
User-defined Literals
(aka. Extensible Literals (revision 5))

Ian McIntosh, Michael Wong, Raymond Mak, Robert Klarer, Jens
Maurer, Alisdair Meredith, Bjarne Stroustrup, David Vandevoorde

 ianm@ca.ibm.com
michaelw@ca.ibm.com

rmak@ca.ibm.com
klarer@ca.ibm.com

jens.maurer@gmx.net
public@alisdairm.net

bs@cs.tamu.edu
daveed@edg.com

Document number: N2765=08-0275
Date: 2008-09-18
Project: Programming Language C++, Core Working Group
Reply-to: David Vandevoorde (daveed@edg.com)
Revision: 5

Abstract

This paper is Revision 5 of N1892, N2282, N2378, and N2750, and proposes
additional forms of literals using modified syntax and semantics to provide user-defined
literals. User-defined literals allow user-defined classes to provide new literal syntax, a
feature previously available only for built-in types. It increases compatibility with C99 and
future C enhancements, as well as more flexible C++ literals.

The existing set of (C++03) literals is extended: Any literal may contain a user-
defined suffix. Examples include "Hi"s, 1.2i, and 23_units. A user-defined “literal
operator” function defines the mapping of such user-defined literals to actual values. User-
defined literals can produce values of both built-in types (e.g., double) and user-defined
types (e.g., class types).

The proposal requires fairly localized changes to the core language.

This revision makes a modification to the syntax of literal operators and drops most
of the non-wording parts of the earlier papers. It also adds a paragraph in the library wording
to reserve suffixes for future use by the standard library.

mailto:ianm@ca.ibm.com
mailto:ianm@ca.ibm.com
mailto:michaelw@ca.ibm.com
mailto:michaelw@ca.ibm.com
mailto:rmak@ca.ibm.com
mailto:rmak@ca.ibm.com
mailto:rklarer@ca.ibm.com
mailto:rklarer@ca.ibm.com
mailto:jens.maurer@gmx.net
mailto:jens.maurer@gmx.net
mailto:bs@cs.tamu.edu
mailto:bs@cs.tamu.edu
mailto:michaelw@ca.ibm.com
mailto:michaelw@ca.ibm.com

1 Proposed Wording

Modify the leading grammar rules of 2.4 lex.pptoken as indicated:

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Modify 2.4 lex.pptoken paragraph 2 as indicated:

 2 [...] The categories of preprocessing token are: header names, identifiers,
preprocessing numbers, character literals (including user-defined character literals),
string literals (including user-defined string literals), preprocessing-op-or-punc, and
single non-white-space characters that do not lexically match the other preprocessing
token categories. [...]

Note to the editor: The Core Working Group suspects that the terms in 2.4 lex.pptoken
paragraph 2 should not be italicized.

Modify the leading grammar rules of 2.9 lex.ppnumber as indicated:

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number .

Modify 2.13 lex.literal paragraph 1 as indicated:

 1 There are several kinds of literals.20)

literal:
integer-literal
character-literal
floating-literal
string-literal

N2765=08-0275 User-defined literals

boolean-literal
user-defined-literal

Add a new section 2.13.7 lex.ext (no underlining to indicate insertion):

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix

user-defined-floating-literal:
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, then it is treated
as the latter. [Example: 123_km, 1.2LL, "Hello"s are all user-defined-literals,
but 12LL is an integer-literal. —end example]

 1 A user-defined-literal is treated as a call to a literal operator or literal operator
template (13.5.8 over.literal). To determine the form of this call for a given user-
defined-literal L with ud-suffix X, the literal-operator-id whose literal suffix identifier
is X is looked up in the context of L using the rules for unqualified name lookup
(3.4.1 basic.lookup.unqual). Let S be the set of declarations found by this lookup. S
shall not be empty.

 2 If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S
contains a literal operator with parameter type unsigned long long, the literal
L is treated as a call of the form

 operator "" X(nULL)

N2765=08-0275 User-defined literals

 Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8
over.literal), but not both. If S contains a raw literal operator the literal L is treated as
a call of the form

 operator "" X("n")

 Otherwise (S contains a literal operator template), L is treated as a call of the form

 operator "" X<'c1', 'c2', … , 'ck'>()

 where n is the source character sequence c1c2…ck. [Note: The sequence c1c2…ck can
only contain characters from the basic source character set. —end note]

 3 If L is a user-defined-floating-literal, let f be the literal without its ud-suffix. If S
contains a literal operator with parameter type long double, the literal L is treated
as a call of the form

 operator "" X(fL)

 Otherwise, S shall contain a raw literal operator or a literal operator template, but not
both. If S contains a raw literal operator the literal L is treated as a call of the form

 operator "" X("n")

 Otherwise (S contains a literal operator template), L is treated as a call of the form

 operator "" X<'c1', 'c2', … , 'ck'>()

 where n is the source character sequence c1c2…ck. [Note: The sequence c1c2…ck can
only contain characters from the basic source character set. —end note]

 4 If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len
be the number of characters (or code points) in str (i.e., its length excluding the
terminating null character). The literal L is treated as a call of the form

 operator "" X(str, len)

 5 If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. The
literal L is treated as a call of the form

 operator "" X(ch)

 6 [Example:

long double operator "" w(long double);

std::string operator "" w(char16_t const*, size_t);

unsigned operator "" w(char const*);

int main() {

N2765=08-0275 User-defined literals

 1.2w; // calls operator "" w(1.2L)
 u"one"w; // calls operator "" w(u"one", 3)
 12w; // calls operator "" w("12")
 "two"w; // Error: No applicable literal operator
}

 —end example]

7 In translation phase 6 (2.1 lex.phases), adjacent string literals are concatenated and
user-defined-string-literals are considered string literals for that purpose. During
concatenation, ud-suffixes are removed and ignored and the concatenation process
occurs as described in 2.13.4 lex.string. At the end of phase 6, if a string literal is the
result of a concatenation involving at least one user-defined-string-literal, all the
participating user-defined-string-literals shall have the same ud-suffix and that suffix
is applied to the result of the concatenation.

 8 [Example:

int main() {
 L"A" "B" "C"x; // Okay, same as L"ABC"x
 "P"x "Q" "R"y; // Error: two different ud-suffixes
}

 —end example]

Modify 3 basic paragraph 1 as indicated:

 7 Two names are the same if
— they are identifiers composed of the same character sequence; or
— they are the names of overloaded operator functions formed with the same
operator; or
— they are the names of user-defined conversion functions formed with the same
type; or
— they are the names of literal operators (13.5.8 over.literal) formed with the same
literal suffix identifier.

Modify 5.1 expr.prim paragraph 1 as indicated:

 1 unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ class-name
template-id

N2765=08-0275 User-defined literals

Modify 5.1 expr.prim paragraph 7 as indicated:

 7 An identifier is an id-expression provided it has been suitably declared (clause 7).
[Note: for operator-function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for
literal-operator-ids, see 13.5.8 over.literal; for template-ids, see 14.2. A class-name
prefixed by ~ denotes a destructor; see 12.4. Within the definition of a non-static
member function, an identifier that names a non-static member is transformed to a
class member access expression (9.3.1). —end note] ...

Add a new section 13.5.8 over.literal (no underlining to indicate insertion):

literal-operator-id:
 operator "" identifier

 1 The identifier in a literal-operator-id is called a literal suffix identifier.

 2 A declaration whose declarator-id is a literal-operator-id shall be a declaration of a
namespace-scope function or function template (it could be a friend declaration (11.4
class.friend)), an explicit instantiation or specialization of a function template, or a
using-declarations (7.3.3 namespace.udecl). A function declared with a literal-
operator-id is a literal operator. A function template declared with a literal-operator-
id is a literal operator template.

 3 The declaration of a literal operator shall have a parameter-declaration-clause
equivalent to one of the following:

 char const*
 unsigned long long int
 long double
 char const*, std::size_t
 wchar_t const*, std::size_t
 char16_t const*, std::size_t
 char32_t const*, std::size_t

 4 A raw literal operator is a literal operator with a single parameter whose type is
char const* (the first case in the list above).

 5 The declaration of a literal operator template shall have an empty parameter-
declaration-clause, and its template-parameter-list shall have a single template-
parameter that is a non-type template parameter pack with element type char.

 6 Literal operators and literal operator templates shall not have C language linkage.

 7 [Note: Literal operators and literal operator templates are usually invoked implicitly
through user-defined literals (lex.ext 2.13.6). However, except for the constraints
described above, they are ordinary namespace-scope functions and function
templates. In particular, they are looked up like ordinary functions and function

N2765=08-0275 User-defined literals

templates, and they follow the same overload resolution rules. Also, they can be
declared inline or constexpr, they may have internal or external linkage, they
can be called explicitly, their address can be taken, etc. —end note]

 8 [Example:
void operator "" _km(long double); // Okay
string operator "" _i18n(char const*, size_t); // Okay
template<char ...>
 int operator "" \u03C0(); // Okay (UCN for lowercase pi)
float operator ""E(char const*);
 // Error: ""E (with no intervening space) is a single token
float operator " " B(char const*);
 // Error: non-adjacent quotes
string operator "" 5X(char const*, size_t);
 // Error: invalid literal suffix identifier
double operator "" _miles(double);
 // Error: invalid parameter-declaration-clause
template<char ...> int operator "" j(char const*);
 // Error: invalid parameter-declaration-clause

 —end example]

Add a new section 17.6.4.3.6 usrlit.suffix as follows.

 17.6.4.3.6 User-defined literal suffixes [usrlit.suffix]

 1 Literal suffix identifiers that do not start with an underscore are reserved for future
standardization.

Acknowledgement

 We deeply appreciate the email comments from Daveed Vandevoorde and Tom Plum
who made key suggestions on the syntax as well as the feedback from David Abrahams,
Lawrence Crowl, Francis Glassborow, Michael Spertus, Bill Seymour, and Prem Rao.

N2765=08-0275 User-defined literals

