Docunment: N2911=09- 0101
Dat e: 2009- 06- 19
Aut hors: Dan Tsafrir
dan.tsafrir@mail.com
Robert W W sni ewksi
bobww@us. i bm com
Davi d F. Bacon
bacon@s.i bm com
Bj arne Stroustrup
bs@s. tamu. edu

Minimizing Dependencies within Generic Classes
for Faster and Smaller Programs

mailto:dan.tsafrir@gmail.com
mailto:bobww@us.ibm.com
mailto:bacon@us.ibm.com
mailto:bs@cs.tamu.edu

Draft for OOPSLA 2009

Minimizing Dependencieswithin Generic Classes
for Faster and Smaller Programs

Dan Tsafrif Robert W. WisniewsKi David F. Bacof Bjarne Stroustrup
fIBM T.J. Watson Research Center °Texas A&M University
{dants,bobww,bacon}@us.ibm.com bs@cs.tamu.edu
Abstract compile-time type safety. In languages like C++, C#, and D,

generic programming also allows for improved performance
through compile-time polymorphism as follows 47.] 36].

compile-time polymorphism is narrower than that of run- Rather than generating only one version of the code (by us-
time polymorphism, and it might bloat the object code. We ing dynamic binding to hide the differences between type

advocate a programming principle whereby a generic C|assp_)arameters), the comp_ilerlemits a different cer instantia
should be implemented in a way that minimizes the depen-t'on for each new combination of the parameterized types. It

dencies between its members (nested types, methods) and its therefore ab_le tF) perf(_)rm static_bindiqg, which enables a
generic type parameters. Conforming to this principle 1) r oSt of otherwise inapplicable optimizations, notablpsta
duces the bloat and (2) gives rise to a previously uncondeive based on inlining. The price is a potential increase in dbjec

manner of using the language that expands the applicabil-C°d€ Size, sometimes denoted as “bloat 824 4] .
ity of compile-time polymorphism to a wider range of prob- Generic classes often utilize nested types when defining

lems. Our contribution is thus a programming technique that their interface([BL25]. A notable examP'e is the ite_ratdrs 0
generates faster and smaller programs. We apply our ideas> | L+ the ISO C++ Standard Template Library. STL is among

to GCC’s STL containers and iterators, and we demonstratetNn® Most widely used generic frameworks. We will use it

notable speedups and reduction in object code size (real apthroughoutthis paper to demonstrate our ideas (in Sefttion 8

plication runs 1.2x to 2.1x faster and STL code is 1x to 25x We Will generalize to other libraries/languages). Thesiter
smaller). We conclude that standard generic APIs (like STL) conceptis mterwov_en n glmost every aspect of STL.)
should be amended to reflect the proposed principle in the Nested classes implicitly depend on all the generic pa-

interest of efficiency and compactness. Such modifications "@meters of the outer class in ‘_’Vhi?h they nest. Consider for
will not break old code, simply increase flexibility. Our find ~ €X@mple the STL sorted contained::set<T,C,A> (which

ings apply to languages like C++, C#, and D, which realize stores items of the typ€, compares items with a compara-

generic programming through multiple instantiations. tor of the typeC, and (de)allocates memory with an allocator
of the typeA). If two sets agree oif but disagree o€ or

Categories and Subject D_eﬂ:riptors D.3.3 [Prog_ramming A, then the corresponding nested iterators are of different
Languagep Polymorphism; D.3.3 Programming Lan- types. This means that the code snippet in Fiflire 1 does not
guage§ Data types and structures typically compile due to type-mismatch errors.

Generic classes can be used to improve performance by al
lowing compile-time polymorphism. But the applicabilitf o

General Terms Design, measurement, performance set<int,C1,Al>:iterator il;
set<int,C2,A1>:iterator i2 = i1; // different comparator

Keywords Generics, templates, SCARY assignments and))) :)
set<int,C1,A2>:iterator i3 = i1; // different allocator

initializations, generalized hoisting

) Figure 1. Can this code have a valid meaning? Can it be com-
1. Introduction piled by existing compilers? Can it be useful?

Generic programming is supported by most contempo-

rary programming languageE]24] to achieve such goals as And indeed, our repeated experience is that, when pre-

sented with Figur&ll, well-read and experienced program-
mers initially react negatively and feel that this code snip
pet is in flagrant violation of the type system. When further
presented with a “hypothetical” possibility that the srepp

1The resulting generated code can actually be smaller thahiwbbtained
when using dynamic binding; but this is unrelated to our dksdim of
[Copyright notice will appear here once "preprint’ opti@removed.] “bloat”, which is theincreasein size caused bgdditional instantiations.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 1 2009/6/19

might nevertheless compile on existing compilers, they do able, regardless of the comparators and allocators utilized by
not understand the semantics of the code, and they fail to sedhe associated containers. So while the SCARY assignments
why it could ever be useful. appear “new” and possibly counterintuitive, there is nochee
This paper is dedicated to refuting the perception of pro- to invent new semantics and to modify the compiler and lan-
grammers regarding Figuké 1. Specifically, we show that it guage in order to make them work.
is possible (and rather easy) to implement the nested type
(the iterator) and its encapsulating class (the containea)
way that makes Figufd 1 be 1SO standard conforming and When programmers need to handle objects with different
accepted by existing unmodified C++ compilers. We further types in a uniform manner, they typically introduce an ab-
show that doing so is highly beneficial, because it yields a straction layer that masks the differences between thestype

superior design that has two important advantages: For example, to uniformly handle a “Circle” and a “Trian-
gle”, we use runtime polymorphism and make them part of
a class hierarchy headed by an abstract “Shape” base class.

The same technique (introducing an abstract base class)
2. it allows us to write faster programs and improve the is used to handle iterators with different types in a uniform

performance, by utilizing statements as in Fiddre 1. manner. But when dependencies are minimized as advocated
Consequently, the answer to the questions raised in the Cap_above_, the type differences may no longer exist, making 't?‘r
tion of Figure[l is “yes”. ators mtgrchangeable apd obV|e_1t|r.19 the need for apsﬂmch

and runtime polymorphism. (This is analogous to discover-
ing that “Circle” and “Triangle” actually have the same type
and are in fact interchangeable.) As noted, runtime polymor
phism incurs a performance penalty (e.g., hindering inlin-
ing), which is avoided if compile-time polymorphism and
static binding are employed instead. This is the source of
our performance improvement.

Notice, however, that the improvementrist merely the
result of minimizing dependencies, which is necessary but
%suﬁicientfor this purpose. Rather, programmers must pro
gram in a certain way: theyustutilize SCARY assign-

1.2 Improving Performance

1. it emits less code when instantiating generic algorithms
and so it yields smaller executables, and

1.1 Minimizing Dependencies

Let us denote assignments and initializations like those
shown in Figur&ll as “SCARY assignmerfis”.

We contend that a container design that explicitly allows
SCARY assignments to compile is more correct than a de-
sign that does not allow it or that ignores the issue. The-well
known design principle that underlies this claim is tha&ind
pendent concepts should be independently represented an
should be combined only when needed [48]. The inability to

compile Figurdll serves as indication that this principle wa ments, as these constitute the only way by which the inter-

violated, because it proves that iterators depend on C@npar ,angeahility can be exploited to improve the performance.
tors and allocators, whereas STL iterators need not depend In SectiondP anfl3 we show how to solve the classical
on compgrgtor_s or aIIo.cat.ors, as there.is nothing in the 1SO multi-index database problem without and with SCARY as-
C++ specification that indicates otherwise. signments, and we highlight the advantages of the latter ap-

\We no(tjec;hat thde on!y m_earr]ungful |mpI|cat|pn of suchdun- {)roach. In Sectiohl4 we evaluate the competing designs us-
warranted dependencies is that SCARY assignments do N0y, microhenchmarks and a real application, and we demon-

compile and so the aforementioned benefits (reduced bloat,Strate speedups between 1.2x to 2.1x for the application
better performance) are prevented. The fact that the specifi ' ' '

cation of ISO C++ is silent regarding this issue (namely, it 1.3 The Need for Standar dization

does not specify whether or not iterators should depend ongince the above benefits are nonnegligible and since obtain-
comparators and allocators) attests a lack of awareness ofnq them is nearly effortless, we contend that classes shoul
our proposed approach and its benefits. _ be implemented to allow SCARY assignments. But this is
_Technically, the unwarranted dependencies can be easilynot enough. We further contend that ability to utilize SCARY
eliminated by moving the definition of the nested iterator to assignments should be specified as part of the API; other-
an external scope and replacing it with an alias to the Now- yise their use would be nonportable and might break with
external iterator; by using only as its generic parameter, gjfferent or future versions of an implementation.
we eliminate the unwarranted dependencies. Doing so al- The general conclusion is that designers should be mind-
lows Figure[l to compile under unmodified compilers and f,| when utilizing nested types as part of the interface.
prqwdes _semantlcs to its SCARY assignments: f[he lterators gpecifically, they should aspire to minimize the dependen-
i1,i2, andi3 have the same type, which is a generic class that cjes petween the inner classes and the type parameters, and
only depends off. The iterators thus beconmeterchange- they should specify interfaces to reflect that. This will not
break existing code. Rather, it would provide programmers
2 The acronym SCARY describes assignments and initializatibat are with the flexibility to leverage the interchangeabilitycams
Seemingly erroneous (appeari@gnstrained by conflicting generic param- discuss next. it \)//vould elimgi]nate code bloa?cause)(/j by over-

eters), buiActually work with theRight implementation (unconstrained b _ -
the conflict due to minimized dependencies). constrained inner classes.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 2 2009/6/19

vendor compiler operating system iterator

1 Intel C++ Compiler 11.0 Professional (ICC) Windows depantd

2 Microsoft Visual C++ 2008 (VC++) Windows dependent

3 IBM XL C/C++V10.1 (xIC) AIX dependent

4 Sun Sun Studio 12 C++5.9 OpenSolaris, Linux dependent

5 Borland CodeGear C++ Builder 2009 Windows dependent

6 GNU GCC4.3.3 *NIX not dependent
7 Intel C++ Compiler 11.0 Professional (ICC) Lingxsing the STL of GCC) not dependent

8 IBM XL C/C++V10.1 (xIC) Linux (using the STL of GCC) not dependent

Table 1. Iterators may be declared as inner or outer, and therefene itiay or may not depend on the comparator and allocator; the
compiler’s vendor is free to make an arbitrary decision.ilutaw, this has been a non-issue. (Listing includes mostmecompiler versions
as of Feb 2009. The “iterator” column is based on the defauntilation mode. Borland has recently sold CodeGear to Ecab@ro Tech.)

1.4 Reducing Code Bloat 1.6 Contributionsand Paper Roadmap

Replacing inner classes with aliases that minimize depen-The novelty of our work ismotin coming up with a technical
dencies reduces code bloat for two reasons. First, it unifiesway to reduce the dependencies between inner classes and
redundant multiple instantiations of the inner classeshWi type parameters (see Table 1). Rather, it is (1) in idemtifyi

out this unification, member methods of a nested iterator that this issue matters, (2) in recognizing that minimizing
could be instantiated once for each comparator and alloca-dependencies between the members and the type parameters
tor combination, even though all instantiations yield ititen of a generic class is a valuable design principle that can be
cal object code. The second, more important, reason is thatutilized to improve performance and reduce bloat, (3) in
any generic algorithm for which the inner class serves as aconceiving SCARY assignments and generalized hoisting
type parameter would, likewise, be uselessly duplicated. F that make it possible to realize and exploit this principle,
example, iterators are used to parameterize most STL algo-and (4) in doing the experimental work that quantifies the
rithms (e.g.std::copy, std::find, std::sort, etc.). When such benefits and substantiates the case.

an algorithm is used, any change in the iterator type will ~ To summarize, our contribution is a technique that can
prompt another algorithm instantiation, even if the chasge reduce the amount of emitted generic code and make it
meaningless. run faster. This statement is supported by Secfidfy 2—6 (as

Reducing bloat by replacing inner classes with aliases candescribed above) in the context of C++. We then discuss how
be further generalized to also apply to member methods ofthe compiler and language can provide support to our ideas
generic classes, which, like nested types, might useldssly (Sectior¥), we generalize our results to other programming
pend on certain type parameters simply because they residéanguages (Sectidd 8), we discuss related work (SeEtion 9),
within a generic class’s scope. (Again, causing the compile and we conclude (Secti¢nl10).
to uselessly generate many identical or nearly-identital i
stantiations of the same method.) To solve this problem we 2. M otivation

propose a “generalized hoisting” design paradigm, which |, this section we describe the problem chosen to demon-
decomposes a generi(? class into a hiergrchy thgt eliminatesstrate the benefits of the technique we propose (Sdetibn 2.1)
unneeded dependencies. We define this technique in SeCy then describe the two standard ways to solve the problem
tion[, apply itto standar_d GCC/STL containersin Sedtion 6, (Section§ZI2 and3.3). In Sectibh 3 we will develop a third,
and show that the resulting code can be up to 25x smaller. - honstandard, solution that utilizes SCARY assignments, an
. we will compare it to the latter two.
15 Generalizing The three solutions are short, which allows us to provide
We note that generalized hoisting is not just useful to min- their full (compiling) code, promoting clarity, and, more
imize dependencies between member methods and generiamportantly, allowing us to precisely identify the reasdors
parameters; it can also be similarly applied as an alterna-the performance benefits of our approach.
tive way to minimize dependencies between member classes
(that is, inner classes) and generic parameters. Accord-2-1 TheProblem
ing to this doctrine, instead of moving the iterator defini- In a nutshell, what we want is a database of items that
tion to an external scope, we could (1) define a base class(1) is sorted in different ways to allow for different traver
for std::set<T,C,A> that is parametrized by only, and sal orders, and that (2) supports efficient item insertien, r
(2) move the iterator definition, as is, to this base class-Co moval, and lookup. Numerous applications make use of such
sequently, generalized hoisting can be viewed as a generaldatabases. For brevity, we assume that the items are isteger
ization of our idea from Sectidn].1. (these may serve as “handles” to the associated objects). Le

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 3 2009/6/19

operation return complexity description

add (int i) void O(K -logN) addito the database

del (int i) void O(K -logN) deletei from the database

begin (int k) ltert O(1) return iterator to beginning of database when sorted bkAtiesorting criterion

end (int k) Itert O(1) return iterator to end of database when sorted bykttiesorting criterion

find (int k, inti) Itert O(logN) return iterator td within sequence that starts wiblegin(k), returnend(k) if not found

Table 2. The operations we require our database to support. Thebl@afidenotes an item and may hold any value. The variallenotes
a sorting criteria and is in the range= 0, 1, ... ,K-1. Thelter_t type supports the standard pointer-like iterator openatio

K denote the number of different sorting criteria, and let
N denote the number of items that currently populate the — . .
database. Tab[@ 2 specifies the database operations and the \\;::ISZII :I::::g: Zﬁg'(';() :g z:gﬂg: 2,322:23:(5)
required runtime complexity. virtual operator=()
The operatioradd anddel respectively add and delete * virtual operator*()
one item to/from the database and do s@if¥ - logN)
time. The operationbegin andend respectively return the
beginning and end of the sequence of items that populate | Concrete Aggregate 1 IQ—'| Concrete Iterator 1 |
the database, sorted by tkeh sorting criterion. Both oper-
ations return an object of the typrer_t, which is an iterator
that supports the usual iterator interface (of primitivénpo
ers) similarly to all the STL containers; e.g., Figlite 2 show | Iterator begin() { return new Concretelterator2(this) }EI
how to print all the items ordered by theth sorting crite-
rion. All the operations in Figuild 2 ar@(1), includingbegin
andend and the iterator operations (initializatios=", in-

Aggregate +‘ ‘+ Iterator

[eN=NeoNe]

I

|o Concrete Aggregate 2 Concrete lterator 2 |

Figure 3. The classic iterator design pattern. While the notation
is adapted to match that of STL iterators, the latter do notleto
the classic pattern, and they have a narrower applicability

equality “1=", increment “+-+", and dereferencex”). Con-

sequently, the entire traversal is don&iV) time.
Itert b = db.begin(k); also similar. We are going to implement each sorting cri-
Iter_t e = db.end(k); terion as a container (“concrete aggregate”) that is sorted
for(lter_t p=b; p !=e; ++p) { printf("%d ", *p); } differently. Naturally, we are going to use STL containers

(these are readily available and provide performance aimil
to that of hand-specialized code), such that each container
employs a different comparator. But different comparator
The last supported operationfiad, which searches far types imply different iterator types, whereas Tdlle 2 déxta
within the sequence of database items sorted bykttie just one iterator type for all sorting criteria. We therefor
criterion. If i is found, the associated iterator is returned have no choice but to utilize an abstract iterator base atass
(dereferencing this iterator would yiei)d otherwise end(k) order to hide the type differences as shown in Fidilire 3.
is returned. Thus, if users just want to check whether or not ~ We stress that, contrary to common beliefl[L7, 19, 52],
i is found in the database (and do not intend to use the re-C++/STL iterators danot model the classic design pattern.
turned iterator), they can arbitrarily use, elg=0, as below: They do not involve runtime polymorphism and dynamic
binding, there is no iterator base class, and different con-
if(db.find(0,i) !'= db.end(0)) { /*found! ... x/ } tainers have different iterators that do not share a common
ancestor. STL iterators are thus more performant (fatlita
(An arbitraryk can be used, because findirig some sorted inlining), but they are applicable to a narrower range obpro
sequence meanss found in all the other sequences.) Users lems. In particular, they are not applicable to our problem,
may alternatively be interested in the returned iterator of which requires dynamic binding as illustrated in Figidre 3.
some specifik, e.g., if they want to examine the neighbors Figured#EB include the complete database implementa-
of i according to a specific order. The runtime complexity of tion, and Figurd1d exemplifies how to define one database
find is O(logN). instance. We shall now address these figures one by one.
) Figure[4 showsSorter_t, which is the abstract “aggre-
22 Using an Abstract Iterator gate” interface (for each sorting criterion there will beson
If the stated problem appears familiar, it is because itis si Sorter_t). Figure[® useSorter_t to implement the database
ilar to the problem that motivates the classic iteratorgiesi in a straightforward way. I$orter_t's insertion, deletion, and
pattern as defined in the seminal work by Gamma efal. [23, lookup areO(logN), and if itsbegin andend areO(1), then
pp. 257-271] and as illustrated in Figlide 3. The solution is the database meets our complexity requirements (Table 2).

Figure 2. Iterating through the multi-index database using the
k-th sorting criterion and printing all items.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 4 2009/6/19

struct Sorter_t { struct Database_t {
std: :vector<Sorter_t*> v;
virtual “Sorter_t() {} const int K;
Database_t(const std::vector<Sorter_t*>& u) : v(u), K(u.size()) { }
virtual void add (int i) = 0; void add (int i) { for(int k=0; k<K; k++) v[k]->add(i); 1}
virtual void del (int i) = 0; void del (int i) { for(int k=0; k<K; k++) v[k]->del(i); 1}
virtual Iter_t find (int i) = 0; Iter_t find (int k, int i) { return v[k]->find(i); }
virtual Iter_t begin() =0; Iter_t begin(int k) { return v[k]->begin(); }
virtual Iter_t end () = 0; Iter_t end (int k) { return v[k]->end(); }
}; };
Figured. The aggregate (pure virtual interface). Figure5. The database encapsulates a vector of aggregates.
// IB_t = Iterator Base Type template <typename IntSetIter_t> struct IA_t : public IB_t {
// IA_t = Iterator Adapter Type
IntSetIter_t i;
struct IB_t { const IA_t& dc(const IB_t& r) // dc = downcast (IB_t to IA_t)
{ return *dynamic_cast<const IA_t*>(&r); }
virtual “IB_t() {}
IA_t(IntSetIter_t iter) : i(iter) {}
virtual bool operator!=(const IB_t& r)= 0; virtual bool operator!=(const IB_t& r) { return i != dc(r).i; ¥
virtual IB_t& operator= (const IB_t& r)= 0; virtual IB_t& operator= (const IB_t& r) { i=dc(r).i; return *this;}
virtual IB_t& operator++() = 0; virtual IB_t& operator++() { ++i; return *this; }
virtual int operator* () = 0; virtual int operator* () { return *i; b
virtual IB_t* clone () comst = 0; virtual IB_t* clone () const { return new IA_t(i); }
}; };

Figure 6. Left: the abstract (pure virtual) iterator interfackB_t. Right: a concrete implementatidd_t of the iterator interface. As the
latter is generic, it in fact constitutes a family of conaémplementations. Specifically, it adapts any::set<int, C>::iterator to the IB_t
interface, regardless of the specific type of the comparétor

struct Iter_t { template<typename IntSet_t>
struct Container_t : public Sorter_t {
IB_t *p;
IntSet_t s;
Iter_t(const Iter_t& i) {p=i.p->clone(); } typedef typename IntSet_t::iterator INative_t;
Iter_t(const IB_t& i) {p=i.clone(); } Iter_t wrap(const INative_t& 1)
“Iter_t() {delete p; p=0; } {return Iter_t(IA_t<INative_t>(i));}
bool operator!=(const Iter_t& r) {return *p != *r.p; } Container_t() {}
Iter_t& operator++() {++(*p); return *this;} virtual void add (int i) {s.insert(i); }
int operator* () {return *x*p; } virtual void del (int i) {s.erase(i); }
Iter_t& operator= (const Iter_t& r) virtual Iter_t find (int i) {return wrap(s.find(i));}
{delete p; p=r.p->clone(); return *this;} virtual Iter_t begin() {return wrap(s.begin());}
virtual Iter_t end () {return wrap(s.end());}
s I

Figure 7. The Iter_t proxy rids users from the need to work with Figure 8. The generic (templatelontainer_t adapts any
pointers to iterators, and from having to explicitly dealdde them. std::set<int,C> type to theSorter_t interface, regardless of the
This is the class which is used in Figud§1—5. type ofC.

Figure® (left) showsB_t, which stands for “iterator base STL containers and iterators as is. We must adapt them to
type”. This is the abstract iterator interface. It decladthe our interfaces. FigurEl6 (right) showA_t, which stands
pointer-like iterator operations as pure virtual. For oees for “iterator adapter type”. This generic class adapts any
to be shortly addressetB_t is not the iterator type used in set<int,C>::iterator type to thelB_t interface, regardless
Figured®Eb. For the same reasons, in addition to the peinter of the actual type of the comparat@r Having to handle
like operations|B_t also declares theone operation, which different iterator types necessitaldst’s genericity.
returns a pointer to a copy of the iterator object; the copy IB_t andlA_t are seemingly all that we need to complete
resides on the heap and is allocated witv. the implementation of our database. But technically, mati

As noted, theconcreteiterators and containers we use polymorphism only works through pointers or references,
as examples are the highly optimized STL containers and typically to heap objects. While in principle we could define
iterators. STLstd::sets are suitable for our purposes, as lter_t (from Table[®) to be a pointer, this would place the
they sort unique items by user-supplied criteria, and they burden of explicitlydelete-ing iterators on the users, which
meet our complexity requirements. However, we cannot useis unacceptable. The solution is to deflte_t as a proxy to

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 5 2009/6/19

struct 1t {

bool operator() (int x, int y) const {return x < y;}
};
struct gt {

bool operator() (int x, int y) const {return x > y;}

};

Container_t< std::set<int,lt> > cont_lt;
Container_t< std::set<int,gt> > cont_gt;

std: :vector<Sorter_t*> v;
v.push_back(&cont_1lt);
v.push_back(&cont_gt);

Database_t db(v);

Figure 9. Creating a database that utilizes two sorting criteria,
under the design that abstracts the iterator, which is impated
in Figured3E8. (Variables witltt or gt types are function objects.)

an|IB_t pointer, as shown in Figufd 7. We can see thatt
manages the pointer without any user intervention.
Figure[® completes the picture by showifigntainer t,
the generic class that adapts asty::set<int,C> type to
the Sorter_t interface, regardless of the type 6f Once
again, having to handle differesitd::set types mean§on-
tainer_t must be generic. Notice hoWontainer_t uses its
wrap method to transform the STL iterator into kar_t.

bool cmp_lt(int x, int y) {return x < y;}
bool cmp_gt(int x, int y) {return x > y;}

typedef bool (*CmpFunc_t) (int x, int y);
typedef std::set<int,CmpFunc_t> Sorter_t;
typedef Sorter_t::iterator Iter_t;

Sorter_t set_1t(cmp_lt);
Sorter_t set_gt(cmp_gt);

std: :vector<Sorter_t*> v;
v.push_back(&set_1lt);
v.push_back(&set_gt);

Database_t db(v);

Figure 10. Creating the database with the design that abstracts
the comparator is simpler, requiring only Figui® 5 and thiddi-
tional type definitions. (Compare with Figurk 9.)

call overhead when (indirectly) used through tBet inter-
face. This price might be heavy when compared to native
std::set iterators, because the latter are not only non-virtual,
but are also inlined. The overhead is magnified by the fact
that iterator operations are typically sequentially inedKor

N times when traversing the items of the container.

2.3 Using an Abstract Comparator

Figurel® demonstrates how the database may be definedThere is a second standard way to implement our database,
This example uses two sorting criteria in the form of two Which is far simpler. In Sectioid.2, we used a collection
comparator classe# (less than) angt (greater than), re- of std::set<int,C> containers with differen€ comparators
sulting in ascending and descending sequences. Two correin order to implement the different sorting criteria. This
spondingstd::sets are defined and adapted to Sueter_t in- mandated us to deal with the fact that the containers (and
terface by using the generiontainer_t. Although the two associated iterators) have different types. We have done so
containers have different types, they have a common ancesby abstracting the variance away through the use of the
tor (Sorter_t), which means that they can both reside in the aggregate and iterator interfac&efter_t andIB_t), and by
vectorv that is passed to the database constructor. adapting thetd::sets and their iterators to these interfaces.

Multiple sorting criteria may be alternatively imple-
mented by abstracting the comparat®y such that all
std::sets use the same comparatgpe but each is associ-
ated with a different comparatorstance As the sets agree
on C, they have identical types, and so their iterators have
identical types too. Our implementation would therefore be

2.21 Drawbacksof Using an Abstract Iterator

Our Database_t has some attractive properties. It efficiently
supports a simple, yet powerful set of operations (as listed
Table[2), and it is flexible, allowing to easily configure arbi
trary collections of sorting criteria. The price is the dvead i .
of abstraction and of runtime polymorphism. exempt from handling type variance.

Let us compare the overheads of using a database that has 'Nde€d. to implement this design, we only need the code
only one sorting criterion =1) to using a nativetd::set in Figure[® along with the following three type definitions:
directly. Obviously, the two are functionally equivalebtit
there are several sources of added overhead.

Firstly, the five set operations listed in Table 2 require an
additional virtual function call, as they are invoked thgbu
the Sorter_t base class. Conversely, when uséngd;:sets to
invoke the same operations, no virtual calls are involved.

Secondly, those operations that return an iterator require
dynamic memory allocation throughew; this memory is
later deleted when the iterators go out of scope. In contrast,

typedef bool (*CmpFunc_t) (int x, int y);
typedef std::set<int,CmpFunc_t> Sorter_t;
typedef Sorter_t::iterator Iter_t;

(we no longer need the code in FigukdEl416, 7,[dnd 8).

A CmpFunc_t variable can hold pointer-to-functions that
take two integers as input and return true iff the first is
“smaller” than the second. The variable is not bound to a spe-

std::sets do not invokenew or delete in these operations.
Finally, every iterator operation (increment, derefeeenc

cific value and thus abstracts the comparator eﬂ/\mysord-

31f we need to add state to the comparison functions and tem ihto ob-

equality test, and assignment) incurs an additional Mirtua ject functions, we could do so by using a comparator that I@apFunc_t

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs

6 2009/6/19

ingly, we define théorter_t type asset<int,CmpFunc_t>, bleld) requires supporting iteration over the databaserdeco
which eliminates the need for Figullds 4 &hd 8. We likewise ing to multiple sorting criteria using the same iteratoretyp
define the iteratolter_t to beset<int,CmpFunc_t>::iterator, We have utilizedstd::sets with different comparators to al-
which eliminates the need for Figulds 6 &hd 7. low for the different sorting criteria, and we were therefor

Figure[ID shows how the new implementation of the required to face the problem of having multiple iteratoryp
database may be instantiated. Similarly to the examplangive instead of one.

in Figure[®, we use two sorting criteria. But this time, irste The heart of the problem can be highlighted as follows.
of function objects, we use ordinary functiorsap_It and Given two comparator typeS1 andC2, and given the fol-
cmp_gt; both have a prototype that agrees with thep- lowing type definitions

Func_t type, and so both can be passed to constructors of

objects of the typ&orter_t. We next instantiate two objects typedef std::set<int,C1> S1_t; // sorting criterion #1

of theSorter_t type,set_It andset_gt, and, during their con- typedef std::set<int,C2> S2_t; // sorting criterion #2
struction, we provide them with the comparator functions typedef S1_t::iterator I1.t;

that we have just defined. (Sorters and comparators are astypedef S2_t::iterator 12.t;

sociated by their name). As planned, we end up with two

objects that have the sangpe but employ different com- the iterator typesl_t andI2_t are different. In the previous
paratorinstancesWe can therefore push the two objects to section we have dealt with this difficulty by either

the vectow, which is passed to the database constructor.
1. adaptingll_t and12_t to an external iterator hierarchy

231 Drawbacksof Using an Abstract Compar ator rooted by a common ancestor which is an abstract iterator
At first glance, it appears that abstracting the comparator ~ (SectiorZZP), or by

yields a cleaner, shqrter, anq more eleggnt implementation o morphing1_t andI2_t into being the same type, by favor-
than abstracting the iterator (instead of Figlildd 4-8 we onl ing to usemultiple instancesf one abstract comparator

need FIgufﬂS) Moreover, abstracting the Compal’ator does type' over usingnu'tip'e typemf Comparators that are
not generate any of the overheads associated with abstract- ynrelated (Sectioff2.3).

ing the iterator (see Sectign ZP.1), because we do not use
the abstraction layers depicted in Figlite 3. It conseqyentl Both solutions required trading off some form of compile-
seems as though abstracting the comparator yields a solutime polymorphism and excluded the corresponding inlin-
tion that is superior in every respect. But thisistthe case. ing opportunities. Importantly, the need for abstracti@s h
There is a tradeoff involved. arisen due to a perception that has, so far, been undisputed:
Sorted containers likatd::set, which are required to that if we instantiate a generic classd::set) with differ-
deliver O(logN') performance, are inevitably implemented ent type parameter<{ andC2), then the type of the cor-
with balanced trees. When a new item is inserted to such aresponding inner classed (t andI2_t) will differ. We chal-
tree, it is compared against each item along the relevaat tre lenge this perception, both conceptually and technically.
path. If the comparator is abstracted, each comparisos-tran
lates to a non-inlined function call (this is the price of fun
time polymorphism). But if the comparator is not abstracted
its code is typically inlined, as it is known at compile time. As noted, the data structure underlistd::sets is inevitably
For example, in FigurEl9, comparisons resolve into a hand-a balanced search tree, because of @gogN) STL-
ful of inlined machine operations. This observation agplie mandated complexity requirement. A distinct feature of
to insertion, deletion, and lookup. (Later, we quantify the search trees is that the order of the items within them is
penalty of abstract comparators and show it is significant.) exclusivelydictated by the structure of the trée12]. Specifi-
We conclude that there are no clear winners. If users want cally, by definition, the minimal item in a tree is the lefthos
to optimize for iteration, they should abstract the compara node; and (assuming the search tree is binary) the successor
tor. (Comparators do not affect the iteration mechanism in of each noder is the leftmost item in the subtree rooted by
any way, as discussed in the next section.) But if they want z.7ight (if exists), or the parent of the closest ancestor of
to optimize for insertion and deletion, they should abstrac = that is a left child. These two algorithms (“minimal” and
the iterator instead. In the next section, we show that itis i “successor”) completely determine the traversal orded An

3.1 The Conceptual Aspect

fact possible to obtain the benefits of both approaches. both of themneverconsult the keys that reside within the
nodes. Namely, the algorithms are entirely structure-dhase
3. Independent Iterator: The New Approach As keys are not consulted, then, obviously, the compara-

tor function associated with the tree (which operates on

Let us reconsider the two alternative database designs fromk . ded f lizi) der t L Lik
the previous section. The specification of the problem (Ta- e_ys) IS unneeded for realizing an in-order traversal. L1xe
wise, as nodes are not created or destroyed within the two

data member, which is invoked in thegerator()” of the class[[ZD]. algorithms, the memory allocator of the tree is unneeded too

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 7 2009/6/19

template<typename T, typename C, typename A> class set { template<typename T> class iterator {
/] ...
public: };
class iterator {
// code does not utilize C or A ... template<typename T, typename C, typename A> class set {
}; public:
typedef iterator<T> iterator;
/] ... /...
}; };

Figurel1l. Left: the iterator is dependent on the comparatoand the allocatorA. Right: the iterator is independent.

It follows that, by definition, in-order traversal is an ac- STL iterator
tivity which is independent of comparators and allocators. Dinkum dependent
And since iterators are the technical means to conduct such libstdc++ independent
a traversal, then, conceptually, iterators should be iadep STLPort independent
dent of comparators and allocators too. In particular glier RogueWave both (depends on version and mode)
no conceptual reason that requises::sets that disagree on Table 3. Standard template library implementations.

comparators or allocators to have different iterator tﬂaes

STL. Conversely, the compilers with an independent iterato
3.2 TheTechnical Aspect all makes use of the GNU open source libstdc++ STL.
The question is therefore whether we are able to technically =~ Some compilers ship with more than one STL implemen-
eliminate the unwarranted dependencies and utilize aesingl tation and allow users, through compilation flags, to spec-
iterator type for different integestd::sets that have different ify whether they want to use an alternative STL. For exam-
comparators or allocators. The answer is that we can asple, when supplied with the flag “ -library=stlport4”, thersu
shown in Figurdll. All that is required is removing the compiler will switch from its commercial RogueWave-based
code of theiterator class from within the internal scope implementation to STLport; the iterator will then become in
of the set, placing it in an external scope, and preceding dependent of the comparator and allocator.
it with a template declaration that accurately reflects the Interestingly, the iterator of the most recent RogueWave
dependencies, including only the item typéinteger in our (open source) is dependent on or independent of the com-
example) and excluding the comparator and allocator typesparator and allocator, based on whether the compilation is i
C andA. The removedterator code is then replaced with ~ debug or production mode, respectively. The reason is that,

an alias fypedef) that points to theterator definition that ~ in debug mode, one of the generic parameters of the itera-
is now external. The functionality of the alias is identitml ~ tor is the specifictd::set type with which it is associated
that of the original class for all practical purpoEes. (which, in turn, depends on the comparator and allocator).

We conclude that our goal is achievable. Namely, it is The debug-iterator holds a pointer to the associatédset
possible to define a nested class of a generic class such thafistance and performs various sanity checks usingbthe
the nested class only depends on some, but not all, of thegin andend methods (e.g., when the iterator is dereferenced,
generic parameters. Thus, there is no need to modify theit checks that it does not point to tked of the sequence).
language or the compiler. Rather, the issue is reduced to aSuch sanity checks are legitimate and can help during the de-
mere technicality: how the generic class is implemented, or velopment process. But there is no need to make the iterator
in our case, how the STL is implemented. dependent on itstd::set in order to perform these checks;
Table[d lists several mainstream compilers and specifiesthis is just another example of an unwarranted dependency
if the std::set iterator class that they make available (in their that delivers no real benefit. Indeed, instead ofstae:set,
default mode) is dependent on the comparator or allocator.the iterator can point to the root node of the balanced tree
It should now be clear that this specification is a product of (which, as explained in SectidnB.1, should not depend on
the STL that is shipped with the compiler. the comparator and allocator); thegin andend of the tree
Table[B lists the four most widely used STL implementa- are immediately accessible through this root.
tions. All the compilers in TablEl 1 that are associated with .
a dependent iterator make use of Dinkum STL; the excep- 3-3 The Databasewith an Independent Iterator
tion is the compiler by Sun, which uses an implementation To implement our database with the new approach we need
that is based on an early commercial version of RogueWaveFiguredH#[b, andl8, as well as the following type definition

4Technically, to share an iterator typstd::sets must agree on the fol-
lowing nested types and nothing elseilue_type (T), pointer (to T),

const_pointer (to T), anddifference_type (of subtracting twgpointers).)
5 Alternatively, we could have (1) defined a base classtorset that only It does not matter whiclC or A we use, because we as-

depends off and (2) cut-and-pasted thierator to the base class's scope. ~ sume that the iterator do not depend on them. Fifillire 9 ex-

typedef std::set<int, SomeC, SomeA>::iterator lter_t;

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 8 2009/6/19

emplifies how to instantiate this type of database. This is tion paths), whereas the new approach performs exactly
the same example we used in Secfiod 2.2 (“abstract itera-The same observation holds for deletion and lookup.

tor”). But, in contrast to Sectiofi d.2, we now do not need

Focusing on iteration, we note that the new approach does

Figures[BE7 (the external iterator hierarchy), because all not (de)allocate iterators througtew anddelete. The ab-

set<int,C,A>iterator types are one and the same regard-
less of C or A, and so there is no reason to introduce an
abstraction layer to hide the differences.

Importantly, notice that, with the current type definition
of Iter_t, we now use SCARY assignments in all the figures
involved [3[5, an@8). Specifically, every return statenient
every method within these figures that hasl@n_t return-

stract comparator design still has the advantage thakits

gin andend are not virtual. But in accordance to the iter-
ation procedure shown in FiguE& 2, this advantage occurs
only once per iteration, during whicl elements are tra-
versed. In both designs, the pointer-like iterator operesti
that are exercisedy times are identical, as both directly uti-
lize the nativeset<int>::iterator without abstraction layers.

type is such a statement, because the returned value is assdrhus, the advantage due to the one extra virtual call quickly

ciated with containers that utilize different comparaypds.
Only if these containers share the same iterator type widl th
code compile. Thus, this implementation is only valid with
STLs like libstdc++, which define an independent iterator; i
will notcompile with STLs like Dinkum.

3.4 Advantagesof Using an Independent Iterator

becomes negligible a& increases. We later show that the
difference is noticeable only whilyy < 4.

We conclude that, excluding a few small values, the
new approach is superior to the two standard designs: It is
better than the abstract iterator design when iterating and
finding, and it is better than the abstract comparator design
when finding, adding, and deleting.

The overheads induced by the new approach are similar to
that of the abstract iterator design (Sectigi2.2.1) in that 35 Consequences

we cannot avoid using th8orter_t interface. This is true
because we are utilizing different types «fl::sets (have
different comparator types), and so thiel::sets must be

In relation to our running example, we contend that the
independence of the iterator should be made part of the STL
specification, or else programmers would be unable to use

adapted to conform to one interface in order to facilitate the new approach if their environment does not support the
uniform access (which is required by the database imple- right kind of STL, or if they wish to write portable programs
mentation in Figurgl5). Every operation that is done through that compile on more than one platform.
theSorter_t interface involves an added virtual function call, But this is just one example. The more general princi-
which is entirely avoided when utilizing the abstract com- ple we advocate is that, when designing a generic class,
parator design. And since there dkesorting criteria, there designers should (1) attempt to minimize the dependencies
are actuallyK” such extra function invocations. between the class’s type parameters and nested types, and
This, however, does not mean that the new approach is(2) should make the remaining dependencies part of the user
inferior. In fact, the opposite is true. To understand why, contract, declaring that no other dependencies exist.
assume that the database is currently empty, and that we have Reducing dependencies directly translates to increased
now added the first item. In this case, contrary to our claim, compile-time interchangeability; and explicitly declagi
the abstract comparator design is superior, because,@s,not that no other dependencies exist makes it possible for pro-

the new approach inducés extra virtual function calls that
are absent from the abstract comparator design.
We nowadd the second item. While the abstract com-

parator design avoids the virtual calls, it must compare the

second item to the first. This is done with the helpFof

grammers to leverage this increased interchangeability fo
writing faster programs.

3.6 Disadvantagesof Using an Independent Iterator
Independent iterators make one problem slightly worse. As-

pointers to comparison functions and therefore induces thesume, e.g., that vectord andv2 hold elements of typd

overhead ofK function invocations. Conversely, the com-
parisons performed by trsed::sets of the new approach are
inlined, because the implementation of the comparatorstype

but utilize different allocator types. The following error

p = vl.begin();

is known at compile time. Thus, for the second item, the two q = v2.end();

designs are tiedk vs. K invocations.

We nowadd the third element. With the new approach,
there are still onlyK’ function calls; nothing has changed in
this respect. But with the abstract comparator designether
might be up to2 K function invocations (and no less than
K), depending on the values of the items involved.

std::sort(p,q); // error!

can be caught at compile time il andv2 have different

iterator types (which is the case if the iterator depends on
the allocator); otherwise, the error can only be caught at
runtime. Such problems do occur in real life, however, the

In the general case, whenever a new item is added, theonly complete solution is to have related iterators exéact

abstract comparator design perfor@&X - logN) function
invocations {og N comparisons along each of tli€ inser-

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs

from their container by code rather than by hand, as is made
possible by C++0x, the upcoming revision of ISO C++.

9 2009/6/19

4. Experimental Results: Runtime operation under the two competing designs. (Values bigger

In this section we evaluate the two standard solutions de-than 1 indicate the new design is faster.) Initially, for #ma
scribed in Sectiof]2 against our proposal from the previous 1V Values, the comparator design may be faster. This happens

section. We denote the three competing database designs a@€cause the new design utilizes terter-t interface and
thus induces one extra virtual function call (two in the case

1. the “iterator design” (Sectidn2.2), of the “jterate” benchmarkbegin andend). But when N
2. the “comparator design” (SectibnR.3), and is increased, the relative weight of this overhead decsase
u I . as more and more items must be compared (“iterate”: must
3. the "new design” (Sectidi.3.3). be traversed), such that beyond-4 the speedup is always
We conduct a two-phase evaluation. In Secfioih 4.1, we usebigger than 1 (“iterate”: equal to 1).
microbenchmarks to characterize the performance of each We were initially surprised by the fact that the “find”
individual database operation. And in Secfiod 4.2, we evalu speedup is smaller than that of “add” and (sometimes) of
ate the overall effect on a real application. “delete”. As the latter perform a lot more work that does not
The experiments were conducted on a 2.4 GHz Intel involve comparisons (allocation, deallocation, and bedan
Core 2 Duo machine equipped with 4GB memory and run- ing), we anticipated that the relative weight of the compar-
ning lenny/sid Debian (Linux 2.6.20 kernel). The bench- isons would be smaller. It turns out that “add” and “delete”
marks were compiled with GCC 4.3.2, using the “-O2” flag. actually require more comparisons, because the underlying
While running, the benchmarks were pinned to a single core, (red black) search tree is generally “less balanced” while
and times were measured using the core’s cycle counter; thethey execute. The reason is that, when we repeatedly add
reported results are averages over multiple runs. Except fr items and monotonically grow the tree, we systematically
the default Debian daemons, no other processes were presergncounter those cases that trigger the balancing activity,

in the system while the measurements took place. which occurs only when the tree is not “balanced enough”.
_ (Monotonically deleting items has the same affect.) Such
4.1 Microbenchmarks cases always involve an extra comparison, and “find” never

We use four microbenchmarks to measure the duration of €ncounters these cases because it does not alter the tree.
adding, deleting, finding, and iterating through the items. Overall, the speedup behavior is the following. It goes up
Figure[I2 displays the results. Durations are presented as 4for the reasons discussed above), reaches a kind of steady
function of N (number of database items)' andis shown state that peakS at nearly 17, and then “falls off a cliff”
along thez axis. The “add” microbenchmark sequentially to a level of around 1.15. We investigated the reason that

addsN different items to an empty database, whatés 2¢ causes the fall and discovered that it is tightly conneated t
fori = 0,1,2,...,22. They axis shows how long it took the size ofthe L2 cache. Figurd 14 plots the “delete” speedup
to perform this work, normalized (divided) by K. (K curve and superimposes on it the associated resident set siz

was chosen to be 2, as shown in FigUS®-10.) i hgis (RSS) as reported by the operating system througlpritie
thus reflects the average time it takes to add one item to onefilesystemi[4B]; the RSS reflects the size of physical memory
container associated with one sorting criterion. the benchmark utilized. On our testbed machine, the size

The other three microbenchmarks are similarly defined of the L2 cache is 4MB, and according to Figliid 14, the
and normalized: “delete” sequentially erases ffietems biggest database size to fit within the L2Vs=64K. We can
in the order by which they were inserted; “find” looks up indeed see thatimmediately after it the speedup drops.
each of theV items within the database according to each of The reason is that memory accesses can no longer be served
the K sorting criteria (and checks that the returned iterator by the cache and require going to main memory. As such
is different than the correspondirgd of sequence); and accesses may take hundreds of cycles, the relative benefit of
“iterate” traverses théV items (using the procedure shown inlined comparisons within the new design diminishes.
in Figure[2) according to each of th€ sorting criteria.

The results coincide with our analysis from Secfiod 3.4.))
Iterator vs. new By Figure[I2, the time to add and delete

Comparator vs. new Figure[T2 illustrates that the new de- items by both designs is similar, which should come as no
sign adds, deletes, and finds items faster than the comparatosurprise because they utilize the same exact code to perform
design. Indeed, these activities require repeated item com these activities. The new design, however, finds items and
parisons along the associated search tree paths; the compaiterates through them faster than the iterator design. &ae r
isons translate to function invocations in the comparager d son is that, with the iterator design, both activities dyiram
sign, but resolve into inlined code in the new design. Itera- cally (de)allocate iterator instances througiv anddelete;
tion, on the other hand, involves no comparisons, and so themoreover, every operation applied to these instanceslis rea
performance of the comparator and new designs is similar. ized through an abstract interface and induces a virtuatfun
Figure[ITB(a) shows the corresponding relative speedup,tion call (as opposed to the new design that inlines these op-
defined as the ratio of the duration it takes to perform each erations). This was explained in detail in Secfiod 3.4.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 10 2009/6/19

add delete find iterate

1200 T T T T T T T T T T T T T3 T T T T T T T T T e s s e s s s 5
xx iz A iterator ——
1000 > xf --|comparator -->--- |
w800 %X % 7|Z|Zr new ---v---
: <3 i
© % e ><<,v"
> 600 x)(\ ST Y
©, Q@(X "?‘ T P4
© 400 050 2
S X 50T \&
= 200 20T] A
5 S
0 T T R T N N B N T TR RO T N N R N W| ! ‘M
SBRESEIRAT T OORAVEEEA3 TUOORNSeyRAI TUOSRNSEEess

size of database [number of items; log scaled]

Figure12. The results of the four microbenchmarks as achieved by the tompeting database designs.

a. new vs. comparator b. new vs. iterator new vs. comparator: delete
) I I I SN = i VAN B
{ ; find v ¥y ¥ F &
" Iyon add — |7 16MB X Ly 1 16
6 I \ iterate —8— |+ B H ; o
o Y 2 ize ! 3
3 5 < avB L2 S|ze" i 14 8
2 I E— - - - - 2] k N]
Q] X Sl IR o
& 3 . hd ! +F IE % o)
2 , IMB T S T 10
%y =
14 H 14
0 1 1 1 1 1 1 1 1 1 1 256KB).(1 1 1 1 1 1 1 E 1 1 l
AT OO XX XYXYSS ANYOYOOXXYXXYX X XSS
AN QY8387+
N N
speedup
size of database [number of items; log] RSS + size of database

Figure 13. The microbenchmark speedups achieved by the new designFigure 14. Speedup drops when the microbenchmark’s
relative to the comparator (a) and iterator (b) designs. resident set size (RSS) no longer fits in the L2 cache.

The associated speedup, shown in Figité 13(b), cansimulators[[3B1d,31].
therefore be explained as follows. Initially, for smallval- The workload of supercomputers typically consists of a
ues, the dynamic (de)allocation is the dominant part, agthe sequence of jobs submitted for batch execution. Accord-
are relatively few items to process. But &sincreases, the ingly, years-worth of logs that record such activity in read
price of dynamic (de)allocation is amortized across more percomputer installations are used to drive the simulation
items, causing the speedup ratio to get smaller. The speedufhe logs are converted to a standard forniai [10] and are
then enters a steady state, uiiit64K is reached and the made available through various archives| [41, 42]. Each log
database no longer fits in L2, at which point it drops to a includes a description of the corresponding machine and the
level of around 1.75. sequence of submitted jobs; each job is characterized by at-

Throughout the entiréV range, the “iterate” speedup is tributes such as its arrival time, runtime, and the number of
higher than that of “find”, because the former involves an processors it used. The simulator reads the log, simulates
additional virtual call (“find” only compares the returneéd i the activity under the design that is being evaluated, ad ou
erator toend, whereas “iterate” also increments the iterator). puts various performance metrics. For the purpose of perfor
mance evaluation, each log is considered a benchmark.

The simulator is a discrete event-driven program. Events
To evaluate the new design in the context of a real applica- can be, e.g., job arrivals and terminations. Upon an evest, t
tion, we use an in-house supercomputing scheduler simula-scheduler utilizes two main data structures: the wait queue
tor, which is used for researching and designing the schedul and the runlist. It inserts arriving jobs to the wait queud an
ing subsystem of supercomputers such as the IBM Blue- removes terminating jobs from the runlist. It then scans the
Gene machines. The simulator is capable of simulating the runlist to predict resources availability, and it scanswiagt
schedulers of most of the machines that populate the top-500queue to find jobs that can make use of these resources.
list [15], and it has been extensively used for research pur- According to various dynamic considerations, the order of
poses[[40, 21,20, 4B, 15]. Others have implemented similar

4.2 Real Application

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 11 2009/6/19

iterator vs. comparator vs. new a. iterator vs. new b. comparator vs. new

2 - 2 - 2
° 1.8 - - 1.8 - - N - 1.8
16 - ol e e e 16 - -+ - e
8E 14 - - 14 -+ - 14
Ne 12 - I o | | 12 - -1 2-uhww W
g2 1 - o | — 1- - - 1- - -
5508 - 484 - o8- - M- o8- - M-
€206 - A8 0 Ml - os6- : ~dt-t- 06 - - -
%04 - BB . 0.4 - : - - 0.4 - - - -
02 - A0k - o2- : M- o02- - .-
0 - N e o-8 M. R 0 - - R
SpCr A, &, 7%, SH ”, SHCrAr, 8, 71, Sh SpCn A, 8, 25y, Sh
iterator m=m OSC‘ 7"k Q’é\ &04/04'? e iterate -OSC‘ e % Q/(\\ &O/l/o'q'? OSO % Q/@ &04/04"?
comparator E (O add/del = (O (O
new H logs other mm logs logs

Figure 15. Normalized execution time of the thred=igure 16. Breaking the execution time from Figurel 15 to three disjaiomn-
simulator versions, when simulating six activity logs. ponents: addition/deletion of items, traversal througé ifems, and the rest.

the job-scanning may change; the algorithm that makes use A minor part of the difference is caused by the other op-

of the scanning is otherwise the same. Adequate candidate®rations, which are identical across all designs. We spé&zul

are removed from the wait queue and inserted to the runlist. that this is caused by caching effects that are triggeretidy t
It follows that the main data structures of the simulator less efficient parts of the program.

must support functionality similar to that of the database

we have developed earlier. Originally, the simulator was 5, Techniques to Reduce the Bloat

implemented using the classic iterator design pattern. We
o . . Compilers generate object code. In this section, we focus
have modified the simulator and implemented the other two . ;
on how the code’s size (in bytes) can be affected by re-

competing desu;;ns_, such that the one being used is Chgse%ucing unneeded dependencies between the members and
through a compilation flag. The evaluated scheduler reduire

four sorting criteria for the wait queue (job arrival timapr type parameters of a generic class. To this end, we continue

) . X : . to use STL containers and iterators. But the discussion no
time, user estimated runtime, and system predicted ruptime longer revolves around the three designs from the previous
and three for the runlist (termination time based on: read ru 9 9 P

i . . : . section. Rather, it focuses on the impact of using multiple
time, user estimated runtime, and system predicted ruitime tvoe parameters to instantiate a single class. e.d.. asis do
The data structures store job IDs (integers) that serve-as in ypep g &0

dices to a vector that is initialized at start-up and holds al :Silglge[g;xeetgsv\/?nu? l%o&pzx:tg;fy%zit&anggg_
the jobs (and, thus, comparators refer to this vector). ype p ’ 9 ' y ype p

Figure[Ih shows the time it takes to complete the sim- rameter (mpFunc.t) and so our discussion does_ not apply.
. : . . % . The more type parameters that are used, the bigger the ob-
ulation when simulating six workload IosAII execution

. . . ject code that is emitted. This increase in code is sometimes
times are normalized by that of the new design, on a per-log

basis. We can see that the execution time of the iterator de_referred to abloat and this section is about reducing it
sign is x1.7 to x2.1 slower than that of the new design, and 51 \what We Have Already Achieved
that the execution time of the comparator design is x1.2 to
x1.3 slower, depending on the log.

Figure[I® breaks the execution time to three disjoint com-
ponents: cycles that were spent on adding or deleting jobs

Let us reconsider Figufell1. On its left, the iterator is inne
and thus depends on the comparator and allocator. The de-
sign on its right defines the iterator outside and removes the

to/from the wait queue and runlist, cycles that were spent unneeded dependencies. We denote these two designs as “in-

on traversing the jobs, and all the rest. (The simulator does"€" @nd “outer”, respectively. In Secti@h 4, we have shown

not utilize the find operation.) We have shown in Sedfigh 4.1 NOW t0 'e"e(;gg_e thﬁ outer deh5|gn tol W”tﬁ fastfer pr(zjgrqms.
that the new design is superior to the comparator design in Here, we additionally argue that it also allows for reducing

terms of adding and deleting; and indeed, the majority of the _bIoat. TO see why, co_nsider the fO”PWing snippet that
the difference in their executions times is caused by auiditi copies two integestd::sets into two matching arrays.

and deletion. Likewise, we have shown that the new design
is superior to the iterator design in terms of traversingl an
indeed, the majority of the difference in executions times b

std::set<int,It> u; // assume u holds N elements
std::set<int,gt> v; // v holds N elements too

tween these two designs is caused by iteration. int arr1[N];

int arr2[N];
6The logs contain tens to hundreds of thousands of jobs andrapaths std::copy(u.begin(), u.end(), arrl); // copy u to arrl
to years; further details can be found[n][41]. std::copy(v.begin(), v.end(), arr2); // copy v to arr2

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 12 2009/6/19

Suppose we (1) compile this snippet with an STL that uti- logically independent of all the generic parameters. Fer ex
lizes the inner design, (2) generate an executable calledample, thesize method that returns the number of elements
a.exe, and (3) run the following shell command, which prints stored by thetd::sef]
how many times the symbstd::copy is found ina.exe:

template<typename T, typename C, typename A>
nm —demangle a.exe | grep -c std::copy size_type set<T,C,A>::size() const { return this->count; }

The result would be 2, indicating that the functiad::copy This method just returns an integer data member (the alias
was instantiated twice. In contrast, if we use an STL that size_type is some integer type) and so its implementation is
utilizes the outer design, the result would be 1, reflectirgt independent off, C, andA. Yet, for everyT/C/A combina-

fact that there is only one instantiation. The reason fa thi tion, the compiler emits another identical instantiation.
difference is that, like many other standard C++ algorithms The well-known and widely used solution to this problem

std::copy is parameterized by the iterators’ type: is template hoisting8]. The generic class is split into a non-

generic base class and a generic derived class, such that all
template<typename Src_lter, typename Dst_lter> the members that do not depend on any of the type parame-
Dst_lter std::copy(Src_lter begin, Src_lter end, Dst_lter target); ters are moved, “hoisted”, to the base class. In our example,

these members as&ze andcount, and their hoisting ensures
With the inner design, the iterator typeswoéndv are differ- thatsize is instantiated only once. Importantly, hoisting in-
ent due to their different comparators, which means there ar duces no performance penalty, as none of the methods are
two Src_lter types, resulting in two instantiations obpy. made virtual and no runtime polymorphism is involved.

The outer design has an independent iterator, yielding only Most STL implementations use hoisting to implement
one Src_lter and, hence, only one instantiation. The same the standard associative containers. Thesaarenultiset,
argument holds when using several allocator types. map, and multimap. (Sets hold keys, maps hold key/data

We conclude that, when unneeded dependencies exist, evpairs, and multi-containers can hold non-unique keys.) All
ery additional type parameter associated with these depenthe libraries listed in TablEl 3 implement these containers
dencies results in another instantiation of the algorithinis using one generic red-black tree class. Henceforth, we only
type of bloat is unnecessary and can be avoided by following consider the latter. As explained in Sectlonl 3.1, iteration
the principle we advocate and eliminating the said depen-related code and the balancing code of the tree need not
dencies. Thus, in addition to allowing for faster code, our dependomT, C, andA, because they are strictly based on the
proposal also allows for code that is more compact. structure of the tree. And indeed, these routines are tijpica
. hoisted and operate on pointers to the non-generic base clas
52 What We Can Achieve Further of the tree’s node. Thus, there is only one instantiatiomef t
Our above understandings regarding bloat and how to reducetree “rebalance” method for all the associative containers.
it can be generalized to have a wider applicability as foow

The outer design is successful in reducing the bloat of 54 Generalized Hoisting
standard generic algorithms liked::copy, because such al- . _
gorithms suffer from no unneeded dependencies. This is trueWe contend that hmstmg can pe genera}hzed to reduce the
because (1) every type parameter that is explicitly astatia b'o"?“ more ef_fectwely. our C"""T“ 's motivated by the fOI_.
with any such algorithm is a result of careful consideration lowing analysis. We have examined the code of the generic
and unavoidable necessity; and because (2) such algorithmgec}l'bIaCk t_ree c.Iass of GC_C and found that nearly all _Of Its
are global routines that reside in no class and hence are no ethods either: (_1)_ exclusw_e_ly depend ﬁn_T/C, or T/A;

or (2) can be be trivially modified to have this type of depen-

subject to implicit dependencies. q We theref o d the tree |
The latter statement does not apply to algorithms that ency. We Iherelore propose to decompose the ree in a way
that removes the other dependencies.

are methods of a generic class. For example, all the mem-)) L
ber methods o$td::set<T,C,A> implicitly depend on the F|gurdI_]’ roughlylllustrates thisidea. On the left, the-red
black tree is defined using one class, so when, e.g., the bal-

key typeT, the comparator typ€, and the allocator typA. . _ .) ;
We observe that this triple dependency occurs even if, logi- ancing code is reqL.ured,.every phgngéﬂnC, orA will re-
cally, it should not. And we note that this is exactly the same sultin another duphcg_te |nsFant|ayc_)nrebalance. Th_e mid-
observation we have made regarding member classes (iter-dle of.the figure rectifies th|s.d<_af|C|ency by creatlpg anon-
ators). We contend that this observation presents a similarJ€Neric base class_ and by hoistiaalance. There will now

be just one such instance, regardless of how mBiyA

opportunity to reduce the bloat. o) :
pportuntty . combinations there are. The right of the figure takes the next
5.3 Hoisting step and eliminates the remaining unneeded dependencies.

Others have already taken the first step to exploit this eppor
tunity, targeting the case where a method of a generic dass i 7in practicesize is inlined; we assume it is not to allow for a short example.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 13 2009/6/19

iterator {...} - generalized

swap(tree) hoisting hoisting

rebalance(node)

find(key) iterator {...} iterator { . }

clear() swap(tree) swap(tree)

erase(key) find(key)
clear() find(key) clear()
erase(key)

erase(key)

Figurel1l7. Generalized hoisting decomposes the generic class to eatiegendencies between members and type parameters. fic@rac
to avoid the indirection layers caused by a diamond-shaperitance relation, we will not use multiple inheritancepdetails in Sectidnd.1.

The erase routine needs the comparator to find an item,

by default (or the user’s allocator if specifie®b_cmp de-

and it needs the allocator to deallocate it, so it depends onrives Rb_base, andRb_tree derivesRb_cmp and has an in-

T/C/A. This is not the case for thiénd routine, which only
depends onl/C, as it merely compares items. Thar

routine systematically deallocates the entire tree and doe
not care about the order dictated by the comparator; it thus

depends on onlyff/A. Finally, the majority of the code of
theswap routine (which swaps the content of two trees in a

way that does not involve actual copying of items) depends

on only T. (The reminder okwap’s code will be shortly
discussed.) Likawap, as we have discussed in much detail,
the nested iterator class only dependsiomn Figure[Tl we

stance ofRb_alloc. The design is shown in Figufel18. We

Rb_base<T>

A
| Ro_cmp<T,C> |
A

Rb_tree<T,C,A>

Figure18. Our refactored tree does not use multiple inheritance.

| Rb_alloc<TA> |

have suggested to move its definition to an external scope toavoid the diamond-shape inheritance depicted in Fifjuke 17

eliminate its dependency difA. Generalized hoisting is an
alternative way to achieve this goal.

6. Experimental Results: Bloat

We have refactore®b_tree, the red-black tree underlying
all associative containers of GCC’s STL, according to the
generalized hoisting design principle. This section dbssr

(virtual multiple inheritance), because it complicateg th
memory layout by introducing certain indirection layeratth
might incur a performance penalty. (We did not investigate
what this penalty is.) Furthermore, beyond what is already
in the originalRb_tree, we categorically did not add calls to
functions that are not completely inlined so as not to degirad
the performance. Namely, we did not add any indirection.

our experience and evaluates its success. We note that we Groupi in Table[3 includes the methods that reside in

have intentionally constrained ourselves to only applying
trivial changes toRb_tree, even though, in some cases, a
more intrusive change would have been more effective.

6.1 Applying Generalized Hoistingto the STL of GCC

Bloat reduction is only applicable to methods that are (1) no
inlined or (2) inlined, but invoke methods that are not ielin
(directly or indirectly). Henceforth, we refer to such madis
asnoninlined The code of the remaining methods (that are
not noninlined) is re-emitted for each invocation; this is
inherent to inlining and is unrelated to generics’ bloat.

All of GCC’s STL associative containers are inlined
wrappers ofRb_tree, and their methods translate to invoca-
tions ofRb_tree’s public methods; this wrapping code leaves
no trace after inlining, and is optimized out in its entitety

Out of the 46 public methods dib_tree, 29 are nonin-
lined as listed in TablEl4 (we are currently only interested i

Rb_base (swap) or in an external scope (comparison oper-
ators). The former is comprised of 40 lines of code, only
2 of which swaping the comparator and allocator) depend
on C/A; we hoist the first 38 lines, and replace the origi-
nal Rb_tree::swap with an inlined version that (1) calls the
hoisted version and (2) invokes the remaining 2 lines.

The comparison operators are inlined calls to the global
std::lexicographical_compare, which, likestd::copy, operate
on our hoisted iterator, and so it depends on dnly

Groupii includes the noninlined methods that copy or
destroy the tree, or destroy a range of iterators. None stthe
activities require the comparator, and so this functidpadi
moved toRb_alloc. Remaining irRb_tree is easily splittable
code like copying of the comparator (assimap).

Groupiii includes the only two routines that actually use
noninlined methods from botRb_cmp andRb_alloc. These
routines need to find a range of iterators associated with a

the method-name column; the other columns are addressedkey (there can be more than one in multi-containers) and

in SectiodG.R). We have refactorBd_tree using three addi-
tional classesRb_base (depends on only), Rb_alloc (T/A),
andRb_cmp (T/C), such thaRb_alloc derivesstd::allocator

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs

useRb_cmp::equal_range for this purpose. Once found, the
range is deleted with thRb_alloc::erase from Groupii. No
refactoring was needed in this case.

2009/6/19

method name original .o refactored .o goodness @fit) diff.
bo do by c1 al d1 original refactored

i. Noninlined code from only Rbase, or external

1 swap 1 461 369 0 0 45 0.999998 0.999745 48
2 operator>= 104 589 595 0 0 67 0.999998 0.999896 30

3 operator> 104 589 595 0 0 67 0.999998 0.999896 30

4 operator<= 104 589 595 0 0 67 0.999998 0.999896 30

5 operator< 104 589 595 0 0 67 0.999998 0.999896 30
ii. Noninlined code not from Rbmp

6 erase(iterator,iterator) 381 1004 382 0 944 79 1.000000 999992 -20

7 destructor 238 459 237 0 403 45 0.999998 0.999966 12
8 clear 236 542 236 0 402 128 0.999998 0.999987 12
9 operator= 471 1680 491 0 1114 534 1.000000 0.999997 11
10 copy constructor 87 1760 179 0 1019 643 0.995402 0.972517 4
ii. Noninlined code from both Rbmp and Rhalloc

11 erase(key) 375 2080 386 530 942 583 1.000000 0.999999 14
12 erase(key*key*) 376 2449 392 527 939 952 0.999999 09999 14

iv. Noninlined code not from Ralloc

13 insertequal(iterator,value) 187 1633 208 1556 0 88 0.999996 0999 -32

14 insertequal(value) 124 992 144 928 0 70 0.999990 0.999991 -25
15 insertequal(iterator,iterator) 177 1493 207 928 0 568 0.999999 9991099 -32

16 insertunique(value) 166 1144 212 496 0 580 0.999988 0.999999 21
17 insertunique(iterator,iterator) 239 1641 272 496 0 1060 0.999999.999999 51

18 insertunique(iterator,value) 188 1893 213 496 0 1363 0.999997 00DQO 8

v. Likewise + entirely contained in Rtmp

19 count(key) const 0 1092 0 1010 0 42 0.999999 0.999980 39
20 count(key) 0 1092 0 1010 0 42 0.999999 0.999979 39
21 rhverify() const 0 681 0 667 0 28 0.999998 0.999916 -14
22 upperbound(key) const 0 343 0 269 0 50 0.999915 0.999946 23
23 upperbound(key) 0 341 0 268 0 50 0.999918 0.999942 23
24 lowerbound(key) const 0 343 0 269 0 50 0.999915 0.999946 23
25 lowerbound(key) 0 341 0 268 0 50 0.999918 0.999942 23
26 find(key) const 0 343 0 269 0 50 0.999915 0.999946 23
27 find(key) 0 341 0 268 0 50 0.999912 0.999939 22
28 equalrange(key) const 0 699 0 508 0 131 0.999970 0.999637 60
29 equalrange(key) 0 695 0 504 0 131 0.999970 0.999634 60

Table 4. The noninlined methods of GCCésd::Rb_tree. We model the associated object code size (in bytes) syith, y) = bo + doxy
(size of original tree) anéh (z,y) = b1 + c1z + a1y + dixy (Size of refactored tree). Fitting against the real datargedwith the nonlinear
least-squares Marquardt-Levenberg algorithm; the riegult> values are nearly 1, indicating the fits are accurate.

The insertion functions in Groupy do not require any several calls to an internal function that we wrapped in in-
Rb_alloc code except from allocating a new node, which is lined code, and this repeated code contributed to the bloat.
done with a short pure inlineBb_alloc function. The first Fortunately, an easy fix was possible. The methods consist
insert_equal methods (13—-14) are multi-container versions of a sequence of conditional branches, such that each branch
that add the new item even if it is already found in the tree. ends with a call to the internal function; we replace all thes
We move these tBb_cmp and change them such thatinstead calls with a single call positioned after the branches.
of getting the new key as a parameter, they get an already The remaining methods, in Growp are query routines
allocated node holding that key; we make the ri®@wtree that only use the comparator and perform no (de)allocation.
versions inlined calls to the associatBt_cmp versions, We move them in their entirety tRb_cmp.
and we incorporate the node allocation as part of the call.

These were one-line changes. Method 15 repeatedly invoke$.2 Evaluation
method 14 and so remains unchanged. To evaluate the effect of our design, we (1) fix (2) sys-

The refactoring of thensert_unique methods (16-18) tematically varyC and A, and (3) measure the size of the
was different because they correspond to unique contain-resulting object code on a per-method basis. Tee an
ers (that allocate a new node only if the respective key is integer type, and lefCy, Cs, ..., C,,} and{ Ay, As, ..., An}
not already found in the tree), and they therefore involve a pe j, different integer comparators and allocators, respec-
more complex allocation logic. We initially left these meth tjvely. Given a noninlinedRb_tree functionf, let fij be one
ods nearly unchanged, but later realized that they includedinyocation of Rb_tree<T,C;,A;>:f (i.e., the instantiation

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 15 2009/6/19

of Rb_tree’s f when using key typd’, comparator typ&,, Sinces(x,y) ~ b+ cx + ay + dzy, the real goal of the
and allocator typé\;). Givenz, y € {1, 2, ...,n}, we define refactoring is to reducd, the amount of bytes dependent
s(z,y) to be the size, in bytes, of the file that is comprised on bothC and A. We cannot make these bytes go away.

of the invocation#f fori =1,2,...,zandj = 1,2,...,9. But we can shift them to other parameters; preferably to
For examples(1,1) is the size of the object file that only (bytes independent of bothandA), but also ta: or a (bytes
contains the call tg}; s(1, 2) contains two callsf{ and fZ; depend orC or A, but not on both). And indeed, comparing
ands(2,2) containsfi, f2, f1, andf3. dp to d; in Table[3 reveals that we have successfully done so,

FigureI® (left) showsy (z, y) (size of originabwap) and asd, is significantly smaller thar, across all the methods.
s1(z,y) (size of refactoredwap), in kilobytes, as a function In Groupi, the bytes are shifted t, in Groupii to a;, in
of the number of comparators = 1,...,5 and allocators Groupsiv andv to ¢;, and in Grougii to bothe¢; anda;.

y = 1,..,5 (atotal of5 x 5 = 25 object files). Most of Let R(x,y) = So(z,y)/$1(x,y) denote thebloat ratio,
swap (refactored version) residesiRb_base, and this part is expressing how much more code is emitted by the original
instantiated only once. In contrast with the original vensi implementation relative to the refactored one. Let us focus

the code is re-instantiated for every additional compa@to on R(x, 1), which reflects the relative price of adding one

allocator, which explains why,(z, y) becomes bigger than more comparator?(x, 1) depends onx, but only up to a

s1(z,y) at approximately the same rate along both axes. point, because systematically increasingneansR(x,1)
We hypothesize that the sizg(x, y) of each noninlined converges taR. = lim, .o, R(z,1) = do/(c1 + d1). We

refactoredmethodf can be modeled as follows: thus defineR,. to be thecomparator bloat ratioWe likewise
- defineR, = lim, . R(1,y) = do/(a1+d1) to be theallo-
si(@,y) ~ si(z,y) = bi+ar+ay+day cator bloat ratig and we defing,. = lim, , .., R(z,y) =

do/d; to be thgoint bloat ratio. The ratios allow us to quan-
tify the effectiveness of the new design in reducing thethloa
they are shown in Figule R0 (same order as in Table 4).
There is no difference between the three ratios of methods
in Groupi (swap etc.), because most bytes have shifted to
b1, and none exclusively depend @ror A. We can see that,
asymptotically, the originadwap generates 10x more bloat
than our refactored version. In Groiipadding a comparator
to the original design can be up to 13x more expensive;
though adding an allocator is equally expensive (as all the
code depends on the allocator even in the refactored design)
so(z,y) ~ so(z,y) = bo+ doxy The comparator and joint ratios are equal in Grougsc,; =
0. In Groupsiv—v, an added allocator can be up to 25x less
(co = ap = 0, as the originaRb_tree aggregates all the code expensive with the refactored version. (The allocatanfjoi
and so none of the code is solely dependenamA.) ratios are equal because = 0.) Finally, Groupiii is the
If the modelssy(z,y) and s1(x,y) are accurate, they only case where the joint ratio is different, since bettand
would allow us to reason about the bloat more effectively. 4, are nonzero, namely, some bytes exclusively depend on

We fit the data (sizes &f x 29 x 25 = 1450 objectfiles) noninlinedRb_cmp code, and some dRb_alloc code.
against the above two models for all 29 noninlined meth-

ods. The results afwap, shown in the middle and right of
FigureI®, demonstrate a tight fit. Table 4 lists the model pa- Unlike nested classes, which we merely need to move out-
rameters of all noninlined methods along with the assodiate side, generalized hoisting requires “real” refactoringll,S
coefficient of determination??, which quantifies the good- the changes we applied to tiRé_tree were trivial, and we
ness of the fit. A2 is nearly 1 in all cases, we conclude that believe that they can be applied by average programmers.
the measurements consistently support our models. HenceThe technique is certainly suitable for library implemeate
forth we use the models to approximate the size. in terms of their expertise and the cost-effectivenessaif th
Carefully examining the parameters reveals the positive efforts, from which all the library users would benefit.
nature of the change induced by generalized hoisting.,First In our example, there were only three type parameters
note that the sums of the coefficients of the two trégs-(, involved, making the refactoring feasible. More paranseter
vS.b1 + ¢1 + a1 + dy) are similar, as indicated by the “diff” would make things challenging, and we are doubtful whether
column that shows their difference. These sums are in factour approach would scale. We speculate, however, that the
$0(1,1) ands;(1,1), reflecting exactly one instantiation of principles might still apply, and we believe this subjectrme
the respective method. The sums should not differ, as theyits further research. One possible approach mighéxier-
are associated with the same code; our new design has amalized hoisting Similarly to nested classes, we can move
effect only when more instantiations are created. any given member methddo an external scope and replace

whereb; is the size off's code (in bytes) that depends on
only T (or nothing) and is thus instantiated only oneeg;

is the size off's Rb_cmp code (depends on only and re-
emitted for each additional comparatar);is the size of’s
Rb_alloc code (depends on onl and re-emitted for each
additional allocator); and; is the size off’s Rb_tree code
(depends on botfl andA and re-emitted for each additional
comparator or allocator). We likewise hypothesize that the
size so(x,y) of each noninlinedoriginal method can be
modeled as

6.3 Drawbacksof Generalized Hoisting

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 16 2009/6/19

original ——
refactored --»¢-:
mode| erree

comparators (x) comparators (x) comparators (x)

Figure 19. The sizes(x,y) of multipleswap instantiations. Our refactored red-black tree yields rgamn order of magnitude less bloat
relative to the original GCC tree (notice the scale-changehie vertical axis of the rightmost figure). The models(of, y) are accurate.

@ 32
3 ; (i) (iii) (iv) W)
o 16)
g 8- ,
2 4 - .
5 - ,
% 1- “ d l l!" r
Y060 %% D50, e A5 sl s & ooooo/
ge,gs,:gs,(? 2@, ‘?[?j, "?sg 5896,5896,5 /}9@7 o(//)?%} 2l ef”e, sfq,
R /‘o oy, (‘o f/f XN of\f‘o,) 4@?@ *\@@ @;} e%o\ ey é%ﬁy/ f’b O\(/é\oé\oé Jy J9 5%,
s, X% 0%,
comparator i~ o@ (,2 0& 0/)\5‘1 4‘7@ @%/;@f 7 @/@%
allocator == J 2
@9 %%, o %
joint m— WY O/)&, % %

Figure20. Comparing the two designs with the comparatat.), allocator (R,), and joint (R.,) bloat ratios.

it with an inlined version that invokes the now-externaldun to a solution that is based on compile-time polymorphism.
tion; the type parameter list of the generic now-extefnal But such transformations would require whole-program op-
would be minimized to only include its real dependencies. timization, which would make it inapplicable to most real-
The drawback is losing the reference thi$”, and having world C++ programs (which rely on dynamic linking).
to supply the relevant data member as arguments. Replacing inner classes with aliases and decomposing a
class with generalized hoisting can be perceived as “tticks
. we must employ since the language does not directly support
7. Compiler and Language Support the notion of minimizing dependencies between the mem-
Some of the bloat reduction achieved through generalizedbers and parameters of a generic class. Alternatively, we
hoisting can be achieved by compiler optimizations. We are might support a general variant of SCARY in the language
aware of one compiler, Microsoft VC++, which employs and type system by allowing programmers to explicitly spec-
heuristics to reuse functions that are identical at themable ify dependencies for class and method members of a generic
level. This, however, does not produce perfect resfilts [4]. type. This would, e.g., be done as briefly illustrated in Fig-
But more importantly, such heuristics are inherently ledit ~ urelZ1. We intend to investigate this issue in the future.
to methods like those from Growg{Tabl€3), that require no
manual modification; all the rest of tikb_tree methods are ..
different at the assembly level for different type paramete 8. Generalizing to Other Languages
(unless the generalized hoisting technique is applied). Our findings are applicable to languages that, upon difteren
In Section[®, we have presented the conventional solu- type parameters, emit different instantiations of the gene
tions to the classic multi-index database problem and notedclass. Such languages can utilize compile-time polymor-
that they are based on runtime polymorphism. In Sedflon 3 phism and the aggressive optimizations it makes possible,
we have utilized SCARY assignments to devise a new so- but at the same time, they are susceptible to bloat.
lution that is largely based on compile-time polymorphism, C# is such a language. Unlike C++, C# emits instantia-
and in Sectiofil4 we have shown that this solution is faster. In tions at runtime as needed, and if the parameters involved
certain cases, it is possible for the compiler to autombyica are references (pointer types), the emitted code coalesce t
transform a solution that is based on runtime polymorphism common instantiation. (This is somewhat similar to the C++

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 17 2009/6/19

template<typename X, typename Y, typename Z> struct C {

void f1() utilizes X,Z {
// only allowed to use X or Z, not Y

}
void £2(0) {

// for backward compatibility, this is

// equivalent to: void f2() utilizes X,Y,Z
¥

class Inner_t utilizes Y {
// only allowed to use Y, not X nor Z
};
};

Figure 21. With the “utilizes” keyword, programmers would be
able to accurately express dependencies; compilers stimuible
to enforce and exploit this in a straightforward manner.

voidx pointer hoisting techniqu&T48].) But if the parameters
are “structures” (value types), then a just-in-time (JIpgs
cialization is emitted, compiled, and optimized, achigvin
performance almost matching hand-specialized dade [36].
C#, however, provides a weaker support to type aliasing.
Its “using” directive is similar to C++'s typedef”, but the
alias only applies to the file it occurs in. This means that it
is currently impossible to hide the fact that the dependenci

Haskell and standard ML are not object oriented lan-
guages, but both can represent nested types within generic
types [9]. Both languages can be implemented in a way that
utilizes multiple instantiations and compile-time polymo
phism [34,[51], in which case some of our findings apply
(Sectio&B).

Java utilizes generics for compile-time type safety, not
compile-time polymorphism. Thus, our results do not apply.

9. Redated Work

In statically-typed languages like C++, Java, and C#, the
use of runtime polymorphism translates to indirect brasche
where addresses of call targets are loaded from memory. In
the early 1990s, Fisher argued that indirect function calls
“are unavoidable breaks in control and there are few com-
piler or hardware tricks that could allow instruction-leve
parallelism to advance past theni”[22]. Not only does in-
direct branching prevent inlining, but it also hinders oppo
tunities for other optimizations such as better registecat
tion, constant folding, etc][6]. In addition, pipelinedbpes-
sors are bad at predicting such branches, inflicting pipelin
flushes that further degrade the performaricé [33]. Conse-
quently, the problem is the focus of numerous studies.
“Devirtualization” attempts to transform the indirectisal

were minimized and that the nested class was moved outsidepf a program to direct calls. Static devirtualization, with

users must be made aware and explicitly utilize the now-
external type, possibly by changing their code.
We note, however, that support for generic programming

whole program optimizers, was applied to language like
C++ [6,[3] and Modula-3[]14]. But in recent years a lot
of effort has been put into dynamic devirtualization in the

is improving. In 2003, Garcia et al. compared languages context of Java and JIT compiling. The function call graph

based on several generics-related desired propertidsdinc
ing type aliasing), and they generated a table that listshwvhi

is inferred at runtime[J2._53], and, when appropriate, such
information is used for inlining devirtualized calls 13, 1

language supports which properfy[24]. The table entries[32,[27]. (This work is potentially applicable to also C# and

were 52% “full”. This table was revisited in 200[/_]25] and
in 2009 [46], and became 57% and 84% full, respectively.

the .NET environment.) In parallel, architecture researsh
have designed indirect branch predictors in an attempt to

(We only consider languages that appeared in more than oneelevate the probleni 44, 137], and such specialized hardware

table version; C#’s “score” was nearly tripled.) It is thiere
not unlikely that type aliasing would be added to C# in the
future. And this paper provides yet another incentive.

We note in passing that C#’s standard iterators follow the
classic design pattern (iterators implement an abstréet-in

is currently deployed in state-of-the-art processorg, the
Intel Core2 Duo[[ZB]. Despite all this effort, the problem is
consistent and prevaleii [7,118] 88] B3, 33].

Compile-time polymorphism attacks the problem in its
root cause, by avoiding indirect branches. It is explicitdy

face) and hence pay the price of runtime polymorphism; we signed to allow generic code to achieve performance com-
have shown that the overheads can be significant. Howeverparable to that of hand-specialized cod€ [47], a goal that is
there is no technical difficulty preventing a C++-like imple often achieved590,-35,86,126]. The programming technique
mentation. And, regardless, our findings are general and ap-we propose makes compile-time polymorphism applicable
ply to all generic classes, not just to iterators. to a wider range of problems. To exemplify, we have shown

Our ideas also apply to ID][5]. If the nested class is static, how to utilize the prevalent classic iterator design patter
moving it outside is like doing it in C++, as D supports type [23] in a way that nearly eliminates indirect branching.
aliasing. But unlike C++ and C#, D also supports non-static ~ Executable compaction is another problem that has spawned
nested classes, which can access the outer object’'s membersnuch researcH 3,11, B0]. Sectibnl5.1 described template
And so moving such classes outside means breaking this ashoisting [8], which is the dominant programming technique
sociation. While somewhat less convenient, we can resolveto reduce code bloat caused by generic programming. We
this difficulty by manually adding a data member referring have generalized this technique to reduce the bloat further
to the outer object. This presents the designer with a tfadeo Bourdev and Jarvi proposed an orthogonal technique involv
of convenience vs. the benefits detailed in this paper. ing metaprogramming and manual guidarice [4].

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 18 2009/6/19

10. Conclusions mers initially find it hard to believe that the statements-con

We advocate a design principle whereby the dependencied'™M t0 the type system, and if so, make sense, and if so,

between the members and the type parameters of a generi@'® & useful technique. We find, however, that it is easy to
change their minds.

class should be minimized, we propose techniques to realize » , L

this principle, and we show that the principle can be lever- A Positive outcome of the first precondition is reduced

aged to achieve faster and smaller programs. code bloat, as less algorithm instantiations are needed (re
gardless of whether SCARY assignments are used). We

Generic programming is utilized by several languages to ; X i X
produce more efficient code. The full compile-time knowl- 9€neralize this observation and suggest a programming

edge regarding the types involved allows for compile-time Paradigm, called “generalized hoisting”, that can furtieer
polymorphism, which obviates the need for dynamic bind- duce the bloat, by decomposing a generic class into a hierar-

ing and enables aggressive optimizations such as inlining.chY that minimizes the dependencies between its members
But the applicability of compile-time polymorphism is in- and its type parameters without mtroqlucmg |rjd|rect|oa|tth
herently limited to homogeneous settings, where the typesd€drades performance. We apply this technique to GCC's

involved are fixed. When programmers need to handle a set> 1 @nd obtain up to x25 reduction in object code size.
of heterogeneous types in a uniform manner, they typically Similarly to our above suggestions, the technique is useful
have to introduce an abstraction layer to hide the type dif- [OF languages that realize genericity with multiple insizn
ferences. They therefore resort to traditional runtimeypol tions.
morphism through inheritance and virtual calls, hindering
the aforementioned optimizations. Acknowledgments

We show that the homogeneity limitation is not as con- We thank the anonymous reviewers for their insightful com-
straining as is generally believed. Specifically, we tanget ~ ments. The first author would also like thank Kai-Uwe Bux
ner classes that nest in a generic class. We make the case th&€ornell U), Dilma Da Silva (IBM), Ronald Garcia (Rice
instantiating the outer class multiple times (with mukipl U), Robert Klarer (IBM) Uri Lublin (Redhat), Nate Nystrom
type parameters) does not necessarily mean that the types oflBM), David Talby (Amazon), Michael Wong (IBM), Ami-
the corresponding inner classes differ. We demonstrate tharam Yehudai (TAU), and Greta Yorsh (IBM) for providing
the resulting interchangeability of the latter can be eitptb much appreciated feedback. Finally, and most importantly,
to produce faster code. We do so by utilizing the canonieal it the first author thanks Ziv Balshai (Intel) for asking thegeri
erator design pattern (which heavily relies on dynamic bind inal question that started the whole thing (“why does this
ing) in a novel way that entirely eliminates dynamic bind- compile under Linux but not under Windows?").
ing from the critical path. We evaluate the proposed design
and demonstrate a x1.2 to x2.1 speedup. While our exampleReferences
concerns C++/STL iterators, our ideas are applicable to any [1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweenefdaptive
generic class within any programming language that resilize op_timization in the Jalapeho JVM In 15th ACM Conf. on Object
genericity with multiple instantiations (such as C# and D). Oriented Prog. Syst. Lang. & APP. (OOPSLAD)'. 47765, 2000.

. . . [2] M. Arnold and D. Grove, Collecting and exploiting high-accuracy

We find that, for programmers, obtaining the runtime call graph profiles in virtual machinesin IEEE Int| Symp. Code
speedups is nearly effortless and only requires to use the Generation & Optimization (CGQ)pp. 51-62, 2005.
language in a previously unconceived manner (“SCARY as- [3] D. F. Bacon and P. F. Sweeneyrdst static analysis of C++ virtual

signments”) that exploits the interchangeability. But thois function call$. In 11th ACM Conf. on Object Oriented Prog. Syst.
Lang. & App. (OOPSLA)p. 324-341, 1996.

to be possible, two preconditions must be met. The first is I . . — .

. . . [4] L. Bourdev and J. Jarvi,Efficient run-time dispatching in generic
teChr_“CaI- The de_S|gne.rs of a gen?r'c class should Cayefu'! programming with minimal code bldatin Symp. on Library-Centric
consider the relationship between its type parameterstand i Software Design (LCSDPct 2006.

nested classes; if an inner class does not depend on all the [5] W. Bright, “D programming languagehttp://www.digitalmars.com/d
type parameters, it should be moved outside and be replaced [6] B. Calder and D. Grunwald, Reducing indirect function call
with an alias that minimizes the dependencies. This makes ©verhead in ci+ programs In 21stACM Symp. on Principles

. .. i of Prog. Lang. (POPL)pp. 397408, 1994.
SCARY assignments legal under existing, unmodified com- L .

. . [7] B. Calder, D. Grunwald, and B. ZornQuantifying behavioral
pilers. The deS|gr_1ers s.hould then formally declare that no differences between C and C++ progrdms). Prog. Lang.2,
other dependencies exist and thereby allow users to safely pp. 313-351, 1994,
exploit the consequent interchangeability. We thus prepos [8] M. D. Carroll and M. A. Ellis,Designing and Coding Reusable C:++
to amend standard APIs like STL to reflect the suggested Addison-Wesley, 1995.

[. : [9] M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow
pI’InCIple, the change will not break old code, but rather, al “Associated types with classin 32nd ACM Symp. on Principles of

low for a “new” kind of code. Prog. Lang. (POPL)pp. 1-13, Jan 2005.

The second precondition is overcoming the initial stand [10] S. Chapin et al., Benchmarks and standards for the evaluation
programmers typically take when presented with SCARY of para_llel job schedulets In 5_th Workshop on Job Sche_duling
assignments. In our experience, even highly skilled progra Strategies for Parallel Processing (JSSPPp. 67-90, Springer-

Verlag, Apr 1999. Lect. Notes Comput. Sci. vol. 1659.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs 19 2009/6/19

[11] D. Citron, G. Haber, and R. LevinReducing program image size by
extracting frozen code and datdn ACM Int'| Conf. on Embedded
Software (EMSOFT)pp. 297-305, 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms MIT Press, 2nd ed., 2001.

[13] D. Detlefs and O. Agesen|rilining of virtual methods. In European
Conf. on Object-Oriented Prog. (ECOQR)p. 258-278, 1999.

[14] A. Diwan, K. S. McKinley, and J. E. B. Moss,Using types to
analyze and optimize object-oriented programé&CM Trans. on
Prog. Lang. & Syst. (TOPLAZB(1), pp. 30-72, 2001.

[15] J. J. Dongarra, H. W. Meuer, H. D. Simon, and E. Strohmaie
“Top500 supercomputer sitesttp://www.top500.org/

[16] C. L. Dumitrescu and |. FosterGangSim: A simulator for grid
scheduling studiés In 5th IEEE Int'l Symp. on Cluster Comput. &
the Grid (CCGrid) pp. 1151-1158 \ol. 2, 2005.

[17] A. Duret-Lutz, T. Géraud, and A. DemailleDesign patterns for
generic programming in C++ In 6th USENIX Conf. on Object-
Oriented Technologies (COOT$) 14, 2001.

[18] M. A. Ertl, T. Wien, and D. Gregg, Optimizing indirect branch
prediction accuracy in virtual machine interpretertn ACM Int'l
Conf. Prog. Lang. Design & Impl. (PLDlpp. 278-288, 2003.

[19] A. Ezust and P. EzusAn Introduction to Design Patterns in C++
with Qt 4. Prentice Hall, 2006.

[20] D. G. Feitelson, Experimental analysis of the root causes of
performance evaluation results: a backfill case studiyEE Trans.
Parallel Distrib. Syst. (TPDS)6(2), pp. 175-182, Feb 2005.

[21] D. G. Feitelson, Metric and workload effects on computer systems
evaluatiori. IEEE Computei36(9), pp. 1825, Sep 2003.

[22] J. A. Fisher and S. M. Freudenberge®rédicting conditional branch
directions from previous runs of a programin 5th Arch. Support
for Prog. Lang. & Operating Syst. (ASPLQ®p. 85-95, 1992.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign Patterns:
Elements of Reusable Object-Oriented Softwakddison-Wesley,
1995.

[24] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and Jldatk, “A
comparative study of language support for generic progragim
In 18th ACM Conf. on Object Oriented Prog. Syst. Lang. & App.
(OOPSLA) pp. 115-134, Oct 2003.

[25] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and Jloadk,
“An extended comparative study of language support for gener
programming. J. Func. Prog. (JFP)L7(2), pp. 145-205, Mar 2007.

[26] J. Gerlach and J. Kneis,Generic programming for scientific
computing in C++, Java , and C# In 5th Advanced Parallel
Processing Technologies (APRPp. 301-310, Sep 2003. Lect.
Notes Comput. Sci. vol. 2834.

[27] N. Glew and J. Palsberg,Type-safe method inlinirig J. Sci.
Comput. Program52(1-3), pp. 281-306, 2004.

[28] S. Gochman et al.,The Intel Pentium M processor: Microarchitec-
ture and performante Intel Technology Journal(2), May 2003.

[29] M. Hansen, How to reduce code bloat from STL contairler€++
Report9(1), pp. 34—41, Jan 1997.

[30] H. He, J. Trimble, S. Perianayagam, S. Debray, and G.réwsl,
“Code compaction of an operating system kernéh |IEEE Int'l
Symp. Code Generation & Optimization (CG@p. 283-298, 2007.

[31] A. losup, D. H. Epema, T. Tannenbaum, M. Farrellee, and.ivhy,
“Inter-operating grids through delegated matchmakingn
ACM/IEEE Supercomputing (S@p. 1-12, 2007.

[32] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T.Kdgani,
“A study of devirtualization techniques for a Java justiing
compilef. In ACM Conf. on Object Oriented Prog. Syst. Lang.
& App. (OOPSLA)pp. 294-310, 2000.

[33] J. A. Joao, O. Mutlu, H. Kim, R. Agarwal, , and Y. N. Patt,
“Improving the performance of object-oriented languaget wi
dynamic predication of indirect jumpsin Arch. Support for Prog.
Lang. & Operating Syst. (ASPLO$)p. 80-90, 2008.

Minimizing Dependencies within Generic Classes for Faatet Smaller Programs

[34] M. P. Jones, Dictionary-free overloading by partial evaluation
Lisp and Symbolic Computati@{3), pp. 229-248, 1995.

[35] C. E. Kees and C. T. Miller, C++ implementations of numerical
methods for solving differential-algebraic equationssige and
optimization consideratiofis ACM Trans. Math. Softw25(4),
pp. 377-403, 1999.

[36] A. Kennedy and D. Syme,Design and implementation of generics
for the .NET common language runtifndn ACM Int'| Conf. Prog.
Lang. Design & Impl. (PLDI)pp. 1-12, 2001.

[37] H.Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and Rh@p“VPC
prediction: reducing the cost of indirect branches via haré-based
dynamic devirtualizatioh In 34th Int'l Symp. on Computer Archit.
(ISCA) p. 2007, 424-435.

[38] J. Lau, M. Arnold, M. Hind, and B. Calder,Online performance
auditing: using hot optimizations without getting buriieth ACM
Int'l Conf. Prog. Lang. Design & Impl. (PLD])pp. 239-251, 2006.

[39] A. Legrand, L. Marchal, and H. Casanov&cheduling distributed
applications: the SimGrid simulation framewbrkin IEEE Int'l
Symp. on Cluster Comput. & the Grid (CCGrigh. 138, 2003.

[40] A. Mu'alem and D. G. Feitelson, Utilization, predictability,
workloads, and user runtime estimates in scheduling the 832
with backfilling”. |EEE Trans. Parallel Distrib. Syst. (TPD32(6),
pp. 529-543, Jun 2001.

[41] “Parallel Workloads Archive http://www.cs.huji.ac.il/labs/parallel/workload

[42] “Grid Workloads Archivé. http://gwa.ewi.tudelft.nl

[43] “Proc(5): process info pseudo-filesystem - Linux man page
http://linux.die.net/man/5/proc (Acceded Mar 2009).

[44] A. Roth, A. Moshovos, and G. S. Sohiffiproving virtual function
call target prediction via dependence-based pre-comipatatin
13thACM Int'l Conf. on Supercomput. (IC)p. 356-364, 1999.

[45] E. Shmueli and D. G. FeitelsonOh simulation and design of
parallel-systems schedulers: are we doing the right thind2EE
Trans. Parallel Distributed Syst. (TPD2009. To appear.

[46] J. G. Siek and A. LumsdaineA“language for generic programming
in the largé. J. Science of Comput. Programm;r&p09. To appear.

[47] A. Stepanov, The standard template library: how do you build an
algorithm that is both generic and efficiehtByte 10, Oct 1995.

[48] B. Stroustrup;The C++ Programming LanguageAddison-Wesley,
3rd ed., 1997.

[49] D. Tsafrir, Y. Etsion, and D. G. FeitelsonBackfilling using system-
generated predictions rather than user runtime estithatdsEE
Trans. Parallel Distrib. Syst. (TPDIB(6), pp. 789-803, Jun 2007.

[50] T. L. Veldhuizen and M. E. JerniganWill C++ be faster than
Fortran?. In Int'l Sci. Comput. in Object-Oriented Parallel
Environments (ISCOPE}997.

[51] S. Weeks, Whole-program compilation in MLtdn In Workshop on
ML, p. 1, ACM, 2006.

[52] Wikibooks, “C++ programming/code/design patterns
http://en.wikibooks.org/wiki/C++Programming/Code/DesigRatterns.

[53] X. Zhuang, M. J. Serrano, H. W. Cain, and J-D. Chdicturate,
efficient, and adaptive calling context profilihgn ACM Int'l Conf.
Prog. Lang. Design & Impl. (PLDI)pp. 263-271, 2006.

20 2009/6/19

	Introduction
	Minimizing Dependencies
	Improving Performance
	The Need for Standardization
	Reducing Code Bloat
	Generalizing
	Contributions and Paper Roadmap

	Motivation
	The Problem
	Using an Abstract Iterator
	Drawbacks of Using an Abstract Iterator

	Using an Abstract Comparator
	Drawbacks of Using an Abstract Comparator

	Independent Iterator: The New Approach
	The Conceptual Aspect
	The Technical Aspect
	The Database with an Independent Iterator
	Advantages of Using an Independent Iterator
	Consequences
	Disadvantages of Using an Independent Iterator

	Experimental Results: Runtime
	Microbenchmarks
	Real Application

	Techniques to Reduce the Bloat
	What We Have Already Achieved
	What We Can Achieve Further
	Hoisting
	Generalized Hoisting

	Experimental Results: Bloat
	Applying Generalized Hoisting to the STL of GCC
	Evaluation
	Drawbacks of Generalized Hoisting

	Compiler and Language Support
	Generalizing to Other Languages
	Related Work
	Conclusions

