc> 

  pair(allocator_arg_t, const Alloc& a); 

template<class U, class V, class Alloc> 

  pair(allocator_arg_t, const Alloc& a, const pair<U, V>& p); 

template<class U, class V, class Alloc> 

  pair(allocator_arg_t, const Alloc& a, pair<U, V>&& p); 

template<class U, class... Args, class Alloc> 

  pair(allocator_arg_t, const Alloc& a, U&& x, Args&&... args); 

Remove ¶ 6 through ¶ 10 including the duplicate versions of the constructors above: 

template<class U, class... Args> 

    pair(U&& x, Args&&... args); 

6 Effects: The constructor initializes first with std::forward<U>(x) and second with 

std::forward<Args>(args)... 

7 … 

8 … 

9 … 



N2981=09-0171: Proposal to Simplify pair (rev 3) Page 5 of 6 

10 Effects: The members first and second are each constructed as ConstructibleWithAllocator objects with 

constructor arguments (allocator_arg_t(), a, std::forward<U>(x)) and (allocator_ arg_t(), a, 

std::forward<Args>(args)...), respectively. 

and insert a new ¶ 6: 

template<class U, class V> 

    pair(U&& x, V&& y); 

6 Effects: The constructor initializes first with std::forward<U>(x) and second with 

std::forward<V>(y). 

Remove the specialization of uses_allocator and 

constructible_with_allocator_prefix for pairs: 

template <class T1, class T2, class Alloc> 

  struct uses_allocator<pair<T1, T2>, Alloc>; 

 

template <class T1, class T2> 

  struct constructible_with_allocator_prefix<pair<T1, T2>{>}; 

} 

 

template <class T1, class T2, class Alloc> 

  struct uses_allocator<pair<T1, T2>, Alloc> : true_type { }; 

 Requires: Alloc shall be an Allocator (20.2.2). 

 [ Note: Specialization of this trait informs other library components that pair can be constructed with an 

allocator, even though it does not have a nested allocator_type. —end note ] 

 

template <class T1, class T2> 

  struct constructible_with_allocator_prefix<pair<T1, T2> > 

    : true_type { }; 

 

  [ Note: Specialization of this trait informs other library components that pair can be constructed with an 

allocator prefix argument. —end note] 

20.8.7 Scoped allocator adaptor [allocator.adaptor] 

In section [allocator.adaptor] (20.8.7), add new construct members for 

scoped_allocator_adapator: 

 

  template <class T, class... Args> 

    void construct(T* p, Args&&... args); 

  template <class T1, class T2> 

    void construct(pair<T1,T2>* p); 

  template<class T1, class T2, class U, class V> 

    void construct(pair<T1,T2>* p, U&& x, V&& y); 

  template <class T1, class T2, class U, class V> 

    void construct(pair<T1,T2>* p, const pair<U,V>& x); 



N2981=09-0171: Proposal to Simplify pair (rev 3) Page 6 of 6 

  template <class T1, class T2, class U, class V> 

    void construct(pair<T1,T2>* p, pair<U,V>&& x); 

 

In section [allocator.adaptor.members] (20.8.7.4), add descriptions of new construct 

functions: 

template <class T1, class T2> 

  void construct(pair<T1,T2>* p); 

Effects: OUTERMOST(*this).construct(std::addressof(p->first)); 

OUTERMOST(*this).construct(std::addressof(p->second)); 

Throws: if an exception is thrown while constructing p->second, then the destructor for p->first is 

invoked. Any exception thrown by either constructor is rethrown. 

template<class T1, class T2, class U, class V> 

  void construct(pair<T1,T2>* p, U&& x, V&& y); 

Effects: OUTERMOST(*this).construct(std::addressof(p->first),std::forward<U>(x)); 

OUTERMOST(*this).construct(std::addressof(p->second),std::forward<V>(y)); 

Throws: if an exception is thrown while constructing p->second, then the destructor for p->first is 

invoked. Any exception thrown by either constructor is rethrown. 

template <class T1, class T2, class U, class V> 

  void construct(pair<T1,T2>* p, const pair<U,V>& x); 

Effects: OUTERMOST(*this).construct(std::addressof(p->first), x.first); 

OUTERMOST(*this).construct(std::addressof(p->second), x.second); 

Throws: if an exception is thrown while constructing p->second, then the destructor for p->first is 

invoked. Any exception thrown by either constructor is rethrown. 

template <class T1, class T2, class U, class V> 

  void construct(pair<T1,T2>* p, pair<U,V>&& x); 

Effects: OUTERMOST(*this).construct(std::addressof(p->first),std::move(x.first)); 

OUTERMOST(*this).construct(std::addressof(p->second),std::move(x.second)); 

Throws: if an exception is thrown while constructing p->second, then the destructor for p->first is 

invoked. Any exception thrown by either constructor is rethrown. 

References 

N2946: Allocators post Removal of C++ Concept  

N2834: Several Proposals to Simplify pair 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2946.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2834.pdf

