
Stroustrup Simplifying concepts N2906=0900096

1

N2906=09-0096
2009-06-21

Bjarne Stroustrup

Simplifying the use of concepts

Abstract
This proposal to simplify the use of concepts by making concept maps rare. It provides “explicit
refinement” as a more specific remedy for the problems that otherwise required similar concepts
to be explicit to avoid errors. It further proposes to make all concepts implicit/automatic, to make
calls of similarly constrained functions from within a constrained function legal, and
(consequently) to make all standard-library concepts implicit. Furthermore it provides a
mechanism to allow either a member or a free-standing function match an associated function
requirement, making many explicit empty concept maps redundant.

To motivate these changes, a few problems with the usability of concepts as currently defined are
presented. I argue that changes are necessary for concepts to succeed outside a small group of
experts.

The current definition of concepts and requirements for use drowns the programmer in
complexities of a magnitude not warranted by the need to express type-checked 9constrained)
generic programming.

Introduction
This note is a follow-up on the long “Are concepts required of Joe Coder?” thread. That thread
started when Howard Hinnant asked that question in the context of a design (of a utility) that
could be done in two ways: One would require quite a lot of users – not necessarily expert users
– to write concept maps. The other design – arguably less elegant – would avoid concept maps
(and concepts) so as not to require users to understand anything significant about concepts. From
there, the discussion branched out into several related directions, incl. how the new range-for
should be specified, how to ensure that a newly written type match a concept, and whether
explicit or implicit concepts should be the recommended style and/or the default for concepts.

I will argue that “average programmers” should write concepts and (less frequently) concept
maps, that it is good for C++ that they do so, and that they will only do so if they see benefits
from doing so. Most C++ programmers should have a sufficient understanding of concepts to
write one as an experiment or for occasional use. Who is “Joe Coder?” asked Peter Gottschling.
Great question, I answered:

I think most C++ programmers are “Joe Coder” (I again register my opposition to that
term). I'm Joe Coder most of the time and with most libraries. I expect to remain so as

Stroustrup Simplifying concepts N2906=0900096

2

long as I keep learning new techniques and libraries. Yet, I want to use concepts (and,
when I must, concept maps). I want the “doctrine of use” radically simpler than the subtle
expert-only use of facilities we have now.

The alternative is for most programmers to discard concepts and libraries built using them out of
fear of the unknown and complex. Since concepts is one of the most prominent features of
C++0x, people avoiding them would be very bad (adding to C++’s reputation for bloat and
complexity). I will argue that

1. the proper ideal and proper language design is for concept maps to be implicit except
where a map is clearly needed to add information.

2. if in the eyes of a programmer, a type “obviously match” a concept, the language rules
should (if at all possible) not put language-technical obstacles in the way of a match.

Please note that I’m not saying that “concept maps are bad” (there are many cases where a
concept map is obviously needed) or that “it ok to define concepts that differ only semantically
and also exclusively rely on syntactic matching” (there are concepts that must be explicitly
distinguished from each other because they cannot reasonably be distinguished syntactically).
I’m arguing that the ideal is “automatic concepts that just work” and that this ideal can be
achieved in many cases while still retaining effective, compile-time, protection against known
problems (known from traditional unconstrained templates and from what I think of as first-
generation constrained templates).

My aim is to articulate a set of guidelines for the use of concepts and concept maps and propose
adjustments to the language mechanisms to reflect such guidelines.

The rest of this paper is organized like this:

1. A bit of language philosophy
2. The purpose of concept maps
3. Leaking implementation details
4. Viral concept maps
5. Suggestions
6. Which standard-library functions should be explicit
7. Matching types to concepts
8. Proposal text

I started writing this proposal and the reflector discussions related to it with less radical aims, but
the complexity and subtlety that met me at every turn convinced me that only a decrease of the
complexity of the language itself would do. A friend who silently followed the reflector
exchanges emailed me this reminder:

Stroustrup Simplifying concepts N2906=0900096

3

"How do we convince people that in programming simplicity and clarity -- in short: what
mathematicians call 'elegance' -- are not a dispensable luxury, but a crucial matter that
decides between success and failure?"

-- Edsger W. Dijkstra

A bit of language philosophy
Types and type checking come in many flavors. Thousands of thick books and articles have been
written on the topic (most using more Greek letters than I prefer) and every professional
programmer will have noticed practical differences between languages (e.g. C and Python) and
even between facilities within a language (e.g. C++ classes and templates). We can think of a
spectrum of languages from languages where two object are of the same types iff they have the
same name (e.g. C++ classes without inheritance or typedef) to languages where two objects are
of the same type iff they have the same “structure” (e.g. a purely tuple-based type system). The
former are called “nominal” (they are name-based), the latter “structural” (they are based on
some form of structure, such as layout or member function names). To simplify, we can talk
about type systems being more or less nominal even though the design choices do not exactly fit
a single line from purely nominal to purely structural. C++ classes (like C/C++ built-in types) fit
towards the nominal end of the spectrum (notions of inheritance and compatible types keep them
away from the extreme). “Duck typing” (popular in dynamically-typed languages) and C++
templates are closer to the structural end of the spectrum, with “the structures” most frequently
matched (to determine type equivalence) being function and type names.

At a first approximation, we can say that structural type systems help the programmer by making
“things” easy to say and maximizing interoperability (“if they look the same they can be used in
the same way”), whereas nominal type systems help the programmer by forcing “things” to be
explicitly expressed and catching errors (“unless you explicitly said so, it ain’t so”). For
example, in a purely dynamic language we can have something like this

 f(x) { print x+1; }
 f(“asdf”); // print asdf1
 f(2); // print 3
 f(2.3); // print 3.3

whereas for a language without overloading you’d have to write three separate functions. With
functions calling functions, you may need an exponential explosion of the number of functions.
Conversely, in a strictly nominal statically typed language we must be specific about type

 int f(int x) { print x+1; } // more verbose: int specified and specified twice
 f(“asdf”); // error “asdf” is not a string
 f(2); // print 3
 f(2.3); // error: 2.3 is not an int

Stroustrup Simplifying concepts N2906=0900096

4

C++ with templates and implicit conversions approximate the dynamically-typed languages –
even to the (almost certain) semantic error of adding an int to a string.

I conjecture that a major reason that generic programming succeeded in C++ where it failed in
languages using object-oriented programming with explicitly specified interfaces (as in C++ and
Java – a nominal type system) is that templates are essentially structural (and similar to many
dynamically-typed languages where OO techniques have succeeded in supporting variants of
generic programming). The added freedom of expression and flexibility provided by templates
over class hierarchies with explicit interfaces has been a major advantage to C++ programmers,
arguably the key to modern C++. That freedom has also been a significant source of problems
(especially poor compile-time error handling).

I see concepts as a way of compensating for the weaknesses of templates stemming from their
extreme structural nature. The major design challenge is to do this without pushing the type
system so far over into the nominal camp that we reintroduce the problems of rigidity, verbosity
(notational overhead) and overspecification (explicitly specifying details that could be deduced)
found with class hierarchies and object-oriented programming. The way I see it, catching the
errors we see with template arguments is easy: we just use an equivalent of nominal typing (such
as classes). The challenge is to do just enough of this without going so far as to damage generic
programming, performance, etc. As my old advisor used to say (in the context of security)
“protection is easy, it’s granting access that’s hard.”

Concepts were meant to make generic programming easier as well as safer. It is part of a whole
collection of features aimed at simplifying GP, together with template aliases, auto, decltype,
lambdas, etc. However, “concepts” is a complex mechanism and its language-technical
complexity seems to be leaking into user code. By “language-technical complexity” I mean
complexity arising from the need of compiler/linker technology rather than complexity from the
solution to a problem itself (the algorithm).

My particular concern is that in the case of concept maps, in the name of safety we have made
templates harder to use. We require programmers to name many entities that would better be left
unnamed, cause excess rigidity in code and encourage a mindset in programmers that will lead to
either a decrease in generic programming (in favor of less appropriate techniques) or to concepts
not being used (where they would be useful). We have overreacted to the problems of structural
typing.

Concept maps
Concept maps play a key role in the mapping between requirements (concepts) and types.
Without concept maps, a type would have to exactly match a requirement (either structurally or
nominally). For example, if I have a type that I’d like to pass to your algorithm, my type would
have to have the name you expected (if your type was expressed as a non-template function) or

Stroustrup Simplifying concepts N2906=0900096

5

have the structure you expected (the right functions, operators, etc. if your type was expressed as
a template function). However, there are plenty of types that almost match a set of requirements.
In the absence of concept maps, I have to use workarounds:

1. For a non-template function, I’d have to change my type, rename my type, or somehow
create a new type (or a synonym) with the name your function expects. Deriving from a
base class used to specify the interface is a classical solution, which unfortunately is
intrusive.

2. For a template function, I’d have to change my type or somehow create a new type with
associated functions, types, etc. that can be used as expected by your function. There is a
fair amount of freedom of choice in exact argument types, member vs. free standing
operations, etc.

I see concept maps as a mechanism to make such adaption simpler and more systematic. That’s
all. In particular, we could use concepts without concept maps by relying on the conventional
adaption techniques (described above) developed for templates and ordinary functions (we
would just prefer not to).

So, what are concept maps good for? Assume that we don’t want to modify types that we want to
use as template arguments, or wrap them in other types, etc. then a concept_map is needed

1. if information needs to be added for a type to be usable for a concept (e.g., a
concept_map Iterator<int*> to add a member type value_type to int*)

2. if two concepts in a derivation/refinement hierarchy differ semantically (e.g.,
ForwardIterator and InputIterator), but not (or only slightly) syntactically, we must
disable automatic matching of at least one and a concept map is needed to specify which
concept – if either – a type matches.

3. to prevent a type with unrelated semantics, but identical member names, from implicitly
and accidentally match a concept (e.g., a Cowboy class with a draw() function might
accidentally be accepted by a function requiring a Shape concept with a draw()
rendering function).

Use #1 is to my mind the primary use of concept maps: to add information to non-intrusively fit
a type into a framework specified through concepts. Use #2 is essential in a few cases (e.g.,
ForwardIterator and InputIterator). However, we have lived happily with class hierarchies
and templates for decades without use #3 reaching anyone’s top 100 list of traps and pitfalls, so it
is not on my top 100 list of C++ problems needing solution. One reason “accidental match”
hasn’t been a major problem is that we rely on simultaneous matches of both names and types.
For example, only if the Cowboy’s draw() has the same argument and return types as Shape’s
draw() and the same holds for every other function in the concept/type can the problem slip past
the compiler (to be caught be the simplest testing). Also, unrelated types tends to get muddled

Stroustrup Simplifying concepts N2906=0900096

6

only when they are used for similarly named functions, so that overload resolution often catches
the mistakes as ambiguities.

My conjecture is that most real-world types do not fall into any of those three categories. The
obvious conclusion is that even though concept maps are essential (for reasons #1 and #2) they
should be used sparingly. If they are frequent, the reason must be that we are using concept maps
for some other reason and/or that there are technical problems in the rules for concept maps.

There is an obvious “other use” for concept maps: To ensure early error detection for
concept/type combinations: By using a concept map, even an empty concept map, we can
guarantee early detection of errors – exactly as we get from a nominal type system. For example:

class Foo : public Bar { … }; // Foo is a Bar

This guarantees that a Foo is a Bar (the OO “is a”). Similarly,

class Foo { … };

concept_map Bar<Foo> { }; // Foo can be used as a Bar

This guarantees that a Foo can be used as a Bar. Without the (empty) concept map, errors would
be found only at the first use of a Foo as a Bar.

Incidentally, I consider the concept_map variant superior to conventional inheritance (in respect
to type checking) because it is non-intrusive.

Systematic use of concept_maps in this way (as would happen if every concept was explicit)
would give us the benefits of interfaces in OOP at the cost of some of the inflexibility of OOP
and a slight added increase of verbosity compared to OO. I consider that a serious
problem/danger in the context of a language feature aimed at improving generic programming. If
you want OO-style type checking in C++, you know where to find it.

My ideal is an expression of GP that is less verbose than and as flexible as what we have with
unconstrained templates, but with vastly improved error checking, error reporting, and overload
resolution. I think we almost have that with concepts, but that a few details of the concept
definition and some major flaws in how we think of their use could move the C++ community
far from those ideals.

I have come to think of extensive use of explicit concepts as a serious mistake and a departure
from the ideals of generip programming as embodied in the STL. I observe that Alex Stepanov’s
latest and greatest book “Elements of Programming” do not use any equivalent of explicit
concepts.

Problems
What concrete problems am I trying to address?

Stroustrup Simplifying concepts N2906=0900096

7

• In which ways can constrained templates be less flexible and more verbose that
unconstrained ones?

• How and when can overuse of explicit concepts add to the problems of inflexibility and
verbosity?

• How can the language rules be modified to alleviate these problems (by increasing
flexibility and minimizing code complexity) without causing type-safety problems?

My claim is

• that there is a lack of flexibility stemming primarily from the use of better specified
interfaces,

• that some of that inflexibility is good (even if users initially don’t appreciate it),
• (but) that an overemphasis on interface names (nominal checking of names of concepts)

and explicit concepts unnecessarily increase such problems.

The next sections present examples of problems and suggest remedies. The remedies simplify
programming, shorten code without compromising type safety and also simplify the language
itself.

The debug example
Consider a simple example of a traditional unconstrained template:

template<class T> f(T& t) { store(t); }

now take an equivalent constrained template

template<ST T> cf(T& t) { store(t); }

where ST is a simple concept that (just) allows a value to be “stored” using store(). Now I want
to do a bit of debugging using cerr:

template<class T> f(T& t) { cerr<< "storing " << t; store(t); }

template<ST T> cf(T& t) { cerr<< "storing " << t; store(t); } // error

This f() still works (assuming ostream can handle a T) but cf() does not. We can make cf() work
only by modifying its interface. Thus, the unconstrained design is more flexible than the
constrained one. By the way, this is not a random example, the equivalent the cf()'s problem
happens all the time in Haskell.

I’m not arguing against the use of a concept such as ST. On the contrary, I’m strongly in favor of
explicitly expressing interfaces (cf() promises to use its argument only as an ST) and really f() is
relying on something unstated (cerr can handle a T) which is obviously not universally true.
Forcing cf() to use its argument only as an ST saves us from problems related to undisciplined

Stroustrup Simplifying concepts N2906=0900096

8

use of arguments – in particular, this is key to compiler checking of template bodies as opposed
to trying for exhaustive checking with a variety of template argument types “to see if they work”
(the most popular example is an algorithm using p+1 on a p that is only guaranteed to be a
forward iterator – we want to catch such errors). However, constrained templates are
indisputably less flexible than constrained ones and undoubtedly someone will complain loudly
against that. Unless we limit this inflexibility to cases where it is necessary and beneficial the
complaints will be valid.

What is the general case (or cases) of this little debug example? Fundamentally, we tried to make
a change to the implementation of a template and found that we had to modify its interface in a
way that would surprise someone coming from an unconstrained template background (or from a
language with duck typing). In this case, I think we must accept that to use an ostream for a T
we must modify the interface, find a way of saying “print T only if you can”, or use some hack.
The “print T only if you can” could be this clever technique (due to Dave Abrahams):

struct debuglog {
 debuglog(ostream& os) : os(os) {}
 ostream& os;

 // Identity adds no constraints, but causes this to be a constrained template:
 template <typename T>
 requires Identity<T>
 debuglog operator<<(T const&) const { os<<"<unprintable>"; return *this; }

 template <typename T>
 requires Identity<T> && OutputStreamable<T>
 debuglog operator<<(T const& x) const { os<<x; return *this; }
};

Unfortunately, this postpones the error message “<unprintable>” to runtime. That might be
acceptable for the specific task of debugging, but it is not a general solution.

The hack could be a late_check (a hack because it violated the spirit of interface based
checking). In general, I prefer not to require such cleverness or to make late_check an idiomatic
part of concept-based programming. A late_check pushed the error message to link time.

I don’t actually suggest a remedy for this example. It simply demonstrates that programming
using well-specified and enforced interfaces carries a cost. This particular cost I’m willing to
pay. However, similar examples are more bothersome.

This example points to a serious danger: programmers may choose very wide (general) interfaces
to simplify changes to the implementation and to keep interfaces stable. This would be

Stroustrup Simplifying concepts N2906=0900096

9

unfortunate because comprehensibility, error detection, and generic programming depend on
narrow (specific) interfaces.

Subsets
The problem with the debug example, which caused the need for cleverness, hacks, or interface
changes, was to use of a facility not provided by the declared interface (concept). But what if the
compiler rejected an implementation that did not in fact use facilities not specified in its interface
(concept)? Such examples would cause legitimate complaints of C++ becoming a “discipline and
bondage language.” Such examples exist. Will they become common? Consider:

concept AB<typename T> {
void a(T&);
void b(T&);

};

concept A<typename T> {

void a(T&);
};

Obviously, every type that’s an AB is also an A, so we could reasonably write:

template<A T> void g(T);

template<AB T> void f(T t)
{

g(t); // valid call?
}

Any non-expert would answer “yes!” Obviously, an AB has an a() as required by A. Obviously,
A is a subset of AB. Someone with some knowledge of concepts might say “no” and suggest that
AB needs to be derived from (a refinement of) A for the compiler to notice the obvious subset
relationship. However, in real code we may not be able to modify the definition of AB.
Requiring derivation/refinement is intrusive and removes an advantage of GP by moving it
closer to OOP.

Before trying to resolve this example, consider a related (but simpler, example:

concept ABx<typename T> {
void a(T&);
void b(T&);

};

Stroustrup Simplifying concepts N2906=0900096

10

concept Ax<typename T> {

void a(T&);
};

Obviously, every type that’s an ABx is also an Ax, so:

template<Ax T> void f(T);
template<ABx T> void f(T t);

void h(X x) // X is a type for which a(x) is valid
{

f(x); // ambiguous
}

In other words, in general, we have to protect against ACx’s a() being different from Ax’s a(). If
these two a()s can be different we cannot accept the call g(t) above because it would call “the
wrong a().”

Reluctantly, I accept that in general, we must require a statement that an AB and an A may be
considered equivalent:

 template<AB T> concept_map A<T> { } // every AB is an A

In other words, we (non-intrusively) say that every AB is an A. Or “for every type T that is an
AB, please check that it is also an A”. Try explaining the need for saying that explicitly and
separately to a novice. Unconstrained templates resolve such cases all the time (rather late) and
auto concepts does that all the time (on first use). Unfortunately, that doesn’t even work (as far
as I read the WP). First we try to place that concept map in f(); after all, we need it as part of f()’s
implementation:

template<AB T> void f(T t)
{

template<AB T> concept_map A<T> { } // every AB is an A

g(t); // valid call?
}

That’s a bit verbose, and it does not work: a concept map cannot be local (see grammar). So we
try to move it outside f(), “leaking” an implementation detail:

template<AB T> concept_map A<T> { }

Stroustrup Simplifying concepts N2906=0900096

11

template<AB T> void f(T t)

{
g(t); // valid call?

}

Still no luck! I find it hard to understand the WP text but James Widman (thanks) assures me that
it does not. It seems that there are scopes problems (e.g. see 3.3.9). There is an issue on this
(CWG issue 870).

Whether this resolution is sufficient remains to be seen. In particular, I wonder if allowing the
local concept map would be needed to avoid implementation leakage. My work on “intermediate
results” (below) may answer that question “real soon now.”

Aside: is it allowed to define a concept map C<X> twice? If not managing to have only a single
map for C<X> in a scope could be challenging and if so we have a maintenance problem (how
do we ensure that every C<X> defines the same map?).

Type of intermediate results
How to specify, constrain, and/or deduce an intermediate result in an algorithm has been a
problem since the earliest discussions of concepts (2002). The simple void f(T t) { g(t); }
example above does not use visible intermediate types. However, in most realistic application
domains, we generate intermediate results from expressions such as f(x,g(),h()) and a+b*c.
Often the type of such intermediate results is non-trivial and most important for the algorithms;
think: expression templates, pair, tuple, matrix, etc. The practical difficulties in managing
explicit concept maps for such cases are non-trivial. Some of the students here (who has written
lots of concept code in domains not usually discussed) claim that the “intermediate type
problem” is completely unmanageable for real code.

Unfortunately, I don’t have the time to write a paper on this for the pre-Frankfurt meeting, but I
hope to be able to provide more information before the Frankfurt meeting.

When are automatic/implicit concepts insufficient?
We cannot manage with just automatic/implicit concepts. To remind ourselves and summarize,
consider two examples ForwardIterator / InputIterator (from N????) and ContiguousIterator
/ RandomAccessIterator from (Doug Gregor in the reflector discussions). These examples
demonstrate that implicit concepts by themselves can easily be (mis)used in unsafe ways:

auto concept ContiguousIterator<typename Iter>
 : RandomAccessIterator<Iter> {
 requires LvalueReference<reference> &&
LvalueReference<subscript_reference>;

}

Stroustrup Simplifying concepts N2906=0900096

12

The idea (implicit except for the name the concept) is that a ContiguousIterator is an iterator to
a contiguously allocated sequence of elements. Knowing that elements are contiguously
allocated opens the possibility for significant optimizations. For example:

template<ContiguousIterator InIter, ContiguousIterator OutIter>
 requires SameType<InIter::value_type, OutIter::value_type>

&& POD<InIter::value_type>
 OutIter copy(InIter first, InIter last, OutIter out) {
 if (first != last)
 memmove(&*out, *&first, (last - first) * sizeof(InIter::value_type));
 return out + (last - first);
 }

Now there is no (reasonable and general) way that a compiler can know whether a given
container provides iterators that are ContiguousIterators. Syntactically, a ContiguousIterator
is identical to a RandomAccessIterator. This can lead to the ContiguousIterator version of
copy to be invoked for a “plain RandomAccessIterator”, such as deque::iterator, with disastrous
results. The “conventional solution” is to declare both ContiguousIterator and
RandomAccessIterator as explicit concepts and let their users write concept maps to say which
are which. This is tedious (though some argue “not too tedious”). However, my observation is
that the ContiguousIterator/RandomAccessIterator design is fundamentally flawed.
Derivation/refinement says that the refined (most derived) version of an operation will be used
when there is a choice. This language rule is fundamental and reasonable (think advance()).
However, this kind of substitution requires that the derived/refined operation has the same
semantics as the less refined one; in other words that it is a pure optimization. This is not the case
in the ContiguousIterator/RandomAccessIterator example. The writer of the optimized copy()
assumed (erroneously) that it would be applied only to ContiguousIterators but the refinement
rules ensures that we can get the “optimized copy()” invoked for the random access iterators
provided by deque. The optimization provided by copy() is a good and important one if the
sequence really is contiguously allocated, but a disaster otherwise.

I consider the ContiguousIterator/RandomAccessIterator example roughly equivalent to
overriding a virtual function with a version with different semantics: Substitutability is sacrificed
even though it is assumed by language rules and conventions of use.

What would be a good solution to this problem? The writer of ContiguousIterator knows (or at
least can know) that there is a problem with the refinement from RandomAccessIterator in
some cases, so he solves it by requiring every user of ContiguousIterator to take an action to
avoid it (even though only uses of operations using ContinuousIterators that are not pure
optimizations of equivalent operations using RandomAccessIterators are affected). This being

Stroustrup Simplifying concepts N2906=0900096

13

burdensome, he then may provide a remedy in the form of one or more concept maps that he
writes himself.

I see that as a patch upon a patch arising from the lack of a specific remedy. And that
“specific remedy” is a statement that says that you cannot implicitly distinguish between
a ContiguousIterator and a RandomAccessIterator. In particular, this does not mean that
every use of ContiguousIterator or RandomAccessIterator requires a concept map, just that
we must avoid treating a ContiguousIterator as a specialization of RandomAccessIterator.

What would be a better, more specific solution, to this class of problem? We should make sure
that the burden of ensuring that a specialized version of a more generalized version is used only
when appropriate is placed (exclusively) on the provider of the specialized version; that is, not on
the provider of the general version (who cannot know if a specialized version will ever exist) and
not on the user (who does not in general know that there are two versions).

Let's see if we can do that. To do so, we have to break this sequence of events:

1. Programmer A defines concept CA
2. Programmer B defines concept CB derived from CA, but syntactically very

similar yet semantically different
3. Programmer U manages to use a type T somehow meant to be CA as a CB

Note:

• A does not know about B or U.
• B knows about CB and CA (but may not be able to modify CA).
• U may only know about CA or CB and would rather know as little as possible.

Basically, the problem boils down to:

1. What can B do to protect U?
2. What can we – as language designers – do to “remind B to protect U” and to help

U if B forgets?

Thus, this is not a question of explicit vs. implicit concepts. It is an issue of derivation
(refinement): Can we identify the cases of derivation that may cause problems? I think so: We
must be able to move “up” a concept hierarchy to get optimizations (e.g. for advance()). We
(implicitly) move “up” because we assume that identical functions (name plus signature) in a
hierarchy have the same semantics (just like for virtual functions). If that's not the case, the
designer of the derivation/refinement should say so, forcing a move “up” to a derived concept to
be explicit. That would take care of the “inappropriate optimization” cases.

I conclude that we need

Stroustrup Simplifying concepts N2906=0900096

14

1. A way to disable implicit conversion/selection “up” a concept hierarchy, to be
applied by the definer of a (derived/refined) concept providing semantically
different (“potentially unsafe”) versions of base concept operations.

2. An explicit way of enabling such a conversion/selection "up" a concept hierarchy
for a particular set of types.

Consider:

 concept ForwardIterator<class T>

 : explicit InputIterator<T> { ... };

This says that the derivation/refinement ForwardIterator : InputIterator is not (also) a
specialization so that if we call an algorithms (e.g. advance()) for InputIterator with a type that
also matches ForwardIterator we do not convert/select “up” to the ForwardIterator version.
This eliminates the errors for the ForwardIterator / InputIterator example and the
ContiguousIterator / RandomAccessIterator example can be handled in the same way.

However, it does so at the cost of eliminating the optimizations, so we'll re-enable those where
appropriate. For example:

 concept_map ForwardIterator<int*> {}

This says that we may consider an int* a ForwardIterator even though it is also an
InputIterator and we don't in general allow such movement “up” to ForwardIterator.

Obviously I hijacked explicit and concept_map to achieve a familiar syntax. I don’t think I did
violence to the semantics.

This simple mechanism eliminates the errors for the ForwardIterator/InputIterator and
ContiguousIterator/RandomAccessIterator examples even if all of those concepts were (as I
would like them to be) implicit/automatic.

Let’s consider how that would work for our hardest case, the standard iterator hierarchy
augmented with Doug’s ContiguousIterator to illustrate extensibility. I hope the abbreviations
are obvious:

CI -> RAI -> BI -> FI -> II -> I

Currently (N2857), I, II, FI, BI, RAI, and (in this discussion) CI are explicit. That solution is to
push the decision on which types have which hierarchical relations onto the type designers (and
then lessening the burden by using templatized concept maps). Basically, this makes a mockery
of the concept hierarchy: we don't use it except as a prop for the concept maps.

Stroustrup Simplifying concepts N2906=0900096

15

The alternative solution is to make all iterator concepts implicit/auto, but explicitly make CI not
a specialization of RAI and FI not a specialization of II:

concept FI<typename T> : explicit II<T> { … }

concept CI<typename T> : explicit RAI<T> { … }

So what concept maps do we need? (please don't nitpick technical details not relevant to the
main argument).

template<class T> concept_map I<T*> { typedef T* value_type; } // add value_type
 // to pointers

template<class T>

concept_map FI<vector<T>::iterator> { }; // but not for istream_iterator
template<class T>

concept_map FI<list<T>::iterator> { }; // but not for istream_iterator

// what we don't need is a concept map saying that list and deque are BI and vector is RAI

template<class T>

concept_map CI<vector<T>::iterator> { }; // but not for deque
template<class T> concept_map CI<T*> { };

So, consider

template<FI I> void advance(I p,int n);
template<RAI I> void advance(I p, int n);
template<CI I> void advance(I p, int n);

template<FI I> algo(I p)
{

advance(p,4);
}

input_iterator<int> pii;
int* pi;
list<int> li;
deque<int> di;

algo(pii); // error:: pii is not FI

Stroustrup Simplifying concepts N2906=0900096

16

algo(pi); // ok: use CI advance
algo(li); // ok: use FI advance; no [] or +
algo(di); // ok: use RAI advance; di has [], +, etc. so it is a RAI, but not a CI

It seems to me that using explicit refinements rather than explicit concepts, we save people from
writing redundant concept maps, teach people to directly address the semantic problems, and not
to unnecessarily fear automatic concepts.

Concept ambiguities
How should we handle two identical concepts not related by refinement? Consider:

concept A<typename T> { void f(T&); }
concept B<typename T> { void f(T&); }

template<A T> f(T&);
template<B T> f(T&);

class X { };

X x;
f(x);

The call f(x) is ambiguous (of course), but how do we get to call one of the f()s? If A and B are
explicit concepts, we simply give a concept map for the one we want (and not also for the other).
That’s at best brittle. If A and B are implicit concepts, we are simply stuck.

I don’t propose to solve this problem. I don’t think that it’s all that important, but if it turns out to
be, we can add some casting/resolution mechanism to apply at the point of call (e.g.
B<X>::f(x)).

Note that this kind of ambiguity is the kind we resolve within a refinement hierarchy for
concepts that differ only semantically. For example

concept RAI<typename T> { … }
concept CI<typename T> : explicit RAI<T> { }

template<RAI T> f(T&);
template<CI T> f(T&);

class X { … }; // syntactically matches RAI and CI

Stroustrup Simplifying concepts N2906=0900096

17

X x;
f(x); // ok: RAI’s f()

We could not – without further (explicit information) assume that an X could be used as the
more refined concept CI. If X is a CI we have to say so

 concept_map CI<X> { };

f(x); // ok: CI’s f()

Explicit concepts are viral
Given N2857, someone will define a concept to be implicit and a user thinks that it would be
better if it was explicit and occasionally, someone will define a concept to be explicit and a user
thinks that it would be better if it was implicit. What can we do in such cases?

 I argue that implicit concepts (structural matching) is the ideal (compared to explicit concepts
(nominal matching)) in the case of constrained templates. Furthermore, it is not unimportant
whether there is a default (implicit/explicit) or what it is. A default of explicit leads to a
proliferation of concept maps – and a mindset that goes with them. A default of implicit leads to
the need for (far fewer) explicit refinements.

Say that someone defines an explicit concept and the resulting need to write concept maps
bothers me, so I try to build an implicit concept from it:

concept Foo<typename T> { ... }; // explicit
template<Foo T> void f(T);

auto concept<typename T> Afoo : Foo<T> { }; // implicit
template<Afool> void g(T);

X x; // atype that matches Foo without any need for mapping

f(x); // error no Foo<X> concept map (I can write one if I want to)
g(x); // ok: X matches Afoo

However, I would probably want to use some of the functions written requiring Foo, such as f().
If that works, we could write

 template<Afoo T> inline void g(T t) { f(t); }

Stroustrup Simplifying concepts N2906=0900096

18

But that wouldn’t work because Foo is explicit, so I try

template<Afoo T> inline void g(T t)
 {
 concept_map Foo<T> { }

f(t);
 }

but that doesn’t work, so I’m back to

 concept_map Foo<X> { }

template<Afoo T> inline void g(T t)
 {

f(t);
 }

But that was the concept map that I was trying to avoid in the first place – and it doesn’t work
either.

I conclude that explicit concepts should at best be used.

Here is another workaround, due to Peter Gottschling:

concept CExplicit<typename T> { ... }

template <CExplicit T>
void f(const T& x, const char* xc)
{
 T y(x);
 std::cout << "In f with x = " << xc << "\n";
}

// Faking concept_map:
auto concept CAuto<typename T> { }
template <CAuto T> concept_map CExplicit<T> {}

But aren’t implicit concepts also viral? Yes, once a concept is implicit
1. We can always write concept maps for implicit concepts to ensure early checking
2. We can easily build an explicit concept from an implicit one

Stroustrup Simplifying concepts N2906=0900096

19

What we cannot do (without a language extension) is to disable matching of a type to an implicit
concept.

The language complexity and the many clever solutions to the problem of switching back and
forth between implicit and explicit concepts proposed in the reflector discussion ere truly scary.
This is expert-only territory. We seem to have created a language with two more or less viral
notions competing in ways that force users to choose between them and to switch between them.
This is unacceptable. At best code written by several people will become unreadable (the same
text in different places in a program will have different rules for correctness) and much energy
and cleverness will have to be expended managing concepts and concept maps. I suspect most
people will simply give up and revert to other language features and other languages.

I reluctantly conclude that there can be only one kind of concepts (and thus not problems
switching among many). That “kind of concepts” must be what we currently call implicit/auto.

Note that people who prefer explicit concept maps can still write them; they just can’t force
others to do so except where necessary to distinguish semantically differing concepts in a
hierarchy.

Negative asserts
For a variety of reasons, several people have suggested “negative assertions or “negative concept maps”
to say. This type does not match that concept. For example:

!concept_map ForwardIterator<isream_iterator>; // don’t use an istream_iterator
// as a ForwardIterator

I’m not fundamentally opposed to this idea, but I’m not sure I understand all the implications and (given
explicit refinement) I don’t have sufficient evidence for a need.

Integrated concept maps
When a type is defined, it is often defined to meet a (pre-defined) specific concept. For example:

class X { … };
concept_map SomeConcept<X> { };

Immediately writing that concept map checks that our design aim is met (accidental error are
caught). Several people (incl., Dave Abrahams, Beman Dawes, and Alisdair Meridith) have
observed that it might be convenient to combine those two declarations. For example

class X : Someconcept { … };
or

SomeConcept X { … }; // credit: Dave Abrahams
or
 class X<SomeConcept> { … };

Stroustrup Simplifying concepts N2906=0900096

20

or
 class X requires SomeConcept { … }; // credit : Beeman Dawes

I am not convinced that there is a real need for such simplified syntax, but as long as there are no
technical problems (e.g. grammar problems) I’m not fundamentally against such a notation.
However, I’m not proposing one partially because we already have the non-intrusive, so all we
would do would be to save a few keystrokes, and partly because we might create myth that types
should be designed primarily to match specific named concepts, which could lead to further
emphasis on names f concepts (as opposed to properties of concepts. Of the suggestions above, I
prefer the one that explicitly uses requires and which can easily be extended to deal with
multiple concepts.

Which Library components should be implicit?
Years ago, the effort to “conceptualize the standard library started out with the ideal that “all or
most should be explicit. However, by the reasoning above, we should look for standard library
concepts that would actually best be explicit. The result of that exercise was interesting.

First, I will ignore the concepts “known to the compiler” since the auto/explicit distinction is
irrelevant to those. Of the rest, several of the explicit ones are “magic” in that they receive
compiler support and have rules against user-supplied concept maps:

• True
• LvalueReference
• RvalueReference
• TriviallyDestructible
• HasVirtualDestructor
• TriviallyCopyConstructible<typename T>
• TriviallyCopyAssignable

Of the rest, it seems that about two thirds are already auto.

I find it hard to see more that really need to be explicit. Beman Dawes listed these as currently
explicit (I added InputIterator and ForwardIterator):

• IntegralLike
• ArithmeticLike
• Allocator
• Container
• FrontInsertionContainer
• BackInsertionContainer
• StackLikeContainer
• QueueLikeContainer

Stroustrup Simplifying concepts N2906=0900096

21

• InsertionContainer
• RangeInsertionContainer
• FrontEmplacementContainer
• BackEmplacementContainer
• EmplacementContainer
• Iterator
• InputIterator
• ForwardIterator
• BidirectionalIterator
• RandomAccessIterator
• Range

At a glance, I don’t see any that are likely to get accidentally matched. All seems to have
distinguishing operations. If there are other reasons for one of these concepts to be explicit, we
should consider if the reason is fundamental or language technical. If the reason is not
fundamental, we must consider the language rule allowing explicit concepts problematic.

So, I propose that all standard library concepts to be implicit and to have ForwardIterator
explicitly derived from InputIterator to avoid the classical mismatch bug.

Type/Concept Matching
Once upon a time, an associated function could match either a member function or a free
standing function. That’s no longer so. I don’t know exactly why this was changed, but I can
think of several good technical reasons. However, consider:

struct Traverser {
typedef int* iterator;
iterator begin();
iterator end();

};

Traverser trav;
// ... attach trav to a data source ...
for (auto x : trav) ...

To my surprise this does not work. Why not? The range-for requires a Range:

concept Range<typename T> {
InputIterator iterator;
iterator begin(T&);
iterator end(T&);

}

Stroustrup Simplifying concepts N2906=0900096

22

That looks ok: Range requires an object of a type with a pair begin() and end() functions
returning an appropriate input iterator and my Traverser class does exactly that (just like
std::vector). The snag is that (despite appearances) Range requires free-standing functions
begin() and end() rather than members. I could rewrite, Traverser like this:

struct Traverser {
typedef int* iterator;

};

Traverser::iterator begin(Traverser);
Traverser::iterator end(Traverser);

For reasons that will appear quite incomprehensible to an ordinary and reasonable user, we have
converted a nice, idiomatic example into a more verbose version with potential overloading
problems. This is a black art we do not need.

So can we overcome the language-technical problems and make this Traverser/Range example
work as originally (and naively) written? I think we must or we will have lots of otherwise
redundant concept maps needed to overcome this problem. What makes this nasty is that the
problem is fundamentally one of language design rooted in (scope and overloading rules) rather
than of fundamental needs of programmers.

The original rules for type matching were based on scope (lookup). Let’s instead consider what it
would take to make the example work whichever of the two ways above was used. That is, what
would it take to map the types into the concept? To simplify that discussion let me simplify the
notation:

concept Range<typename T> {
InputIterator iterator;
iterator begin(T&);
iterator end(T&);

}

struct T1 {

typedef int* iterator;
iterator begin();
iterator end();

};

struct T2 {

typedef int* iterator;

Stroustrup Simplifying concepts N2906=0900096

23

};

T2::iterator begin(T2);
T2::iterator end(T2);

What would it take to make both T1 and T2 match Range? For the moment, ignore issues of T
vs. T& arguments in concepts. Given that imagine the following rules:

T1 matches Range because

• It has a member type iterator as required by Range
• It has a (member) function begin() that takes an T1 and returns an iterator.
• It has a (member) function end() that takes an T1 and returns an iterator.

T2 matches Range because

• It has a member type iterator as required by Range
• There exist a (free-standing) function begin() that takes a T2 and returns an iterator.
• There exist a (free-standing) function end() that takes a T2 and returns an iterator.

In other words, when trying to match a type to a concept, we consider a type’s member function
equivalent to a free-standing function with an added first argument. This is a variant of ideas
(repeatedly floated by Francis Glassborow and me in the EWG) for unifying function call syntax.

The alternative (status quo) leaves us with a large class of surprising lack of type/concept
matches and forces us to write many otherwise unnecessary concept maps.

Conclusions
We must minimize the explicit use of concept maps to make concepts usable by “ordinary
programmers.” In particular, concept maps must be implicit, classes that “obviously match”
concepts must match (rather than forcing people to write concept maps for purely language
technical reasons), and the standard library can and must set a good example by using explicit
concept maps only as appropriate.

The use of concepts is supposed to help people write and use a wide range of templates. The
current definition of concept maps and the philosophy that seems to go with them makes it
harder.

Addressing this is important. I suspect that the alternative is widespread disuse of concepts and
libraries using concepts. I would consider that a major failure of C++0x.

Stroustrup Simplifying concepts N2906=0900096

24

Summary of proposals
Language proposal (Please note my use of the singular. I consider this one proposal to address a
serious problem, not a set of unrelated proposals to address as variety of weakly related minor
problems):

1. Allow refinement to be explicit
2. Make all concepts implicit (i.e. remove explicit concepts from C++0x)
3. Allow a concept to match a constrained template argument
4. Allow both free-standing and member functions to match a concept

Standard-library proposal:

1. All standard library concepts should be implicit
2. The following standard library concepts are explicitly refined:

a. ForwardIterator is explicitly refined from InputIterator
b. TriviallyDefaultConstructible is explicitly refined from DefaultConstructible

3. Remove concept maps made redundant the member function matching rule (1
above)

Acknowledgements
Thanks to the many contributors in the “Joe Coder” thread and to the many similar discussions over the
years and especially lately.

Proposal text
14.10.1 Concept definitions [concept.def]

In [1] remove autoopt from the grammar

Remove [4] which defines auto concept

14.10.2 Concept maps [concept.map]

In [11] replace “an auto concept” with “a concept”

In [13] replace “A concept map or concept map template shall be defined” with “A concept map or
concept map template shall (explicitly or implicitly ([concept.map][11]) be defined”

Globally replace “auto concept” with “concept”

14.10.3 Concept refinement [concept.refine]

In [1] replace

 refinement-specifier:
concept-instance-alias-defopt ::opt nested-name-specifieropt concept-id

Stroustrup Simplifying concepts N2906=0900096

25

With

 refinement-specifier:
: explicit opt concept-instance-alias-defopt ::opt nested-name-specifieropt concept-id

Add a paragraph [6]

If a refinement is declared explicit an operation from the refined concept may not be substituted for the
equivalent operation for the less refined concept and an explicit concept map is required for a type to
match the more refined concept. A type X that matches both concepts is considered to have matched
only the less refined concept [Comment the more refined concept is assumed to have more semantic
constraints – end Comment] unless an explicit concept map has been defined for X and the more refined
concept (in which case X is considered a match for the more refined concept only).

 [Example:

 concept C1<typename T> { void f(T&); }

concept C2<typename T> : explicit C<T> { void f(T&); }

template<C1 T> void algo(T& t)

{

 f(t); // will never use C2’s f()

}

 struct S { … };

 void f(S&);

 S s;

 f(s); // ok: S matches C1

concept_map C2<X> { };

f(s); // ok: S matches C2

- End example]

I do not have specific wording for the “implementation leakage” issue, but somewhere (e.g. as
part of CWG issue 870) resolve the rules for concept maps to allow a use to say nonintrusively:

concept AB<typename T> {
void a(T&);
void b(T&);

};

concept A<typename T> {

void a(T&);

Stroustrup Simplifying concepts N2906=0900096

26

};

 template<AB T> concept_map A<T> { } // every AB is an A

template<A T> void g(T);

template<AB T> void f(T t)
{

g(t); // ok
}

 - end example]

14.11.4 Instantiation of constrained templates [temp.constrained.inst]

Replace the first bullet item of [3] by

- If the seed is a non-member function, the instantiated form is a call to the associated function
candidate set.

[Example:
concept F<typename T> {

T::T();
void f(T const&);

}
template<typename T> requires F<T>

void g(T const& x) {

f(x); // calls F<T>::f. When instantiated with T=X, calls #1
f(T()); // calls F<T>::f. When instantiated with T=X, calls #2

}
struct X {};
void f(X const&); // #1
void f(X&&); // #2
concept_map F<X> { } // associated function candidate set for

// f(X const&) contains #1 and #2, seed is #1
void h(X const& x) {

g(x);
}

—end example]

- If the seed is a member function, the instantiated form is a call to the associated function

candidate set. The member function may be invoked either using the functional notation (f(x))
notation or the member function notation (x.f()) – a call using the functional notation is
mapped to a member function call by using its first argument as the object; for example
f(x,y,z) is interpreted as x.f(x,y).

[Example:
concept F<typename T> {

T::T();

Stroustrup Simplifying concepts N2906=0900096

27

void f();
}
template<typename T> requires F<T>

void g(T const& x) {

f(x); // calls F<T>::f. When instantiated with T=X, calls #1
f(T()); // calls F<T>::f. When instantiated with T=X, calls #2
x.f(); // calls F<T>::f. When instantiated with T=X, calls #1

}
struct X {

void f(X const&); // #1
void f(X&&); // #2

 }

concept_map F<X> { } // associated function candidate set for
// f(X const&) contains #1 and #2, seed is #1

void h(X const& x) {
g(x);

}
—end example]

Remove 18.9.3 Initializer list concept maps [support.initlist.concept] (it has become redundant)

Remove from 23.2.6 Container concepts [container.concepts] [1] (it has become redundant):

template<Container C> concept_map Range<C> see below;
template<Container C> concept_map Range<const C> see below;

Remove from 23.2.6.3 Container concept maps [container.concepts.maps] (it has become redundant):

template<Container C>
concept_map Range<C> {
typedef C::iterator iterator;
iterator begin(C& c) { return Container<C>::begin(c); }
iterator end(C& c) { return Container<C>::end(c); }
}
template<Container C>
concept_map Range<const C> {
typedef C::const_iterator iterator;
iterator begin(const C& c) { return Container<C>::begin(c); }
iterator end(const C& c) { return Container<C>::end(c); }
}
13 Note: these concept_maps adapt any type that meets the requirements of Container to the Range

concept.

	Simplifying the use of concepts
	Abstract
	Introduction
	A bit of language philosophy
	Concept maps
	Problems
	The debug example
	Subsets
	Type of intermediate results
	When are automatic/implicit concepts insufficient?
	Concept ambiguities
	Explicit concepts are viral
	Negative asserts
	Integrated concept maps
	Which Library components should be implicit?
	Type/Concept Matching
	Conclusions
	Summary of proposals
	Acknowledgements
	Proposal text

