
Iterator Concepts for the C++0x Standard Library
(Revision 4)

Douglas Gregor, Jeremy Siek and Andrew Lumsdaine
dgregor@osl.iu.edu, jeremy.siek@colorado.edu, lums@osl.iu.edu

Document number: N2739=08-0249
Revises document number: N2695=08-0205
Date: 2008-08-25
Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor <dgregor@osl.iu.edu>

Introduction

This document proposes new iterator concepts in the C++0x Standard Library. It describes a new header <iterator_-
concepts> that contains these concepts, along with concept maps and iterator_traits specializations that provide
backward compatibility for existing iterators and generic algorithms.

Within the proposed wording, text that has been added will be presented in blue and underlined when possible. Text that
has been removed will be presented in red,with strike-through when possible.

Purely editorial comments will be written in a separate, shaded box. These comments are not intended to be included in
the working paper.

About the new iterator concept taxonomy

At the Library Working Group’s request, we sought to determine whether we could eliminate the mutable iterator
concepts from the iterator taxonomy. The observation made in Sophia-Antipolis was that the mutable iterator concepts
were used very rarely, and in those places where they were used, we were able to discern simpler requirements. As a
result of this investigation, we have eliminated the mutable iterator concepts and designed an improved iterator taxonomy
that better describes the various kinds of iterators usable with the C++0x standard library.

The fundamental problem with the mutable iterator concepts is that they were initially ill-defined within C++98/03,
mentioned only casually as iterators for which one could write a value to the result of dereferencing an iterator. This
requirement was taken to mean a CopyAssignable requirement (which works reasonably well for C++98/03 forward
iterators and above), but that fails in two important ways for C++0x:

mailto:dgregor@osl.iu.edu
mailto:jeremy.siek@colorado.edu
mailto:lums@osl.iu.edu
mailto:dgregor@osl.iu.edu

2

— We can now construct sequences with types that are move-assignable but not copy-assignable. If we merely
change the mutable iterator requirement to MoveAssignable, our definition of mutable iterator has changed from
C++98/03. Besides, even this is incorrect: one can mutate values that aren’t even move-assignable, e.g., by
swapping values or acting on lvalues.

— As part of improving the iterator concepts, we have intended to better support proxy iterators (like the infamous
vector<bool> iterator, although there exist many more important examples of such iterators) throughout the
C++0x standard library. The simple notion of a copy-assignable value type does not match with a proxy reference
that supports writing.

Thus, the most important realization is that there are multiple forms of mutability used within the C++0x standard library,
and that these mutations involve both the value type of the iterator (e.g., the type actually stored in the container the
iterator references) and the reference type of the iterator (which may be an lvalue reference, rvalue reference, or a proxy
class). The new iterator taxonomy captures these forms of mutability through two iterator concepts: OutputIterator
and ShuffleIterator.

The OutputIterator concept (24.1.2) is a faithful representation of a C++98/03 output iterator. Output iterators are
an odd kind of iterator, because it does not make sense to say that a type X is an output iterator. Rather, one must say
that X is an output iterator for a value type T. Moreover, a given type X can be an output iterator for a whole family of
types, e.g., all types that can be printed, and can permit specific parameter-passing conventions. For example, X could
support writing only rvalues of type T, or both lvalues and rvalues of type T. Thus, the OutputIterator concept is a
two-parameter concept, one parameter for X and another for T (called Value). This is not new; however, the updated
iterator taxonomy encodes the parameter-passing convention into the Value template parameter, so that the user of the
output iterator can distinguish between writing lvalues and writing rvalues. For example, the copy algorithm provides
the reference type of the input iterator as the output type of the output iterator:

template<InputIterator InIter,

OutputIterator<auto, InIter::reference> OutIter>

inline OutIter

copy(InIter first, InIter last, OutIter result)

{

for (; first != last; ++result, ++first)

*result = *first;

return result;

}

With this scheme, a typical input iterator that returns an lvalue reference will pass that lvalue reference on to the output
iterator (as in C++98/03). More interesting, however, is when the input iterator is actually a move_iterator, whose
reference type is an rvalue reference. In this case, we’re writing rvalue-references to the output iterator, and therefore
moving values from the input to the output sequence. The use of the reference type as the output type for the output
iterator also copes with the transfer of values via proxies.

We have already noted that a single type X can be an output iterator for multiple, different value types. However, further
study of the standard library algorithms illustrates that a type parameter might meet the OutputIterator requirements
in multiple ways within a single algorithm. For example, in the replace_copy algorithm the OutIter parameter acts
as an output iterator for both the input iterator’s reference type (allowing moves rather than copies) and the type of the
replacement value:

template<InputIterator InIter, typename OutIter, typename _Tp>

requires OutputIterator<OutIter, InIter::reference>

3

&& OutputIterator<OutIter, const _Tp&>

&& HasEqualTo<InIter::value_type, _Tp>

OutIter

replace_copy(InIter first, InIter last,

OutIter result,

const _Tp& old_value, const _Tp& new_value)

{

for (; first != last; ++first, ++result)

if (*first == old_value)

*result = new_value;

else

*result = *first;

return result;

}

This formulation of replace_copy uncovered an interesting issue. Since both of the OutputIterator requirements
have different argument types, each contains dereference (operator*) and increment (operator+) operators. Through
concept maps, it is conceivable (however unlikely) that these operators could be different for one requirement than the
other, and therefore each use of * or ++ that applies to an instance of the OutIter type within replace_copy returns
an ambiguity. The ambiguity is a result of incomplete concept analysis, and was solved by refactoring the requirements
of OutputIterator into two concepts: Iterator<X>, which provides the syntax of operator* and operator++
(and is also refined by the InputIterator<X> concept), and the OutputIterator<X, Value> concept, which adds
assignability requirements from Value to the reference type of the output iterator. Thus, the requirements on replace_-
copy now say that there is only one operator*, but the reference type that it returns can be used in multiple, different
ways. Moreover, we now have an actual root to our iterator hierarchy, the Iterator<X> concept, which provides only
increment and dereference—the basics of moving through a sequence of values—but does not provide any read or write
capabilities.

The ShuffleIterator concept (24.1.6) is a new kind of iterator that captures the requirements needed to shuffle values
within a sequence using moves and swaps. ShuffleIterator allows one to move-construct or move-assign from an
element in the sequence into a variable of the iterator’s value type. This permits, for example, the pivot element in a
quicksort to be extracted from the sequence and placed into a variable. Additionally, values can be move-assigned from
a variable of the iterator’s value type (e.g., moving the pivot back from the temporary into the sorted sequence at the
right time). This concept is the proxy-aware conceptualization of the Swappable+MoveConstructible+MoveAssignable
set of concepts from the reflector discussion starting with c++std-lib-21212. The ShuffleIterator concept is used
sparingly, in those cases where the sequence cannot be efficiently reordered within simple swap operations.

Changes to the iterator taxonomy should not be taken lightly; even the apparently simple iterators in C++98/03 turned out
to be surprisingly complicated, and have resulted in numerous defect reports and several attempts at revisions. C++0x
iterators are decidedly more complex, due to the introduction of rvalue references and the desire to provide support for
proxy iterators throughout the standard library. To verify the iterator concepts presented in this document, we have fully
implemented these concepts in ConceptGCC, applied them to nearly every algorithm in the standard library, and tested
the result against the full libstdc++ test suite to ensure backward compatibility with existing iterators. Indeed, many
of the observations that drove this refactoring came from implementation experience: the operator* ambiguity, for
example, was initially detected by ConceptGCC.

4

Changes from N2695

— Replaced the HasStdMove concept (and its uses) with RvalueOf, which is now part of the foundational concepts.

— In the ShuffleIterator concept, the HasConstructor requirement on the value_type has been replaced with
the equivalent Constructible requirement; the explicit NothrowDestructible requirement has subsequently
been removed.

— Added move-constructibility of the value type into the ShuffleIterator concept.

— We permit the iterator_traits typedefs for output iterators to be void. This behavior is permitted by C++03,
and was previously thought to cause problems with the backward-compatibility concept maps for output iterators
(which relied on non-void typedefs even for output iterators). However, we determined that the concepts mecha-
nism can deduce these types for output iterators, therefore ignoring the types specified in iterator_traits and
allowing us to re-instate this user leeway. In [iterator.backward]p2, we clarify that we perform this deduction for
output iterators.

— Added the subscript_reference associated type to the RandomAccessIterator concept, to capture the result
of operator[]. This type may need to be a proxy that is different from the reference type, for, e.g., a count-
ing_iterator that meets the C++03 RandomAccessIterator requirements. See the reflector thread starting at
c++std-lib-22126 for more information.

5

Proposed Wording

Issues resolved by concepts

The following LWG are resolved by concepts. These issues should be resolved as NAD following the application of this
proposal to the wording paper:

Issue 299. Incorrect return types for iterator dereference. Concepts specify precise return types for the iterator op-
erations, including operator[].

Issue 258. 24.1.5 contains unintented limitation for operator-. Concepts now specify that the difference type of an
iterator is a signed integral type.

Issue 484. Convertible to T. With concepts, the iterator requirements also specify "convertible to T", and this conver-
sion will automatically be used within constrained templates as necessary, so that the overload that will be selected
becomes clear from the requirements of the template.

Issue 742. Enabling swap for proxy iterators. The concepts proposal provides a two-parameter swap that is available
when swap(w, v) is valid or when the types of w and v are the same and that type is MoveAssignable and
MoveConstructible, per the std::swap algorithm. The use of this HasSwap concept in the iterator concepts
and in algorithms makes proxy iterators viable throughout the standard library.

Draft

Chapter 24 Iterators library [iterators]

2 The following subclauses describe iterator requirementsconcepts, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 1.

Table 1: Iterators library summary
Subclause Header(s)

24.1 RequirementsConcepts <iterator_concepts>
D.10 Iterator primitives <iterator>
[predef.iterators] Predefined iterators
[stream.iterators] Stream iterators

The following section has been renamed from “Iterator requirements” to “Iterator concepts”.

24.1 Iterator concepts [iterator.concepts]

1 The <iterator_concepts> header describes requirements on iterators.

Header <iterator_concepts> synopsis

namespace std {

concept Iterator<typename X> see below ;

// 24.1.1, input iterators:
concept InputIterator<typename X> see below ;

// 24.1.2, output iterators:
auto concept OutputIterator<typename X, typename Value> see below ;

// 24.1.3, forward iterators:
concept ForwardIterator<typename X> see below ;

// 24.1.4, bidirectional iterators:
concept BidirectionalIterator<typename X> see below ;

// 24.1.5, random access iterators:
concept RandomAccessIterator<typename X> see below ;

7 Iterators library 24.1 Iterator concepts

template<ObjectType T> concept_map RandomAccessIterator<T*> see below ;

template<ObjectType T> concept_map RandomAccessIterator<const T*> see below ;

// 24.1.6, shuffle iterators:

auto concept ShuffleIterator<typename X> see below ;

}

2 Iterators are a generalization of pointers that allow a C++ program to work with different data structures (containers) in a
uniform manner. To be able to construct template algorithms that work correctly and efficiently on different types of data
structures, the library formalizes not just the interfaces but also the semantics and complexity assumptions of iterators.
All iterators meet the requirements of the Iterator concept. All input iterators i support the expression *i, resulting
in a value of some class, enumeration, or built-in type T, called the value type of the iterator. All output iterators support
the expression *i = o where o is a value of some type that is in the set of types that are writable to the particular iterator
type of i. All iterators i for which the expression (*i).m is well-defined, support the expression i->m with the same
semantics as (*i).m. For every iterator type X for which equality is defined, there is a corresponding signed integral
type called the difference type of the iterator.

3 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of pointers in
C++. This ensures that every function template that takes iterators works as well with regular pointers. This International
Standard defines five categories of iteratorsseveral iterator concepts, according to the operations defined on them: input
iterators, output iterators, forward iterators, bidirectional iterators, and random access iterators, and shuffle iterators,
as shown in Table 2.

Table 2: Relations among iterator categoriesconcepts
Random Access → Bidirectional → Forward → Input → Iterator

↑ ↑
Shuffle → Output

4 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever either kindan
input iterator is specified. Bidirectional iterators also satisfy all the requirements of the forward iterators and can be
used whenever a forward iterator is specified. Random access iterators also satisfy all the requirements of bidirectional
iterators and can be used whenever a bidirectional iterator is specified.

5 Besides its category, a forward, bidirectional, or random access iterator can also be mutable or constant depending on
whether the result of the expression *i behaves as a reference or as a reference to a constant. Constant iterators do not
satisfy the requirements for output iterators, and the result of the expression *i (for constant iterator i) cannot be used
in an expression where an lvalue is required. Iterators that meet the requirements of the OutputIterator concept are
called mutable iterators. Non-mutable iterators are referred to as constant iterators.

6 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array, so
for any iterator type there is an iterator value that points past the last element of a corresponding container. These values
are called past-the-end values. Values of an iterator i for which the expression *i is defined are called dereferenceable.
The library never assumes that past-the-end values are dereferenceable. Iterators can also have singular values that are
not associated with any container. [Example: After the declaration of an uninitialized pointer x (as with int* x;), x
must always be assumed to have a singular value of a pointer. — end example] Results of most expressions are undefined
for singular values; the only exceptions are destroying an iterator that holds a singular value and the assignment of a

Draft

24.1 Iterator concepts Iterators library 8

non-singular value to an iterator that holds a singular value. In this case the singular value is overwritten the same way
as any other value. Dereferenceable values are always non-singular.

7 An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression
++i that makes i == j. If j is reachable from i, they refer to the same container.

8 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges. A range is a
pair of iterators that designate the beginning and end of the computation. A range [i,i) is an empty range; in general, a
range [i,j) refers to the elements in the data structure starting with the one pointed to by i and up to but not including
the one pointed to by j. Range [i,j) is valid if and only if j is reachable from i. The result of the application of
functions in the library to invalid ranges is undefined.

9 All the categories of iteratorsiterator concepts require only those functions that are realizable for a given category in
constant time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

10 Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.

11 An invalid iterator is an iterator that may be singular.1)

12 In the following sections, a and b denote values of type const X, n denotes a value of the difference type Distance, u,
tmp, and m denote identifiers, r denotes a value of X&, t denotes a value of value type T, o denotes a value of some type
that is writable to the output iterator.

concept Iterator<typename X> : Semiregular<X> {

MoveConstructible reference = typename X::reference;

MoveConstructible postincrement_result;

requires HasDereference<postincrement_result>;

reference operator*(X&&);

X& operator++(X&);

postincrement_result operator++(X&, int);

}

13 The Iterator concept forms the basis of the iterator concept taxonomy, and every iterator meets the requirements of
the Iterator concept. This concept specifies operations for dereferencing and incrementing the iterator, but provides
no way to manipulate values. Most algorithms will require addition operations to read (24.1.1) or write (24.1.2) values,
or to provide a richer set of iterator movements (24.1.3, 24.1.4, 24.1.5).

Of particular interest in this concept is the dereference operator, which accepts an rvalue reference to an iterator. This
permits non-const lvalues and rvalues of iterators to be dereferenced, but it represents a minor break from C++98/03
where one could dereference a const iterator (not an iterator-to-const; those are unaffected). We expect the impact to be
minimal, given that one cannot increment const iterators, and if there were an algorithm that dereferences a const iterator,
it could just make a non-const copy of the iterator to dereference. We have verified this change with ConceptGCC and
found no ill effects.

postincrement_result operator++(X& r, int);

14 Effects: equivalent to { X tmp = r; ++r; return tmp; }.

1)This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated is undefined.

Draft

9 Iterators library 24.1 Iterator concepts

24.1.1 Input iterators [input.iterators]

1 A class or a built-in type X satisfies the requirements of an input iterator for the value type T if the following expressions
are valid, where U is the type of any specified member of type T, as shown in Table 95.it meets the syntactic and semantic
requirements of the InputIterator concept.

concept InputIterator<typename X> : Iterator<X>, EqualityComparable<X> {

ObjectType value_type = typename X::value_type;

MoveConstructible pointer = typename X::pointer;

SignedIntegralLike difference_type = typename X::difference_type;

requires IntegralType<difference_type>

&& Convertible<reference, const value_type &>;

&& Convertible<pointer, const value_type*>;

requires Convertible<HasDereference<postincrement_result>::result_type, const value_type&>;

pointer operator->(const X&);

}

2 In Table 95In the InputIterator concept, the term the domain of == is used in the ordinary mathematical sense to
denote the set of values over which == is (required to be) defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values it uses. These requirements can be inferred from
the uses that algorithm makes of == and !=. [Example:the call find(a,b,x) is defined only if the value of a has the
property p defined as follows: b has property p and a value i has property p if (*i==x) or if (*i!=x and ++i has
property p). — end example]

[[Remove Table 96: Input iterator requirements]]

3 [Note: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substitution property
or referential transparency.) Algorithms on input iterators should never attempt to pass through the same iterator twice.
They should be single pass algorithms. Value type T is not required to be an Assignable type (23.1). These algorithms
can be used with istreams as the source of the input data through the istream_iterator class. — end note]

reference operator*(X&& a); // inherited from Iterator<X>

4 Requires: a is dereferenceable.

5 Returns: the value referenced by the iterator

6 Remarks: If b is a value of type X, a == b and (a, b) is in the domain of == then *a is equivalent to *b.

pointer operator->(const X& a);

7 Returns: a pointer to the value referenced by the iterator

bool operator==(const X& a, const X& b); // inherited from EqualityComparable<X>

8 If two iterators a and b of the same type are equal, then either a and b are both dereferenceable or else neither is
dereferenceable.

Draft

24.1 Iterator concepts Iterators library 10

X& operator++(X& r);

9 Precondition: r is dereferenceable

10 Postcondition: r is dereferenceable or r is past-the-end. Any copies of the previous value of r are no longer required
either to be dereferenceable or in the domain of ==.

24.1.2 Output iterators [output.iterators]

1 A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (20.1.3) and
Assignable type (23.1) and also the following expressions are valid, as shown in Table 96meets the syntactic and
semantic requirements of the OutputIterator concept.

[[Remove Table 97: Output iterator requirements]]

2 [Note: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the
same value of the iterator happens only once. Algorithms on output iterators should never attempt to pass through the
same iterator twice. They should be single pass algorithms. Equality and inequality might not be defined. Algorithms
that take output iterators can be used with ostreams as the destination for placing data through the ostream_iterator
class as well as with insert iterators and insert pointers. — end note]

3 The OutputIterator concept describes an output iterator that may permit output of many different value types.

auto concept OutputIterator<typename X, typename Value> {

requires Iterator<X>;

typename reference = Iterator<X>::reference;

typename postincrement_result = Iterator<X>::postincrement_result;

requires SameType<reference, Iterator<X>::reference>

&& SameType<postincrement_result, Iterator<X>::postincrement_result>

&& Convertible<postincrement_result, const X&>

&& HasAssign<reference, Value>

&& HasAssign<HasDereference<postincrement_result>::result_type, Value>;

}

4 [Note: Any iterator that meets the additional requirements specified by OutputIterator for a given Value type is
considered an output iterator. — end note]

X& operator++(X& r); // from Iterator<X>

5 Postcondition: &r == &++r

24.1.3 Forward iterators [forward.iterators]

1 A class or a built-in type X satisfies the requirements of a forward iterator if the following expressions are valid, as shown
in Table 97.it meets the syntactic and semantic requirements of the ForwardIterator concept.

[[Remove Table 98: Forward iterator requirements.]]

concept ForwardIterator<typename X> : InputIterator<X>, Regular<X> {

requires Convertible<postincrement_result, const X&>;

axiom MultiPass(X a, X b) {

Draft

11 Iterators library 24.1 Iterator concepts

if (a == b) *a == *b;

if (a == b) ++a == ++b;

}

}

The ForwardIterator concept here provides weaker requirements on the reference and pointer types than the
associated requirements table in C++03, because these types do not need to be true references or pointers to value_-
type. This change weakens the concept, meaning that C++03 iterators (which meet the stronger requirements) still
meet these requirements, but algorithms that relied on these stricter requirements will no longer work just with the
iterator requirements: they will need to specify true references or pointers as additional requirements. By weakening
the requirements, however, we permit proxy iterators to model the forward, bidirectional, and random access iterator
concepts.

X::X(); // inherited from Regular<X>

2 Note: the constructed object might have a singular value.

3 [Note: The conditionaxiom that a == b implies ++a == ++b (which is not true for input and output iterators) and the
removal of the restrictions on the number of the assignments through the iterator (which applies to output iterators)
allows the use of multi-pass one-directional algorithms with forward iterators. — end note]

X& operator++(X& r); // inherited from InputIterator<X>

4 Postcondition: &r == &++r.

24.1.4 Bidirectional iterators [bidirectional.iterators]

1 A class or a built-in type X satisfies the requirements of a bidirectional iterator if , in addition to satisfying the requirements
for forward iterators, the following expressions are valid as shown in Table 98.it meets the syntactic and semantic
requirements of the BidirectionalIterator concept.

[[Remove Table 99: Bidirectional iterator requirements.]]

concept BidirectionalIterator<typename X> : ForwardIterator<X> {

MoveConstructible postdecrement_result;

requires HasDereference<postdecrement_result>

&& Convertible<HasDereference<postdecrement_result>::result_type, const value_type&>

&& Convertible<postdecrement_result, const X&>;

X& operator--(X&);

postdecrement_result operator--(X&, int);

axiom BackwardTraversal(X a, X b) {

--(++a) == a;

if (--a == --b) a == b;

}

}

2 [Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward. — end note]

Draft

24.1 Iterator concepts Iterators library 12

X& operator--(X& r);

3 Precondition: there exists s such that r == ++s.

4 Postcondition: r is dereferenceable. &r == &--r.

postdecrement_result operator--(X& r, int);

5 Effects: equivalent to

{ X tmp = r;

--r;

return tmp; }

24.1.5 Random access iterators [random.access.iterators]

1 A class or a built-in type X satisfies the requirements of a random access iterator if , in addition to satisfying the
requirements for bidirectional iterators, the following expressions are valid as shown in Table 99.it meets the syntactic
and semantic requirements of the RandomAccessIterator concept.

concept RandomAccessIterator<typename X> : BidirectionalIterator<X>, LessThanComparable<X> {

MoveConstructible subscript_reference;

requires Convertible<subscript_reference, const value_type&>;

X& operator+=(X&, difference_type);

X operator+ (const X& x, difference_type n) { X tmp(x); x += n; return x; }

X operator+ (difference_type n, const X& x) { X tmp(x); x += n; return x; }

X& operator-=(X&, difference_type);

X operator- (const X& x, difference_type n) { X tmp(x); x -= n; return x; }

difference_type operator-(const X&, const X&);

subscript_reference operator[](const X& x, difference_type n);

}

[[Remove Table 100: Random access iterator requirements.]]

X& operator+=(X& r, difference_type n);

2 Effects: equivalent to

{ difference_type m = n;

if (m >= 0) while (m--) ++r;

else while (m++) --r;

return r; }

X operator+(const X& a, difference_type n);

X operator+(difference_type n, const X& a);

3 Effects: equivalent to

{ X tmp = a;

return tmp += n; }

Draft

13 Iterators library 24.1 Iterator concepts

4 Postcondition: a + n == n + a

X& operator-=(X& r, difference_type n);

5 Returns: r += -n

X operator-(const X& a, difference_type n);

6 Effects: equivalent to

{ X tmp = a;

return tmp -= n; }

difference_type operator-(const X& a, const X& b);

7 Precondition: there exists a value n of difference_type such that a + n == b.

8 Effects: b == a + (b - a)

9 Returns: (a < b) ? distance(a,b) : -distance(b,a)

10 Pointers are random access iterators with the following concept map

namespace std {

template<ObjectType T> concept_map RandomAccessIterator<T*> {

typedef T value_type;

typedef ptrdiff_t difference_type;

typedef T& reference;

typedef T* pointer;

}

}

and pointers to const are random access iterators

namespace std {

template<ObjectType T> concept_map RandomAccessIterator<const T*> {

typedef T value_type;

typedef ptrdiff_t difference_type;

typedef const T& reference;

typedef const T* pointer;

}

}

11 [Note: If there is an additional pointer type _ _ far such that the difference of two _ _ far is of type long, an
implementation may define

template <ObjectType T> concept_map RandomAccessIterator<T _ _ far*> {

typedef long difference_type;

typedef T value_type;

typedef T _ _ far* pointer;

typedef T _ _ far& reference;

}

Draft

24.1 Iterator concepts Iterators library 14

template <ObjectType T> concept_map RandomAccessIterator<const T _ _ far*> {

typedef long difference_type;

typedef T value_type;

typedef const T _ _ far* pointer;

typedef const T _ _ far& reference;

}

— end note]

24.1.6 Shuffle iterators [shuffle.iterators]

1 A class or built-in type X satisfies the requirements of a shuffle iterator if it meets the syntactic and semantic requirements
of the ShuffleIterator concept.

auto concept ShuffleIterator<typename X> {

requires InputIterator<X>

&& OutputIterator<X, RvalueOf<InputIterator<X>::value_type>::type>

&& OutputIterator<X, RvalueOf<InputIterator<X>::reference>::type>

&& Constructible<InputIterator<X>::value_type,

RvalueOf<InputIterator<X>::reference>::type>

&& MoveConstructible<InputIterator<X>::value_type>

&& HasAssign<InputIterator<X>::value_type,

RvalueOf<InputIterator<X>::reference>::type>

&& HasSwap<InputIterator<X>::reference, InputIterator<X>::reference>;

}

2 A shuffle iterator is a form of input and output iterator that allows values to be moved into or out of a sequence, along
with permitting efficient swapping of values within the sequence. Shuffle iterators are typically used in algorithms that
need to rearrange the elements within a sequence in a way that cannot be performed efficiently with swaps alone.

3 [Note: Any iterator that meets the additional requirements specified by ShuffleIterator is considered a shuffle
iterator. — end note]

Draft

Appendix D
(normative)
Compatibility features [depr]

D.10 Iterator primitives [depr.lib.iterator.primitives]

1 To simplify the task of defining iteratorsuse of iterators and provide backward compatibility with previous C++ Standard
Libraries, the library provides several classes and functions.

2 The iterator_traits and supporting facilities described in this section are deprecated. [Note: the iterator concepts
(24.1) provide the equivalent functionality using the concept mechanism. — end note]

D.10.1 Iterator traits [iterator.traits]

1 To implement algorithms only in terms of iterators, it is often necessary to determine the value and difference types that
correspond to a particular iterator type. Accordingly, it is required that ifIterator traits provide an auxiliary mechanism
for accessing the associated types of an iterator. If Iterator is the type of an iterator, the types

iterator_traits<Iterator>::difference_type

iterator_traits<Iterator>::value_type

iterator_traits<Iterator>::iterator_category

shall be defined as the iterator’s difference type, value type and iterator category (24.3.3), respectively. In addition, the
types

iterator_traits<Iterator>::reference

iterator_traits<Iterator>::pointer

shall be defined as the iterator’s reference and pointer types, that is, for an iterator object a, the same type as the type of
*a and a->, respectively. In the case of an output iterator, the types

iterator_traits<Iterator>::difference_type

iterator_traits<Iterator>::value_type

iterator_traits<Iterator>::reference

iterator_traits<Iterator>::pointer

may be defined as void.

D.10 Iterator primitives Compatibility features 16

6 For each iterator category, a partial specializations of the iterator_traits class template provide appropriate type
definitions for programs that use the deprecated iterator traits mechanism. These partial specializations provide backward
compatibility for unconstrained templates using iterators as specified by the corresponding requirements tables of
ISO/IEC 14882:2003.

concept IsReference<typename T> { } // exposition only
template<typename T> concept_map IsReference<T&> { }

concept IsPointer<typename T> { } // exposition only
template<typename T> concept_map IsPointer<T*> { }

template<Iterator Iter> struct iterator_traits<Iter> {

typedef void difference_type;

typedef void value_type;

typedef void pointer;

typedef void reference;

typedef output_iterator_tag iterator_category;

};

template<InputIterator Iter> struct iterator_traits<Iter> {

typedef Iter::difference_type difference_type;

typedef Iter::value_type value_type;

typedef Iter::pointer pointer;

typedef Iter::reference reference;

typedef input_iterator_tag iterator_category;

};

template<ForwardIterator Iter>

requires IsReference<Iter::reference> && IsPointer<Iter::pointer>

struct iterator_traits<Iter> {

typedef Iter::difference_type difference_type;

typedef Iter::value_type value_type;

typedef Iter::pointer pointer;

typedef Iter::reference reference;

typedef forward_iterator_tag iterator_category;

};

template<BidirectionalIterator Iter>

requires IsReference<Iter::reference> && IsPointer<Iter::pointer>

struct iterator_traits<Iter> {

typedef Iter::difference_type difference_type;

typedef Iter::value_type value_type;

typedef Iter::pointer pointer;

typedef Iter::reference reference;

typedef bidirectional_iterator_tag iterator_category;

};

template<RandomAccessIterator Iter>

requires IsReference<Iter::reference> && IsPointer<Iter::pointer>

struct iterator_traits<Iter> {

Draft

17 Compatibility features D.10 Iterator primitives

typedef Iter::difference_type difference_type;

typedef Iter::value_type value_type;

typedef Iter::pointer pointer;

typedef Iter::reference reference;

typedef random_access_iterator_tag iterator_category;

};

— end note]

D.10.2 Basic iterator [iterator.basic]

We deprecated the basic iterator template because it isn’t really the right way to specify iterators any more. Even
when using this template, users should write concept maps so that (1) their iterators will work when iterator_traits
and the backward-compatibility models go away, and (2) so that their iterators will be checked against the iterator
concepts as early as possible.

1 The iterator template may be used as a base class to ease the definition of required types for new iterators.

namespace std {

template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>

struct iterator {

typedef T value_type;

typedef Distance difference_type;

typedef Pointer pointer;

typedef Reference reference;

typedef Category iterator_category;

};

}

D.10.3 Standard iterator tags [std.iterator.tags]

1 It is often desirable for a function template specialization to find out what is the most specific category of its iterator
argument, so that the function can select the most efficient algorithm at compile time. To facilitate this, theThe library
introduces category tag classes which are used as compile time tags for algorithm selection.to distinguish the different
iterator concepts when using the iterator_traits mechanism. They are: input_iterator_tag, output_iter-
ator_tag, forward_iterator_tag, bidirectional_iterator_tag and random_access_iterator_tag. For
every iterator of type Iterator, iterator_traits<Iterator>::iterator_category shall be defined to be the
most specific category tag that describes the iterator’s behavior.

namespace std {

struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

}

Draft

D.10 Iterator primitives Compatibility features 18

2 [[Remove this paragraph: It gives an example using iterator_traits, which we no longer encourage.]]

D.10.4 Iterator backward compatibility [iterator.backward]

1 The library provides concept maps that allow iterators specified with iterator_traits to interoperate with algorithms
that require iterator concepts. [Example:

struct random_iterator

{

typedef std::input_iterator_tag iterator_category;

typedef int value_type;

typedef int difference_type;

typedef int* pointer;

typedef int reference;

random_iterator(int remaining = 0) : remaining(remaining) { }

int operator*() const { return std::rand(); }

int* operator->() const { return 0; }

random_iterator& operator++() { --remaining; return *this; }

random_iterator operator++(int) {

random_iterator tmp(*this); ++(*this); return tmp;

}

int remaining;

friend bool

operator==(const random_iterator& i, const random_iterator& j)

{

return i.remaining == j.remaining;

}

friend bool

operator!=(const random_iterator& i, const random_iterator& j)

{

return i.remaining != j.remaining;

}

};

void f(random_iterator i, random_iterator j) {

std::copy(i, j, std::ostream_iterator<int>(std::cout, " ")); // okay: standard library produces concept
// map InputIterator<random_iterator>

}

— end example]

2 For all iterator types except output iterators, the associated types difference_type, value_type, pointer and
reference are given the same values as their counterparts in iterator_traits. For output iterators, the reference
type is deduced from the type of the output iterator’s dereference operator.

Draft

19 Compatibility features D.10 Iterator primitives

3 When the iterator_traits specialization contains the nested types difference_type, value_type, pointer,
reference and iterator_category, the iterator_traits specialization is considered to be valid.

[Example: The following example is well-formed. The backward-compatbility concept map for InputIterator does
not match because iterator_traits<int> is not valid.

template<IntegralLike T> void f(T);

template<InputIterator T> void f(T);

void g(int x) {

f(x); // okay
}

— end example]

4 The library shall provide a concept map Iterator<Iter> for any type Iter with a valid iterator_traits<Iter>, an
iterator_traits<Iter>::iterator_category convertible to output_iterator_tag, and that meets the syntactic
requirements of the Iterator concept.

5 The library shall provide a concept map InputIterator<Iter> for any type Iterwith a valid iterator_traits<Iter>,
an iterator_traits<Iter>::iterator_category convertible to input_iterator_tag, and that meets the syntactic
requirements of the InputIterator concept.

6 The library shall provide a concept map ForwardIterator<Iter> for any type Iterwith a valid iterator_traits<Iter>,
an iterator_traits<Iterator>::iterator_category convertible to forward_iterator_tag, and that meets
the syntactic requirements of the ForwardIterator concept.

7 The library shall provide a concept map BidirectionalIterator<Iter> for any type Iterwith a valid iterator_traits<Iter>,
an iterator_traits<Iterator>::iterator_category convertible to bidirectional_iterator_tag, and that
meets the syntactic requirements of the BidirectionalIterator concept.

8 The library shall provide a concept map RandomAccessIterator<Iter> for any type Iterwith a valid iterator_traits<Iter>,
an iterator_traits<Iterator>::iterator_category convertible to random_access_iterator_tag, and that
meets the syntactic requirements of the RandomAccessIterator concept.

Acknowledgments

Thanks to Beman Dawes for alerting us to omissions from the iterator concepts and Daniel Krügler for many helpful
comments. Both Mat Marcus and Jaakko Järvi were particularly helpful in the design of the new iterator taxonomy.

Draft

	24 Iterators library
	24.1 Iterator concepts
	24.1.1 Input iterators
	24.1.2 Output iterators
	24.1.3 Forward iterators
	24.1.4 Bidirectional iterators
	24.1.5 Random access iterators
	24.1.6 Shuffle iterators

	D Compatibility features
	D.10 Iterator primitives
	D.10.1 Iterator traits
	D.10.2 Basic iterator
	D.10.3 Standard iterator tags
	D.10.4 Iterator backward compatibility

