
N2859=09-0049

2009-03-19
Daveed Vandevoorde (daveed@edg.com)

New wording for C++0x Lambdas

Introduction
During the meeting of March 2009 in Summit, a large number of issues relating to C++0x
Lambdas were raised and reviewed by the core working group (CWG). After deciding on a clear
direction for most of these issues, CWG concluded that it was preferable to rewrite the section
on Lambdas to implement that direction. This paper presents this rewrite.

Open issue
There are known problems with move constructors that might have to deal with an exception
after some subobjects have already been moved. When that general issue is addressed, the
move constructor for closure types will likely require some treatment.

Resolved issues
The following CWG issues are addressed by this rewrite:

680: What is a move constructor?
720: Need examples of lambda-expressions
750: Implementation constraints on reference-only closure objects
751: Deriving from closure classes
752: Name lookup in nested lambda-expressions
753: Array names in lambda capture sets
754: Lambda expressions in default arguments of block-scope function declarations
756: Dropping cv-qualification on members of closure objects
759: Destruction of closure objects
761: Inferred return type of closure object call operator
762: Name lookup in the compound-statement of a lambda-expression
763: Is a closure object's operator() inline?
764: Capturing unused variables in a lambda expression
766: Where may lambda expressions appear?
767: void parameter for lambdas
768: Ellipsis in a lambda parameter list
769: Initialization of closure objects
771: Move-construction of reference members of closure objects
772: capture-default in lambdas in local default arguments
774: Can a closure class be a POD?
775: Capturing references to functions
779: Rvalue reference members of closure objects?
782: Lambda expressions and argument-dependent lookup

mailto:daveed@edg.com
mailto:daveed@edg.com

In addition, this rewrite adds the restriction that lambda expressions cannot be used in the
operand of a sizeof operator, alignof operator, or decltype specifier. That restriction—
suggested by Doug Gregor and John Spicer—avoids severe implementation difficulties with
template argument deduction (e.g., this avoids the need to encode arbitrary statement
sequences in mangled names).

Key concepts in the new wording
The new wording no longer relies on lookup to remap uses of captured entities. It more clearly
denies the interpretations that a lambda's compound-statement is processed in two passes or
that any names in that compound-statement might resolve to a member of the closure type.
The new wording no longer specifies any rewrite or closure members for "by reference" capture.
Uses of entities captured "by reference" affect the original entities, and the mechanism to
achieve this is left entirely to the implementation.
The term "late-specified return type" has been dropped in favor of a nonterminal trailing-return-
type.

Wording changes
The following changes are relative to N2798.
In 3.3.2 [basic.scope.local] paragraph 2 replace lambda-parameter-declaration-clause by
lambda-declarator (one occurrence).

Replace subsection 5.1.1 [expr.prim.lambda] by the following:

5.1.1 Lambda expressions [expr.prim.lambda]

1 Lambda expressions provide a concise way to create simple function objects. [Example:
#include <algorithm>
#include <cmath>
void abssort(float *x, unsigned N) {
 std::sort(x, x+N,
 [](float a, float b) {
 return std::abs(a) < std::abs(b);
 });
}

 —end example]

lambda-expression:
 lambda-introducer lambda-declaratoropt compound-statement

lambda-introducer:
 [lambda-captureopt]

lambda-capture:
 capture-default
 capture-list

New wording for C++0x Lambdas
 N2859=09-0049

 capture-default , capture-list

capture-default:
 &
 =

capture-list:
 capture
 capture-list , capture

capture:
 identifier
 & identifier
 this

lambda-declarator:

 (parameter-declaration-clause) attribute-specifieropt mutableopt

 exception-specificationopt trailing-return-typeopt

2 The evaluation of a lambda-expression results in an rvalue temporary
(_class.temporary_ 12.2). This temporary is called the closure object. A lambda-
expression shall not appear in an unevaluated operand (_expr_ Clause 5). [Note: A
closure object behaves like a function object (_function.objects_ 20.7). —end note]

3 The type of the lambda-expression (which is also the type of the closure object) is a
unique, unnamed non-union class type—called the closure type—whose properties are
described below. The closure type is declared in the smallest block scope, class scope, or
namespace scope that contains the associated lambda-expression. [Note: This
determines the set of namespaces and classes associated with the closure type
(_basic.lookup.argdep_ 3.4.2). —end note] An implementation may define the closure
type differently from what is described below provided this does not alter the observable
behavior of the program other than by changing:

— the size and/or alignment of the closure type
— whether the closure type is trivially copyable (_class_ Clause 9)
— whether the closure type is a standard-layout class (_class_ Clause 9)
— whether the closure type is a POD class (_class_ Clause 9)

4 If a lambda-expression does not include a lambda-declarator, it is as if the lambda-
declarator were (). If a lambda-expression does not include a trailing-return-type, it is
as if the trailing-return-type denotes the following type:

— if the compound-statement is of the form
 { return attribute-specifieropt expression ; }
the type of the returned expression after lvalue-to-rvalue conversion (_conv.lval_
4.1), array-to-pointer conversion (_conv.array_ 4.2), and function-to-pointer
conversion (_conv.func_ 4.3);

— otherwise, void.

New wording for C++0x Lambdas
 N2859=09-0049

 [Example:
auto x1 = [](int i){ return i; };
 // OK: return type is int
auto x2 = []{ return { 1, 2 }; };
 // error: the return type is void (a braced-init-list is not an expression)

 —end example]

5 The closure type for a lambda-expression has a public inline function call operator
(_over.call_ 13.5.4) whose parameters and return type are described by the lambda-
expression's parameter-declaration-clause and trailing-return-type respectively. This
function call operator is declared const (_class.mfct.non-static_ 9.3.1) if and only if the
lambda-expression's parameter-declaration-clause is not followed by mutable. It is not
declared volatile. Default arguments (_decl.fct.default_ 8.3.6) shall not be specified in
the parameter-declaration-clause of a lambda-declarator. Any exception-specification
specified on a lambda-expression is that of the corresponding function call operator. Any
attribute-specifiers appearing immediately after the lambda-expression's parameter-
declaration-clause appertain to the type of the corresponding function call operator.

6 The lambda-expression's compound-statement yields the function-body (_dcl.fct.def_ 8.4)
of the function call operator, but for purposes of name lookup (_basic.lookup_ 3.4),
determining the type and value of this (_class.this_ 9.3.2), and transforming id-
expressions referring to non-static class members into class member access expressions
using (*this) (_class.mfct.non-static_ 9.3.1), the compound-statement is considered in
the context of the lambda-expression. [Example:

struct S1 {
 int x, y;
 int operator()(int);
 void f() {
 [=]()->int {
 return operator()(this->x+y);
 // equivalent to: S1::operator()(this->x+(*this).y)
 // and this has type S1*
 };
 }
};

 —end example]

7 For the purpose of describing the behavior of lambda-expressions below, this is
considered to be "used" if replacing this by an invented variable v with automatic
storage duration and the same type as this would result in v being used
(_basic.def.odr_ 3.2).

8 If a lambda-capture includes a capture-default that is &, the identifiers in the lambda-
capture shall not be preceded by &. If a lambda-capture includes a capture-default that
is =, the lambda-capture shall not contain this and each identifier it contains shall be
preceded by &. An identifier or this shall not appear more than once in a lambda-
capture. [Example:

New wording for C++0x Lambdas
 N2859=09-0049

struct S2 { void f(int i); };
void S2::f(int i) {
 [&, i]{}; // OK
 [&, &i]{}; // error: i preceded by & when & is the default
 [=, this]{}; // error: this when = is the default
 [i, i]{}; // error: i is repeated
}

 —end example]

9 A lambda-expression's compound-statement can use (see above) this from an
immediately-enclosing member function definition, as well as variables and references
with automatic storage duration from an immediately-enclosing function definition or
lambda-expression, provided these entities are captured (as described below). Any other
use of a variable or reference with automatic storage duration declared outside the
lambda-expression is ill-formed. [Example:

void f1(int i) {
 int const N = 20;
 [=]{
 int const M = 30;
 [=]{
 int x[N][M]; // OK: N and M are not "used"
 x[0][0] = i; // error: i is not declared in the immediately
 }; // enclosing lambda-expression
 };
}

 —end example]

10 The identifiers in a capture-list are looked up using the usual rules for unqualified name
lookup (_basic.lookup.unqual_ 3.4.1); each such lookup shall find a variable or reference
with automatic storage duration. Entities (variables, references, or this) appearing in
the lambda-expression's capture-list are said to be explicitly captured.

11 If a lambda-expression has an associated capture-default and its compound-statement
uses (_basic.def.odr_ 3.2) this or a variable or reference with automatic storage
duration declared in an enclosing function or lambda-expression and the used entity is
not explicitly captured, then the used entity is said to be implicitly captured. [Note:
Implicit uses of this can result in implicit capture. —end note]

12 If this is captured, either explicitly or implicitly, the lambda-expression shall appear
directly in the definition of a non-static member function, i.e., not in another lambda-
expression. [Note: This rule prevents access from a nested lambda-expression to the
members of the enclosing lambda-expression's closure object. —end note]

13 A lambda-expression appearing in a default argument shall not implicitly or explicitly
capture any entity. [Example:

void f2() {
 int i = 1;
 void g1(int = ([i]{ return i; })()); // ill-formed

New wording for C++0x Lambdas
 N2859=09-0049

 void g2(int = ([i]{ return 0; })()); // ill-formed
 void g3(int = ([=]{ return i; })()); // ill-formed
 void g4(int = ([=]{ return 0; })()); // OK
 void g5(int = ([]{ return sizeof i; })()); // OK
}

 —end example]

14 An entity is captured by copy if it is implicitly captured and the capture-default is =, or if
it is explicitly captured with a capture that does not include a &. For each entity
captured by copy, an unnamed non-static data member is declared in the closure type.
The declaration order of these members is unspecified. The type of such a data member
is the type of the corresponding captured entity if the entity is not a reference to an
object, or the referenced type otherwise. [Note: If the captured entity is a reference to a
function, the corresponding data member is also a reference to a function. —end note]

15 An entity is captured by reference if it is implicitly or explicitly captured, but not
captured by copy. It is unspecified whether additional unnamed non-static data
members are declared in the closure type for entities captured by reference.

16 Every id-expression that is a use (_basic.def.odr_ 3.2) of an entity captured by copy is
transformed into an access to the corresponding unnamed data member of the closure
type. If this is captured, each use of this is transformed into an access to the
corresponding unnamed data member of the closure type cast (_expr.cast_ 5.4) to the
type of this. [Note: The cast ensures that the transformed expression is an rvalue. —
end note]

17 Every occurrence of decltype((x)) where x is a possibly parenthesized id-expression
that names an entity of automatic storage duration is treated as if x were transformed
into an access to a corresponding data member of the closure type that would have been
declared if x were a use of the denoted entity. [Example:

void f3() {
 float x, &r;
 [=]{ // x and r are not captured (appearance in a
 // decltype operand is not a "use")
 decltype(x) y1; // y1 has type float
 decltype((x)) y2 = y1; // y2 has type float const& because this
 // lambda is not mutable and x is an lvalue
 // even after the hypothetical transformation
 decltype(r) r1 = y1; // r1 has type float& (transformation not
 // considered)
 decltype((r)) r2 = y2; // r2 has type float const&
 };
}

 —end example]

18 The closure type associated with a lambda-expression has a deleted default constructor
and a deleted copy assignment operator. It has an implicitly-declared copy constructor

New wording for C++0x Lambdas
 N2859=09-0049

(_class.copy_ 12.8). [Note: The copy constructor is implicitly defined in the same way as
any other implicitly declared copy constructor would be implicitly defined. —end note]

19 The closure type C associated with a lambda-expression has an additional public
inline constructor with a single parameter of type C&&. Given an argument object x,
this constructor direct-initializes each non-static data member m of *this with an
expression equivalent to std::move(x.m) if m is not a reference, or with x.m if m is a
reference. [Note: The notations are for exposition only; the members of a closure type
are unnamed and std::move need not be called. —end note]

20 The closure type associated with a lambda-expression has an implicitly-declared
destructor (_class.dtor_ 12.4).

21 When the lambda-expression is evaluated, the entities that are captured by copy are
used to direct-initialize each corresponding non-static data member of the resulting
closure object. (For array members, the array elements are direct-initialized in
increasing subscript order.) These initializations are performed in the (unspecified)
order in which the non-static data members are declared. [Note: This ensures that the
destructions will occur in the reverse order of the constructions. —end note]

22 [Note: If an entity is implicitly or explicitly captured by reference, invoking the function
call operator of the corresponding lambda-expression after the lifetime of the entity has
ended is likely to result in undefined behavior. —end note]

In 7.1.6.4 [dcl.spec.auto] replace the introductory paragraphs
 The auto type-specifier signifies that the type of an object being declared shall be

deduced from its initializer or specified explicitly at the end of a function declarator.

 The auto type-specifier may appear with a function declarator with a late-specified
return type (8.3.5) in any context where such a declarator is valid, and the use of auto
is replaced by the type specified at the end of the declarator.

by
 The auto type-specifier signifies that the type of a variable or reference being declared

shall be deduced from its initializer or that a function declarator shall include a trailing-
return-type.

 The auto type-specifier may appear with a function declarator with a trailing-return-
type (_dcl.fct_ 8.3.5) in any context where such a declarator is valid.

In 8 [dcl.decl] paragraph 4 replace the grammar line
 noptr-declarator parameters-and-qualifiers -> attribute-specifieropt type-id

by
 noptr-declarator parameters-and-qualifiers trailing-return-type

and add before the grammar rule for ptr-operator:
trailing-return-type:

New wording for C++0x Lambdas
 N2859=09-0049

 -> attribute-specifieropt type-id

In 8.1 [dcl.name] paragraph 1 replace the grammar line

 noptr-abstract-declaratoropt parameters-and-qualifiers
 -> attribute-specifieropt type-id

by
 noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type

Add a new paragraph with the following content at the end of 8 [dcl.decl]:
5 The optional attribute-specifier in a trailing-return-type appertains to the indicated

return type. The type-id in a trailing-return-type includes the longest possible sequence
of abstract-declarators. [Note: This resolves the ambiguous binding of array and
function declarators. [Example:

auto f()->int(*)[4]; // function returning a pointer to array[4] of int
 // not function returning array[4] of pointer to int

 —end example] —end note]

In 8.3.5 [dcl.fct] paragraph 2 replace the grammatical form
D1 (parameter-declaration-clause) attribute-specifieropt cv-qualifier-seqopt

 ref-qualifieropt exception-specificationopt -> attribute-specifieropt type-id

by
D1 (parameter-declaration-clause) attribute-specifieropt cv-qualifier-seqopt

 ref-qualifieropt exception-specificationopt trailing-return-type

and replace the sentences

 Such a function type has a late-specified return type. The first optional attribute-specifier
appertains to the function type. The second optional attribute-specifier appertains to the
return type.

by

 The optional attribute-specifier appertains to the function type.

In 8.3.5 [dcl.fct] delete paragraph 3.

In the last note of 8.3.5 [dcl.fct] paragraph 12 replace late-specified return type by trailing-
return-type (two occurrences: one plural and one singular).

New wording for C++0x Lambdas
 N2859=09-0049

