Unifying Operator and Function-Object Variants of
Standard Library Algorithms

Author: Douglas Gregor, Indiana University

Document number: N2743=08-0253

Date: 2008-08-25

Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor <dgregor @osl.iu.edu>

Introduction

This proposal unifies the operator-based and function-object variants of Standard Library algorithms, in many cases
collapsing two algorithm declarations into a single declaration. For example,

template<RandomAccessIterator Iter>
requires Shufflelterator<Iter>
&& LessThanComparable<Iter::value_type>
void sort(Iter first, Iter last);

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void sort(Iter first, Iter last,
Compare comp);

becomes

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void sort(Iter first, Iter last,
Compare comp = Compare());

When the final argument to sort is omitted, it will receive a default of std: : less on the iterator’s value type. Since
std: : less itself has a function-call operator that uses the LessThanComparable concept, we get the same behavior
from this version of sort that we would get from the original first variant of sort.

Some Standard Library implementations already forward the operator-based formulations of their algorithm implemen-
tations to the function-object—based formulations, and this idea is far from new. However, it was not possible to unify
the declarations in C+H03 for two reasons. First, default arguments of function templates were not supported in C+-03.
Second, it was not clear in C+03 whether the operator< used by the first variant of sort operated on the iterator’s
value_type or reference type (or a combination of both); concepts tie down these details, making it safe to unify the

mailto:dgregor@osl.iu.edu

signatures. This unification significantly reduces the number of declarations in the algorithms chapter, making it easier
to read. The result will be an easier-to-digest Standard Library specification with a less-verbose implementation.

Note that the changes to the algorithms are not quite as extensive as one might hope. In cases where we have type-
symmetric operator requirements (LessThanComparable and EqualityComparable) we can use the standard library’s
function object types (std: : less and equal_to, respectively). However, wherever we have type-asymmetric operator
requirements (HasLess and HasEqualTo), there is no function object type in the standard. However, introducing a new,
mostly redundant set of function object types to the standard library just to simplify the presentation of the algorithms
does not seem like a reasonable trade-off.

Chapter 25 Algorithms library [algorithms]

Header <algorithm> synopsis
Update the synopsis to reflect changes to the algorithms detailed below.
25.1 Non-modifying sequence operations [alg.nonmodifying]

25.1.8 Adjacent find [alg.adjacent.find]

Iter-adjacent_find(Iter first Tter last);

template<ForwardIterator Iter,
EquivalenceRelation<auto, Iter::value_type> Pred = equal_to<Iter::value_type>>
requires CopyConstructible<Pred>
Iter adjacent_find(Iter first, Iter last,
Pred pred = Pred());

Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the following

corresponding conditions holds: *i==s(i+1- pred (*i, *(i + 1)) !'= false. Returns last if no such
iterator is found.

Complexity: For a nonempty range, exactly min((i - first) + 1, (last - first) - 1) applications of
the corresponding predicate, where i is adjacent_find’s return value.

25.2 Mutating sequence operations [alg.modifying.operations]

25.2.9 Unique [alg.unique]

template<ForwardIterator Iter,
EquivalenceRelation<auto, Iter::value_type> Pred = equal_to<Iter::value_type>>
requires Outputlterator<Iter, RvalueOf<Iter::reference>::type>
&& CopyConstructible<Pred>
Iter unique(Iter first, Iter last,
Pred pred = Pred());

25.3 Sorting and related operations Algorithms library 4

Effects: For a nonempty range, eliminates all but the first element from every consecutive group of equivalent
elements referred to by the iterator i in the range [first + 1, last) for which the following conditions holds:

i —1)==xior pred (x(i - 1), *i) != false.
Returns: The end of the resulting range.

Complexity: For nonempty ranges, exactly (last - first) - 1 applications of the corresponding predicate.

template<InputIterator InIter, typename OutIter,
EquivalenceRelation<auto, InlIter::value_type> Pred = equal_to<Iter::value_type>>
requires OutputIterator<OutlIter, InIter::reference>
&& OutputIterator<Outlter, const InlIter::value_type&>
&& CopyAssignable<InIter::value_type>
&& CopyConstructible<InIter::value_type>
&& CopyConstructible<Pred>
OutIter unique_copy(InIter first, InIter last,
OutIter result, Pred pred = Pred());

Note that the unification of the unique_copy signatures depends on the simplification to unique_copy in N2742. If
that proposal is not accepted, this unique_copy cannot be collapsed.

Requires: The ranges [first , last) and [result ,result+(last-first)) shall not overlap.

Effects: Copies only the first element from every consecutive group of equal elements referred to by the iterator i in
the range [first , last) for which the following corresponding conditions holds: *i==s(—1)-or pred (*i,
*(i - 1)) != false.

Returns: The end of the resulting range.

Complexity: For nonempty ranges, exactly last - first - 1 applications of the corresponding predicate.

25.3 Sorting and related operations [alg.sorting]

All the operations in 25.3 have two versions: one that takes a function object of type Compare and one that uses an
operator<. [Note:in some cases, the version that uses operator< does so through default function arguments and
default template arguments. — end note |

In the descriptions of the functions that deal with ordering relationships we frequently use a notion of equivalence
to describe concepts such as stability. The equivalence to which we refer is not necessarily an operator==, but an

Draft

5 Algorithms library 25.3 Sorting and related operations

equivalence relation induced by the strict weak ordering. That is, two elements a and b are considered equivalent if and

only if Ha<b)&&1{b<a)!comp(a, b) && !comp(b, a).
25.3.1 Sorting [alg.sort]

25.3.1.1 sort [sort]

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void sort(Iter first, Iter last,
Compare comp = Compare());

Effects: Sorts the elements in the range [first, last).

Complexity: Approximately Nlog(N) (where N == last - first)comparisons on the average.!

25.3.1.2 stable_sort [stable.sort]

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void stable_sort(Iter first, Iter last,
Compare comp = Compare());

Effects: Sorts the elements in the range [first, last).

Complexity: Tt does at most Nlog?(N) (where N == last - first) comparisons; if enough extra memory is
available, it is Nlog(N).

Remarks: Stable.

25.3.1.3 partial_sort [partial.sort]

template<RandomhccessIterator Iter>
regquires—Shufflelterator<lter>

1)Ifthc:Worstcasebehaviorisimportantstable_sort()(25.3.1.2)orpartial_sor‘c()(253.1.3)shouldbeused.

Draft

25.3 Sorting and related operations Algorithms library 6

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void partial_sort(Iter first,
Iter middle,
Iter last,
Compare comp = Compare());

1 Effects: Places the first middle - first sorted elements from the range [first,last) into the range [
first ,middle). The rest of the elements in the range [middle, last) are placed in an unspecified order.

2 Complexity: It takes approximately (last - first) * log(middle - first) comparisons.
25.3.1.5 is_sorted [is.sorted]
template<ForwardIterator Iter>
requires—LessThanComparable<Iteriivalue_type>
B e s
1 S eeled a L ae e e e

template<ForwardIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
bool is_sorted(Iter first, Iter last,
Compare comp = Compare());

2 Returns: is_sorted_until(first, last, comp) == last

template<ForwardlteratorTter>
requiresLessThanComparable<Iteriiralue_type>
e
template<ForwardIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
Iter is_sorted_until(Iter first, Iter last,
Compare comp = Compare());

3 Returns: If distance(first, last) < 2,returns last. Otherwise, returns the last iterator i in [first,last]
for which the range [first,i) is sorted.

4 Complexity: Linear.

25.3.2 Nth element [alg.nth.element]

Draft

1

7 Algorithms library 25.3 Sorting and related operations

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void nth_element(Iter first, Iter nth,
Iter last, Compare comp = Compare());

After nth_element the element in the position pointed to by nth is the element that would be in that position if
the whole range were sorted. Also for any iterator i in the range [first ,nth) and any iterator j in the range
[nth, last) it holds that@:Cxi>*5)-or comp (xj, *i) == false.

Complexity: Linear on average.

25.3.4 Merge [alg.merge]

template<Bidirectionallterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void inplace_merge(Iter first,
Iter middle,
Iter last, Compare comp = Compare());

Effects: Merges two sorted consecutive ranges [first ,middle) and [middle , last), putting the result of the
merge into the range [first,last). The resulting range will be in non-decreasing order; that is, for every
iterator i in [first , last) other than first, the condition *i<-{i=1) er respeetively; comp (*i, *(i -
1)) will be false.

Complexity: When enough additional memory is available, (last - first) - 1comparisons. If no additional
memory is available, an algorithm with complexity Nlog(N) (where N is equal to Last - first) may be used.

Remarks: Stable.

25.3.6 Heap operations [alg.heap.operations]

A heap is a particular organization of elements in a range between two random access iterators [a,b). Its two key

Draft

25.3 Sorting and related operations Algorithms library 8

properties are:

(1) There is no element greater than *a in the range and

(2) *a may be removed by pop_heap (), or a new element added by push_heap (), in &'(log(N)) time.
These properties make heaps useful as priority queues.

make_heap () converts a range into a heap and sort_heap () turns a heap into a sorted sequence.

25.3.6.1 push_heap [push.heap]

template<RandomhccesslteratorTter>
requires Shufflelterator<Iter>
&&—LessThanComparable<Iteriivalue_type>
void push_heap(Iter first, Iter last);

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void push_heap(Iter first, Iter last,
Compare comp = Compare());

Effects: Places the value in the location last - 1 into the resulting heap [first, last).
Requires: The range [first ,last - 1) shall be a valid heap.

Complexity: At most log(last - first) comparisons.

25.3.6.2 pop_heap [pop.heap]

srefsolesefocee Soann Teooe oo

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void pop_heap(Iter first, Iter last,
Compare comp = Compare());

Effects: Swaps the value in the location first with the value in the location last - 1and makes [first, last
- 1) into a heap.

Requires: The range [first , last) shall be a valid heap.

Complexity: At most 2 * log(last - first) comparisons.

Draft

9 Algorithms library 25.3 Sorting and related operations

25.3.6.3 make_heap [make.heap]

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void make_heap(Iter first, Iter last,
Compare comp = Compare());

Effects: Constructs a heap out of the range [first , last).

Complexity: Atmost3 * (last - first) comparisons.

25.3.6.4 sort_heap [sort.heap]

e =t

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
void sort_heap(Iter first, Iter last,
Compare comp = Compare());

Effects: Sorts elements in the heap [first , last).

Complexity: At most Nlog(N) comparisons (where N == last - first).

25.3.6.5 is_heap [is.heap]

template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
bool is_heap(Iter first, Iter last, Compare comp = Compare());

Returns: is_heap_until(first, last, comp) == last

Draft

25.3 Sorting and related operations Algorithms library 10

B =
template<RandomAccessIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
Iter is_heap_until(Iter first, Iter last,
Compare comp = Compare());

3 Returns: If distance(first, last) < 2,returns last. Otherwise, returns the lastiterator i in [first,last]
for which the range [first,i) is a heap.
4 Complexity: Linear.

25.3.7 Minimum and maximum [alg.min.max]

Iter min_element(Iter first, Iter last);

template<ForwardIterator Iter,

StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
Iter min_element(Iter first, Iter last,

Compare comp = Compare());

31 Returns: The first iterator i in the range [first , last) such that for any iterator j in the range [first, last

) the following corresponding conditions holds: -(«j<=i)—er comp (*j, *i) == false. Returns last if
first == last.

32 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons.

. e

template<ForwardIterator Iter,

StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
Iter max_element(Iter first, Iter last,

Compare comp = Compare());

33 Returns: The first iterator i in the range [first, last) such that for any iterator j in the range [first, last
) the following corresponding conditions holds: -(ki<j)—er comp (*i, *j) == false. Returns last if
first == last.

34 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons.

Draft

11 Algorithms library 25.3 Sorting and related operations

template<ForwardIterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires CopyConstructible<Compare>
pair<Iter, Iter>
minmax_element (Iter first, Iter last, Compare comp = Compare());

35 Returns: make_pair(m, M), wheremismin—element{first; last)ormin_element(first, last, comp)
and M is max—element{first, tast)ormax_element (first, last, comp).

36 Complexity: At mostmax(2 * (last - first) - 2, 0) applications of the corresponding comparisons.

25.3.9 Permutation generators [alg.permutation.generators]

template<Bidirectionallterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>

&& CopyConstructible<Compare>
bool next_permutation(Iter first, Iter last, Compare comp = Compare());

1 Effects: Takes a sequence defined by the range [first , last) and transforms it into the next permutation. The
next permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to
eperator<-or comp . If such a permutation exists, it returns true. Otherwise, it transforms the sequence into the
smallest permutation, that is, the ascendingly sorted one, and returns false.

2 Complexity: At most (last - first)/2 swaps.

1 Bidj . 11 I
requires Shufflelterator<Iter>

&&—LessThanComparable<Iteriivalue_type>

bool prev_permutation(Iter first, Iter last);

template<Bidirectionallterator Iter,
StrictWeakOrder<auto, Iter::value_type> Compare = less<Iter::value_type>>
requires Shufflelterator<Iter>
&& CopyConstructible<Compare>
bool prev_permutation(Iter first, Iter last, Compare comp = Compare());

3 Effects: Takes a sequence defined by the range [first , last) and transforms it into the previous permutation.
The previous permutation is found by assuming that the set of all permutations is lexicographically sorted with
respect to eperator<-or comp.

4 Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permutation,

that is, the descendingly sorted one, and returns false.

5 Complexity: At most (last - first)/2 swaps.

Draft

	25 Algorithms library
	25.1 Non-modifying sequence operations
	25.1.8 Adjacent find

	25.2 Mutating sequence operations
	25.2.9 Unique

	25.3 Sorting and related operations
	25.3.1 Sorting
	25.3.2 Nth element
	25.3.4 Merge
	25.3.6 Heap operations
	25.3.7 Minimum and maximum
	25.3.9 Permutation generators

