
N2619=08-0129

Document: N2619=08-0129

Date: 2008-03-25

Reply to: Alisdair Meredith <alisdair.meredith@codegear.com>

CONCEPTS FOR CLAUSE 18

INTRODUCTION
Library clause 18 covers the library types supplied for language support. There are two main

uses of templates to consider constraining, numeric_limits and some exception support

APIs.

This paper recommends leaving numeric_limits as an unconstrained template. It was

provided as a user customization point and so there are many valid unconstrained

specializations of this template in use today. Adding constraints at this point could cause un-

necessary migration issues. Note that paper n2591 suggests an alternate API for

numeric_limits that is backwards compatible for legacy code, but extensible for future uses.

This might be the appropriate way to explore constraints.

The three exception support APIs shall each be considered on their own merits.

CONSTRAINING EXCEPTION APIS
There are three function templates to consider:

template<class E> exception_ptr copy_exception(E e)

This function creates an exception_ptr from the passed object. The only requirement is that

object is ‘throwable’. The question of whether CopyConstructible is a requirement for

‘throwability’ is explored below.

The goal of this function is to provide a more efficient way to create exception_ptr objects

than artificially throwing and catching e as an exception. As this requires knowledge of the

compiler implementation of exception_ptr, can this function be implemented efficiently

without further constraints? Given the minimal constraints on what is throwable, we argue that

this must be possible, but will be happier once we have a sample implementation that

demonstrates this.

template<class E> void throw_with_nested(E&& t)

This function is specified to cope with several special cases that might be handled by concept-

based overloading. With concepts, the problem cases might instead be excluded by the

requirements of the template. This would better alert users that their exception type is not

suitable for the API (rather than silently failing to nest an exception at runtime) at the expense

that it cannot be used quite so portably in generic code.

The direction of this paper is to assume the design goal of concepts is to better identify those

problem cases, so flagging them as a requirements-violation error would be the preferred

solution.

mailto:alisdair.meredith@codegear.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2591.html

N2619=08-0129

There are two sets of special cases to consider:

I/ THE TYPE E CANNOT BE DERIVED FROM.
Typically E is a scalar type such as a pointer, integer or enum, but this also covers arrays,

function-types and unions.

II/ E ALREADY HAS A NESTED EXCEP TION
As this API works with the static type of E, rather than the dynamic, this can be easily tested

with the type trait is_base_of. It would be a mistake to provide a separate overload taking

nested_exception by reference, as the subsequent throw would slice the exception object.

So the fundamental requirements are that E is a throwable (see below) non-union class type.

It is believed that in light of n2576 the preferred syntax for argument-passing should be by-

value, and the concept syntax should pick up efficient moving automatically in the case that

copy-elision is not available.

template<class E> void rethrow_if_nested(const E& e)

This API tests to see if E contains a nested exception via dynamic_cast. Therefore the key

requirement is that E is a polymorphic type.

This dynamic_cast could be avoided in many cases if we provide an additional overload

taking a nested_exception by reference.

The remaining question is if we should add yet another overload to support non-polymorphic

types in generic code – they would be supported by this API today, although the function will

return without effect. As per the decision for throw_with_nested, we believe that is an

artificial over-genericity that the concepts feature now allows us to diagnose.

WHAT IS A ‘THROWABLE’ TYPE?
The big outstanding question is what makes a throwable type?

The key requirements come from 15.1p3

A temporary will be made by copying the object

“When the thrown object is a class object, the copy constructor and the destructor shall be

accessible, even if the copy operation is elided.”

 “The type of the throw-expression shall not be an incomplete type, or a pointer to an

incomplete type other than (possibly cv-qualified) void.”

The first two requirements are covered by the CopyConstructible requirement, as is the

complete-type requirement. The question of whether we need to constrain against pointers-to-

incomplete-types comes down to what the compiler will do when encountering

 throw T;

inside a constrained function-template body. This is an interaction of the core language with a

constrained type, and it would require a language-support concept in order to type-check the

template if that was desired. This does not appear to be the approach taken by the core

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2576.pdf

N2619=08-0129

language and library concepts papers, so throughout this paper CopyConstructible is used

as a synonym for Throwable, and additional requirements are placed on functions as

necessary. These might be enforced with a static_assert , or simply allowing the

instantiation to fail.

PROPOSED WORDING
Update 18.7p1 [support.except]

template<classCopyConstructible E> exception_ptr copy_exception(E e);

template <classCopyConstructible TE> requires Class<E> void

throw_with_nested(T&&E e t); // [[noreturn]]

template <classCopyConstructible E> void rethrow_if_nested(const E& e);

void rethrow_if_nested(const nested_exception & e);

Update 18.7.5p11 [propagation]

template<classCopyConstructible E> exception_ptr copy_exception(E e);

Update 18.7.6 [except.nested]

namespace std {

 …

 template <classCopyConstructible TE> requires Class<E>

 void throw_with_nested(T&&E e t); // [[noreturn]]

 template <classCopyConstructible E> void rethrow_if_nested(const E& e);

 void rethrow_if_nested(const nested_exception & e);

}

 template <classCopyConstructible TE> requires Class<E>

 void throw_with_nested(T&&E e t); // [[noreturn]]

6 Requires: T shall be CopyConstructible

7 Throws: If T is a non-union class type not derived from nested_exception, aAn exception of

unspecified type that is publicly derived from both TE and nested_exception, otherwise t.

 template <classCopyConstructible E> void rethrow_if_nested(const E& e);

 void rethrow_if_nested(const nested_exception & e);

 Requires: E is a polymorphic type.

8 Effects: Calls e.rethrow_nested() only if the dynamic type of e (or *e if E is a pointer
type) is publicly and unambiguously derived from nested_exception.

[Draughting note: the goal of this API is to test for derivation from nested_exception with

dynamic_cast, and then rethrow any nested exception that may be present. If ‘dynamically derived’

does not say that, we need a phrase that does. Also, would be preferable to add a requires clause to

say Polymorphic<E>, but there is no such core concept at this point.]

N2619=08-0129

[Draughting note 2: E does not actually need to be CopyConstructible as no copies are made, the

only real requirement is E is a polymorphic class type, or a pointer to a polymorphic class type.]

ACKNOWLEDGEMENTS
Doug Gregor and Jens Maurer gave valuable feedback on early versions of this paper.

