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Abstract

This paper is Revision 4 of n1892 [n1892], n2282 [n2282], n2378 [n2378] and 
proposes additional forms of literals using modified syntax and semantics to provide user-
defined literals.  User-defined literals allow user-defined classes to provide new literal 
syntax, a feature previously available only for built-in types.  It  increases compatibility with 
C99 and future C enhancements, as well as more flexible C++ literals.

The existing set of (C++03) literals is extended: Any literal may contain a user-
defined suffix. Examples include "Hi"s, 1.2i, and 23_units. A user-defined “literal 
operator” function defines the mapping of such user-defined literals to actual values. User-
defined literals can produce values of both built-in types (e.g., double) and user-defined 
types (e.g., class types).

The proposal requires fairly localized changes to the core language.
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1 History

User-defined literals (previously called “extensible literals”) have been presented 
repeatedly since the 2005 Mont Tremblant meeting and the basic idea was always well 
received. However, it was not until the Oxford meeting that we found a way to address all 
implementation and specification difficulties. In Oxford (2007), David Vandevoorde offered 
a solution which is essentially the one presented here.

This solution was presented in Toronto (2007) and was accepted by EWG with the 
provision that wording be added. This paper presents that wording, a summary  of all the 
constraints discussed in Toronto, and a description of the basic idea for people who may have 
gotten lost in the details and the revision history. 

Revision history:

Revision 3:

• Added wording, and updated with constraints discussed in EWG in Toronto, July 
2007. Changed the term “extensible literal” to “user-defined literal”.

Revision 2:

• Update on a Syntax suggested by Daveed Vandevoorde and Dave Abrahams from the 
April, 2007 Oxford meeting

2 The Problem
C++ provides literals for its basic data types: integer literals, floating-point literals, character 
literals, string literals, and Boolean literals1.  The type of the value of such a literal is 
primarily  determined from its syntactic form (e.g., the presence of a decimal point, exponent, 
or alphabetic suffix).  (More rarely, the magnitude may modify the type implied by the 
syntactic form.)  The type and implementation determine the data representation.

To add a new data type to a non-extensible language such as C [C99], the language 
syntax and semantics must be modified by adding the type's name, the type's operations, and 
where appropriate the type's literal syntax (e.g., the new suffix dd for decimal floating point 
literals).

To add a new data type to an extensible language such as C++ [C++03], the preferred 
approach is to leave the language unchanged and define a new class implementing the type's 
operations.  Until now, however, there has been no way to introduce new literal forms (and 
hence no way  to achieve complete source compatibility with C using library-based 
approaches). This paper supports two basic principles of C++ design:
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handled using keywords. They are ignored in what follows.



• User-defined types should have all the same support facilities as built-in types, 
and [12].

• C compatibility should be maintained as far as possible [9,10,11,16].

The existing mechanisms work well when existing literals (integers, floating-point and string 
literals) are suitable.  Other proposals [1,2] extend that to classes which are aggregates of 
existing types by adding user-defined literals formed by grouping basic data type literals; 
e.g., complex(1,2).  This proposal allows additional forms of non-standard literals and uses 
an operator-based mechanism to provide extensible user-defined literals.

2.1 Goals

A major goal for user-defined literal suffixes is to handle every suffix currently in C or 
proposed for C (without changing the C++ core language).  A second goal is to handle every 
suffix in common extensions to C++.  Examples are:

123.4567890123df // decimal floating-point 
"hello!"s   // std::string (rather then C-style string)
3.4i    // imaginary type (for complex)

Our design does not provide a mechanism for specifying prefixes for literals – doing that 
appears to require major surgery  on the lexical rules, whereas this proposal aims at working 
well with existing implementations.

The goal for data representation is to be able to produce data for every  existing, 
proposed or future numeric or string data format, including integer, binary floating-point and 
decimal floating-point, in any reasonable size or precision and representation. For example:

101011100011b // binary literals
123km  // unit is kilometers
17824937283479278572938471982371823791239811237912x
   // numbers with arbitrary range/precision

Important use cases include literals where the meaning of characters differ from the standard, 
such as binary and decimal floating point above, and literals representing values larger than 
any built-in type.

3 The Proposed Solution

In this section we informally but completely present the newly-proposed language feature.

3.1 Operators for new lexical forms

We propose that any built-in literal form not already containing a suffix (e.g., 23 but not 
23LL) concatenated with an identifier (which forms the suffix) be an acceptable literal form. 
Examples include:
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0p
2_pi
99999LLX
0xAE3_ROM
1.2e-3DF
"Hello!"s
L"I18N"ws
U'\u2233'_glyph32.

Any such literal form that is not a built-in literal form is called a user-defined literal. Note 
that there is no a priori length limit to user-defined literals: This allows for literals that map 
to an arbitrary-precision number class.

User-defined string literals can be concatenated like other literals, but the string resulting 
from a concatenation cannot involve component strings that have different suffixes. On the 
other hand, to make certain macros more useful, we allow mixing built-in string literals with 
user-defined string literals. For example:

L"log: " "I/O error"s  // Same as L"log: I/O error"s
"log: "x "I/O error"s  // Error: different suffixes

 Furthermore, we propose that every user-defined literal be interpreted as an 
unqualified call to a new kind of operator—called literal operator—that has the following 
general form:

 X operator "suffix" ( <parameters> );

where X is an arbitrary return type, suffix is an identifier corresponding to the suffixes of 
the literals that map to a call to this operator, and <parameters>  is a parameter list to be 
described below. For example, the list of sample literals above would map onto calls to literal 
operators as follows:

0p
 
 
 
 calls operator"p"(...)
2_pi

 
 
 calls operator"_pi"(...)
99999LLX
 
 
 calls operator"LLX"(...)
0xAE3_ROM

 
 calls operator"_ROM"(...)
1.2e-3DF
 
 
 calls operator"DF"(...)
"Hello!"s

 
 calls operator"s"(...)
L"I18N"ws

 
 calls operator"ws"(...)
U'\u2233'_glyph32
 calls operator"_glyph32"(...)

The arguments to the call are omitted at this point, but they are of course a function of what 
precedes the prefix. They will be determined in what follows.

Except for their name, literal operators are ordinary namespace-scope functions. They can be 
declared with inline or constexpr, have internal or external linkage, or have their 
address taken. The constexpr option in particular means that some user-defined literals 
may be ROMable or may participate in static (as opposed to dynamic) initialization.
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3.2 Raw vs. Cooked Literals
We call raw literal the sequence of characters that form a literal. This sequence of characters 
often directly appears in the source, but it can also result from the transformations required 
by the first six phases of translation (which include macro expansions and string literal 
concatenations).

For built-in literals, the cooked form is the typed value that the literal represents. For 
example, the literal 12 corresponds to a cooked form that is an int of value twelve. For 
user-defined string literals and character literals, the cooked form is the cooked form of the 
literal obtained by leaving out the suffix.  For example:

 "Hello!"s cooks to "Hello!", which is an array 
{ 'H', 'e', 'l', 'l', 'o', '!', '\0' }

For user-defined numerical literals that are suffixed integer literals, the cooked value is the 
value of the literal obtained by replacing the suffix by ULL2. For example:

 0p  cooks to the value and type of 0ULL

Similarly, user-defined numerical literals that are suffixed floating literals, the cooked value 
is the value of the literal obtained by replacing the suffix by L (thus obtaining a value of type 
long double). For example:

 1.2e+3DF cooks to the value and type of 1.2e+3L

For many applications it is sufficient (and convenient!) to transform the cooked value 
and we don’t really care what its raw form was. For example, we may like to map

 "Hello!"s  to std::string("Hello!")

and

 2_pi   to 2*pi

Sometimes, however, significant information is lost in the cooked form. For example, the 
cooked form of 1.2e-3DF may not exactly equal the mathematical value 0.0012, whereas a 
decimal floating-point type to which this literal is intended to map would in fact represent 
that value exactly.  Similarly, a very long integer literal 

 3523175843937492387423498723498720984237832247x

can be useful when mapped to an arbitrary-precision class type, but might not have a valid 
cooked value. To deal with such numerical cases, we want the ability to transform the raw 
literal form of those literals.

To address these observations, we therefore propose one form of literal operator that 
transforms the raw form of numerical (i.e., integer and floating-point) literals, and a variety 
of literal operator forms that deal with the different types of cooked literal types.
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3.3 The raw-form operator

The raw-form literal operator has the following form:

 X operator "suffix" (char const*);

For example, if

 unsigned long long operator"B"(char const*);

is the only operator"B" in scope, then the literal

 01100001000B

is treated as a call

 operator"B"("01100001000")

i.e., the raw form of the token (minus its suffix) is passed as a null-terminated string to the 
(raw) literal operator, which can then parse the characters of that token into a meaningful 
value. The literal

 1.2B

results in a call

 operator"B"("1.2")

which might e.g. throw an exception because the raw form does not correspond to a sequence 
of 0s and 1s.

On the other hand, the literal

 "1001"B

results in a compilation error, because string literals never map onto calls to a raw-form 
literal operator. This restriction is added to avoid specification and implementation 
difficulties that arise from the details of the phases of translation. For example, the literal

 "Hello, " L"Worl\u0044!"

may be indistinguishable from

 L"Hello, World!"

at the end of phase 6. The latter could easily be made the basis for the raw form, but we 
expect that that would be surprising to programmers. Making the former the raw form would 
require significant surgery in the phases of translation, and might very significantly increase 
the implementation cost for some compiler vendors. Since we are not aware of compelling 
use cases, we avoid the issue altogether by not defining mapping from string literals and 
character literals to the raw form literal operators.

Finally, it may be worth pointing out that:

 0x1B
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is a built-in hexadecimal  literal; not the literal 0x1 with a suffix B.

In addition to the ordinary form described above, we also propose a variadic template form:

template<char...> X operator "suffix" ();

For example, if only

template <char...> unsigned long long operator"B"();

is in scope, then

 00101B

results in a call

 operator"B"<'0', '0', '1', '0', '1'>()

(Note the lack of a terminating null character in that case.)

The variadic template form combined with constexpr allows for the use of template 
metaprogramming to produce compile-time values from the raw form.

For a given suffix, declaring both the ordinary and variadic template form in the same scope 
is an error. Furthermore, if lookup during literal processing finds two applicable raw forms, 
an ambiguity error occurs. For example:


 namespace N1 {

   template <char...> A operator"A"();

 }


 namespace N2 {

   A operator"A"(char const*);

 }


 using namespace N1;

 using namespace N2;


 A a = 100A;  // Error: Ambiguous!

3.4 The cooked-form operators

The cooked-form literal operator for user-defined integer literal has the following form:

 X operator "suffix" (unsigned long long);

For example, if

 constexpr
long double operator"_pi"(unsigned long long m) {


   return m*pi;

 }

is in scope, then
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 2_pi

results in a call

 operator"_pi"(2ULL)

Cooked-form operators take precedence over the corresponding raw-form operator. So if the 
following two declarations were in scope:

long double operator"_pi"(unsigned long long);
long double operator"_pi"(char const*);

then

 2_pi

would still result in a call

 operator"_pi"(2ULL)

The cooked-form literal operator for a user-defined floating literal has the form:

 X operator "suffix" (long double);

For user-defined string literals, the following cooked-form operator forms are invoked:

 X operator "suffix" (char const*, size_t);
 X operator "suffix" (wchar_t const*, size_t);
 X operator "suffix" (char16_t const*, size_t);
 X operator "suffix" (char32_t const*, size_t);

when respectively the string is narrow, has an L prefix, a u prefix, or a U prefix. The number 
of characters in the cooked literal (not including the terminating null) is passed as the second 
argument3.

For example, assuming

 wstring operator"ws"(wchar_t const *str, size_t n) {

   return wstring(str, n);

}

is in scope

 L"I18N"ws

results in a call

 operator"ws"(L"I18N", 4)
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difference conveniently makes the two cases distinguishable.



Similarly (assuming raw string literals as proposed in N2295),

 LR"--[The name is "C++".]--"ws

results in a call

 operator"ws"(L"The name is \"C++\".", 18)

However,

 "I18N"ws

results in an error, because only a wide-string (prefix L) operator is in scope.

User-defined character literals are handled similarly using different cooked-form literal 
operators:

X operator "suffix" (char);
 X operator "suffix" (wchar_t);
 X operator "suffix" (char16_t);
 X operator "suffix" (char32_t);

3.5 An idiom

User-defined literal operators are looked up like any other function. However, if called 
through literal forms they are called using built-in types and are therefore never found 
through argument-dependent lookup.

It is tempting therefore to declare user-defined literal operators in the global namespace, or to 
place a global using-declaration in the global namespace. Unfortunately, that is a recipe for 
declaration conflicts even for code that might not use the literal forms.

An alternative idiom consists in declaring literal operators in their own namespace, and 
adding a "using directive" in the global namespace to make them visible to client code. 
Conflicts are delayed until the point of use in this way.

For example:

// File a.h:
namespace A {
  class X { … };
  namespace literals {
    operator "X"(char const*);


   }

 }

 using namespace A::literals;

// File b.h:
namespace B {
  class ExtNum { … };
  namespace literals {
    operator "X"(char const*);
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   }

 }

 using namespace B::literals;

// File main.c:
#include "a.h"
#include "b.h"  // No conflict.
X xx = 123X;  // Error: Ambiguous.

4 Use cases
These examples will illustrate the use of user-defined literal with the proposed mechanism. 
We will usually  start with a declaration, and the actual initialization. We have also tried to 
preserve integration with other proposals, specifically Lawrence Crowl’s separator proposal 
[n2281].

 The b, s, and df suffixes are obvious candidates for the standard library.

4.1 Binary literals

This is a frequently requested feature:

unsigned long long operator"b" (const char*);
int b32 = 11101111101101110001111111011011b;

People who propose binary literals usually combine their proposal with a proposal for some 
kind of separators to heal readability. Combining this proposal with [n2281], we would get:

int b32 = 1110_1111_1011_0111_0001_1111_1101_1011b;

Note that use of _ as a separator does not clash with our use of _ as a suffix character as long 
as the chosen suffix characters are not in the set of “digits” being separated. 

4.2 Hexadecimal literals

We have hexadecimal literals using the 0x prefix. Where we use hexadecimal literals, we 
must avoid choosing a first suffix character from the hexadecimal “digit” set 
[abcdefABCDEF]. Otherwise Maximal Munch will swallow the suffix. For example:

int operator "cm" (unsigned long long); // centimeters
int x = 12345cm;  // fine
int y = 0xascdefcm; // oops: unknown suffix ‘m’

4.3 String literals

Literals of type std::string (as opposed to const char*) are frequently requested:

string operator"s" (const char* p, size_t len)
{

 return string = string(p, len);
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}

string mystring = "Hello World"s;

string cat = "hello"s+ ' ' + "world";

4.4 Decimal floating point literals

This is a key  motivating case. C has df suffixed literals for decimal floating point. C++ does 
not:

Decimal32 operator"df" (const char*);

Now we can read C literals directly.

Decimal32 d32 = 1.2df;

4.5 Raw string literals

We would also like to see raw string literals of type std::string:

string operator"s" (const char* p, size_t len)
{

 return string = string(p, len);
}

R"[abc\abc]"s // operator"s"("abc\\abc",7)

"abc\abc"s  // operator"s"("abc\abc",6)

Note that to preserve the semantics of literals, literal strings are always “cooked” before they 
are passed to this conversion operator. In particular, the raw string above passes one more 
character (the backslash) to the conversion operator than the “ordinary  string” (in which \a 
becomes a single character). The quotes are not passed to the conversion function (only the 
quoted characters), so a conversion function cannot know whether the original string was raw 
or not.

4.6 Internationalization

Consider strings that need to be converted using a translation table. We could have a _i18n 
(for "internationalization") suffix for literals of such a type. For a string, the _i18n 
conversion operator would look up the string in a translation table tied to the current locale.  
For a numeric literal, it would produce a string using the current locale's numeric/punctuation 
proper t ies . For example , 1000000_i18n may cons t ruc t—at run t ime—
str::string("1,000,000"), whereas "Hello"_i18n may look up "Hello" in a 
translation table to produce std::string("Hola") at run time.

Such an effect can be achieved with declarations as follows:
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string operator"_i18n"(const char* str, size_t n) {

  // Look up the string and return the

  // translation.

}

string operator"_i18n"(const char*) {

  // Reformat the numeric literal and return

  // it in string form.

}

5 Proposed Wording

Modify the leading grammar rules of 2.4 lex.pptoken as indicated:

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Modify 2.4 lex.pptoken paragraph 2 as indicated:

    2 [...] The categories of preprocessing token are: header names, identifiers, 
preprocessing numbers, character literals (including user-defined character literals), 
string literals (including user-defined string literals), preprocessing-op-or-punc, and 
single non-white-space characters that do not lexically match the other preprocessing 
token categories. [...]

Modify the leading grammar rules of 2.9 lex.ppnumber as indicated:

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number .
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Modify 2.13 lex.literal paragraph 1 as indicated: 

    1 There are several kinds of literals.20) 

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
user-defined-literal

Add a new section 2.13.7 lex.ext (no underlining to indicate insertion): 

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal  ud-suffix
octal-literal  ud-suffix
hexadecimal-literal ud-suffix

user-defined-floating-literal:
fractional-constant  exponent-partopt  ud-suffix
digit-sequence exponent-part  ud-suffix

user-defined-string-literal:
string-literal  ud-suffix

user-defined-character-literal:
character-literal  ud-suffix

ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, then it is treated 
as the latter. [Example:  123_km, 1.2LL, "Hello"s are all user-defined-literals, 
but 12LL is an integer-literal.  —end example]

    1  A user-defined-literal is treated as a call to a literal operator or literal operator 
template (13.5.8 over.literal). To determine the form of this call for a given user-
defined-literal L with ud-suffix X, the literal-operator-id whose identifier is X is 
looked up in the context of L using the rules for unqualified name lookup (3.4.1 
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basic.lookup.unqual). Let S be the set of declarations found by this lookup. S shall not 
be empty.

    2 If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S 
contains a literal operator with parameter type unsigned long long, the literal 
L is treated as a call of the form

  operator "X"(nULL)


 Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8 
over.literal), but not both. If S contains a raw literal operator the literal L is treated as 
a call of the form

  operator "X"("n")

 Otherwise (S contains a literal operator template), L is treated as a call of the form

  operator "X"<'c1', 'c2', … , 'ck'>()

 where n is the source character sequence c1c2…ck. [Note: The sequence c1c2…ck can 
only contain characters from the basic source character set. —end note]

    3 If L is a user-defined-floating-literal, let f  be the literal without its ud-suffix. If S 
contains a literal operator with parameter type long double, the literal L is treated 
as a call of the form

  operator "X"(fL)


 Otherwise, S shall contain a raw literal operator or a literal operator template, but not 
both. If S contains a raw literal operator the literal L is treated as a call of the form

  operator "X"("n")

 Otherwise (S contains a literal operator template), L is treated as a call of the form

  operator "X"<'c1', 'c2', … , 'ck'>()

 where n is the source character sequence c1c2…ck. [Note: The sequence c1c2…ck can 
only contain characters from the basic source character set. —end note]

    4 If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len 
be the number of characters (or code points) in str (i.e., its length excluding the 
terminating null character). The literal L is treated as a call of the form

  operator "X"(str, len)

    5 If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. The 
literal L is treated as a call of the form

  operator "X"(ch)
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    6 [Example:

long double operator"x"(long double);

std::string operator"x"(char16_t const*, size_t);

unsigned operator"x"(char const*);

int main() {
  1.2x;     // calls operator"x"(1.2L)
  u"one"x;  // calls operator"x"(u"one", 3)
  12x;      // calls operator"x"("12")
  "two"x;   // Error: No applicable literal operator
}

 —end example]

7 In translation phase 6 (2.1 lex.phases), adjacent string literals are concatenated and 
user-defined-string-literals are considered string literals for that purpose. During 
concatenation, ud-suffixes are removed and ignored and the concatenation process 
occurs as described in 2.13.4 (lex.string). At the end of phase 6, if a string literal is the 
result of a concatenation involving at least one user-defined-string-literal, all the 
participating user-defined-string-literals shall have the same ud-suffix and that suffix 
is applied to the result of the concatenation.

    8 [Example:

int main() {
  L"A" "B" "C"x; // Okay, same as L"ABC"x
  "P"x "Q" "R"y; // Error: two different  ud-suffixes
}

 —end example]

Modify 3 basic paragraph 1 as indicated: 

    7 Two names are the same if 
— they are identifiers composed of the same character sequence; or 
— they are the names of overloaded operator functions formed with the same 
operator; or 
— they are the names of user-defined conversion functions formed with the same 
type; or
— they are the names of literal operators (13.5.6 over.literal)  formed with the same 
quoted identifier.
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Modify 5.1 expr.prim paragraph 1 as indicated: 

    1 unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ class-name
template-id

Modify 5.1 expr.prim paragraph 7 as indicated: 

    7 An identifier is an id-expression provided it has been suitably declared (clause 7). 
[Note: for operator-function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for 
literal-operator-ids, see 13.5.8 over.literal; for template-ids, see 14.2. A class-name 
prefixed by ~ denotes a destructor; see 12.4. Within the definition of a non-static 
member function, an identifier that names a non-static member is transformed to a 
class member access expression (9.3.1). —end note] ... 

Add a new section 13.5.8 over.literal (no underlining to indicate insertion): 

literal-operator-id:
        operator "identifier"

    1 A declaration whose declarator-id is a literal-operator-id shall be a declaration of a 
namespace-scope function or function template (it could be a friend declaration (11.4 
class.friend)), an explicit instantiation or specialization of a function template, or a 
using-declarations (7.3.3 namespace.udecl). A function declared with a literal-
operator-id is a literal operator. A function template declared with a literal-operator-
id is a literal operator template.

    2 The declaration of a literal operator must have a parameter-declaration-clause 
equivalent to one of the following:


 char const*

 unsigned long long int

 long double

 char const*, std::size_t

 wchar_t const*, std::size_t

 char16_t const*, std::size_t

 char32_t const*, std::size_t

    3 A raw literal operator is a literal operator with a single parameter whose type is 
char const* (the first case in the list above).
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    4 The declaration of a literal operator template must have an empty parameter-
declaration-clause, and its template-parameter-list must have a single template-
parameter that is a non-type template parameter pack with element type char.

    5 Literal operators and literal operator templates shall not have C language linkage.

    6 [Note:  Literal operators and literal operator templates are usually invoked implicitly 
through user-defined literals ([lex.ext] 2.13.6). However, except for the constraints 
described above, they are ordinary namespace-scope functions and function 
templates. In particular, they are looked up like ordinary functions and function 
templates, and they follow the same overload resolution rules. Also, they can be 
declared inline or constexpr, they may have internal or external linkage, they 
can be called explicitly, their address can be taken, etc. —end note]

6 Notes

6.1 Library impact

Various components of the standard library and of library  TRs can benefit very directly from 
this proposal.  This include <complex>, <string>, and the decimal floating point TR.

However, separate proposals must be made to achieve this.

6.2 Prefixes

The urge to support prefixed user-defined literal was strong especially  for strings since 
that is how we define other types of string literals. However, we dropped the idea because of 
apparently  insurmountable parsing problems. Consider supporting arbitrary  prefix and suffix 
like this:

X operator "Pre" "Suf"(char const*);
// Called with "xyz" for token  Pre"xyz"Suf or empty string if none

The problem with prefixes is that some keywords can immediately  precede literals. For 
example:

 and"x" == s

 throw"oops"

 sizeof"string"

Daveed points out (during the Oxford 2007 meeting):

“I think I found a reason that kills prefixes for user-defined string initializers.  
Consider the phases of translation.  The types of strings need to be determined at 
phase 5, in order to determine the members of the execution character set, and 
certainly by  phase 6, so that adjacent strings can be sensibly catenated (or diagnosed 
as "not catenatable").  So when the committee adopts RU or U or u8R or whatever, 
these have to be hard-wired into the string-catenating logic in phase 6. This looks like 
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a fundamental contrast  to the role of user-defined string "decorations" ... so I guess 
there is no choice but to go with suffixes. As a very minor consequence, we probably 
have to apply the user-defined suffix to the string that results from phase-6 
catenation.”

6.3 Alternative Designs

  Several modifications of the constructor syntax were considered and ultimately 
rejected.  (Note: In the following, the character sequence in bold is to be added as additional 
syntax to the constructor.  The exact syntax of these character sequences within a constructor 
declaration will be discussed later.)

1. Specify just the single suffix or prefix string; e.g.:

"df"
   "DQ"
   "utf32"

Often that would require writing two otherwise identical constructors.

2. Specify  a list  of synonymous strings; e.g.: "df", "DF". That allows one 
constructor to handle multiple suffixes or prefixes, but complicates the syntax.
Neither of these lets the compiler do any syntax checking for the constructor.

3. Specify a basic typename and the suffix or prefix string(s); e.g.: 

a. double "dd", "DD"

b. int "long128"

4. For user-defined numeric literals, this allows the compiler to check that the syntax 
matches the specified type except for the suffix, number of digits and exponent 
range. 

For numeric literals the typename describes the syntax not the size.  Typenames 
int and double accept any literal in integer or floating-point syntax with only 
the specified suffix(es).  Typename unsigned long accepts any integer literal 
with a u or U suffix followed by the specified suffix(es), and float accepts a 
floating-point literal with an f or F suffix then the specified one(s).

For user-defined string and character literals it allows the base character type to be 
specified; e.g.:

      wchar_t "utf_16"

5. Instead of a type followed by a quoted string, specify a literal keyword.  This 
literal keyword would identify the literals in the C Standard that are known to be 
missing from the C++ standard.  This is somewhat less robust but is easier to 
describe.  For example we can use the keyword FLOATING_LITERAL to signify 
the character sequence before the suffix to be a floating literal, and then write the 
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suffix character sequence after it.  (Also, we can omit the quotes in these 
syntaxes.)  For example:

FLOATING_LITERAL j

6. Specify a regular expression describing the type; e.g.:

        "[0-9]{1-28}long128"

That allows much better checking.  The extra programming effort is small for the 
benefit, especially if a sample floating-point regular expression is available.
This would also allow patterns to match literals like

       1234d5

by accepting a numeric string, "d", and another numeric string.

7. Some combination of those.  There are good reasons to allow both regular 
expressions and suffix / prefix strings with optional type names.

8. Using a #literal syntax that directly gives user string replacement in the lexer 
which effectively replaces a suffix with the proper constructor call sequence.

6.4 Performance

User-defined literals map onto calls to literal operators. Sometimes such calls will be 
evaluated at run time. However, the availability of constexpr functions, and the optional 
variadic template form of the literal operator allows some important cases to be translated 
into compile-time  constants.

In practice, we expect that the number of user-defined literals requiring execution-
time conversion will be relatively  small, and that in most cases they will not noticeably affect 
performance. In any case, existing alternatives also require execution-time conversions.

In the Oxford presentation, there was a great wish to allow user-defined literals to be 
ROMable to support the embedded system community where there is limited static memory.  
This design will support that depending on the complexity of the literal construction operator 
function.  However, some user-defined literal construction operator functions cannot be 
executed at compile time: the literals they construct are not constant expressions and cannot 
be put into ROM.

The author of a class can and should write appropriate << and >> iostream operators 
for it, but like any other new class there are restrictions on using printf ( ) and scanf ( ).  A 
type like Imaginary can be cast  to floating-point and printfed with "%fj", but types like 
_Decimal32 have new internal representations so could only be printfed by first converting 
to a string unless printf ( ) supported the proposed C “%HDf” _Decimal32 conversion 
specifier.
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6.5 Related papers

This is compatible with and orthogonal to other proposals including literals for user-
defined types [1], generalized initializer lists [2], and braces initialization overloading [4], 
and benefits from the generalized constant expressions proposal [3]. 

These other papers primarily  propose grouping literals using existing known literals. 
[1] in particular identifies the possibility  of a unique syntax using the literal  keyword as a 
constructor, and limits what can be placed inside the constructor so that  it can achieve 
ROMability.
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