
Type-Soundness and Optimization in the Concepts
Proposal

Author: Douglas Gregor, Indiana University
Document number: N2576=08-0086
Date: 2008-03-17
Project: Programming Language C++, Core Working Group
Reply-to: Douglas Gregor <dgregor@osl.iu.edu>

1 Introduction

There is a fundamental tension between the type-checking guarantees of constrained tem-
plates and their ability to provide the greatest level of optimization. Concepts work by
specifying an interface of a constrained template, stating exactly what behavior the tem-
plate arguments must exhibit to work with that template. By treating all of the different
template arguments in the same way through this interface, concepts can provide type sound-
ness, meaning that the instantiation of constrained templates will not fail. On the other
hand, many of the optimizations we’ve come to expect in C++ rely on doing different things
in templates depending on what data types we get at instantiation time: it is the reason
that we can optimize templates extremely well, and also the reason that instantiation-time
failures are so frequent and so verbose.

Recent examples by Howard Hinnant [1] have brought this tension to the forefront, be-
cause the type-checking of constrained templates inhibits some optimizations made possible
by rvalue references. The issue is not limited to rvalue references, and further study uncov-
ered some examples where concepts can disable some copy-elision—based optimizations that
worked within C++03 but would be disabled by concepts [3].

This paper describes the tension between type-checking and optimization in the context
of Hinnant’s string example [1], and illustrates why the example behaves as it does inside a
constrained template. We’ll then explore potential solutions to the problem, and how they
relate to this fundamental tension.

2 Hinnant’s Example

Hinnant’s example involves a string class that mimics the optimizations available using rvalue
references, but prints which operation is invoked at each step to provide a log detailing which
optimizations would be performed. In general, this string class mimics optimizations that
permit the reuse of storage allocated by temporary strings. The string class is defined as:

1

mailto:dgregor@osl.iu.edu


Doc. no: N2576=08-0086 2

class string {
public:

string() {}
string(const string&) {std::cout << ”string(const string&)\n”;}
string& operator=(const string&) {std::cout << ”string& operator=(const string&)\n”;}
string(string&&) {std::cout << ”string(string&&)\n”;}
string& operator=(string&&) {std::cout << ”string& operator=(string&&)\n”;}

};
string operator+(const string&, const string&) {

std::cout << ”lv string + lv string\n”;
return string();

}
string operator+(string&&, const string&) {

std::cout << ”rv string += lv string\n”;
return string();

}
string operator+(const string&, string&&) {

std::cout << ”rv string insert at front lv string\n”;
return string();

}
string operator+(string&&, string&&) {

std::cout << ”rv string += rv string\n”;
return string();

}

When one exercises this string like so:

string s3 = s1 + s2 + string() + string() + string();

we receive the following output:

lv string + lv string
rv string += rv string
rv string += rv string
rv string += rv string

Here, we see the effects of the rvalue-reference optimizations. The first concatenation of
s1 and s2 creates a new temporary from two lvalues. The next three concatenations pick
the operator+ that concatenates two rvalues, which will be more efficient for this example
because storage can be reused.

Next, we put this code into an unconstrained template, where the string class is abstracted
by a template type parameter T, and instantiate that unconstrained template with T=string:

template <class T>
void test() {

T s1;
T s2;
T s3 = s1 + s2 + T() + T() + T();

}



Doc. no: N2576=08-0086 3

int main() {
test<string>();

}

As we expect with unconstrained templates, we receive the same output:

lv string + lv string
rv string += rv string
rv string += rv string
rv string += rv string

Now, using the standard definitions of the basic library concepts, we can constrain this
template as follows:

template <class T>
requires std::DefaultConstructible<T> && std::Addable<T>

&& std::Convertible<T::result type, T> && std::CopyConstructible<T>
void test() {

T s1;
T s2;
T s3 = s1 + s2 + T() + T() + T();

}

For reference, the Addable concept is defined as1

auto concept Addable<typename T, typename U = T> {
typename result type;
result type operator+(T const&, U const&);

}

Now, when executing the constrained template, we receive the following output:

lv string + lv string
lv string + lv string
lv string + lv string
lv string + lv string

Thus, the constrained template is not calling the optimized, rvalue-reference—based con-
catenation operators.

3 Type-Checking Templates

The primary change that concepts introduce into the language is that they provide type-
checking for constrained template definitions. The intent is for constrained templates to
provide a sound type system, where templates can be type-checked separately from their
uses, much like a non-template function can be type-checked separately from any calls to
that function. If the type system provided by constrained templates is sound, then template
instantiation cannot produce an error if the constrained template type-checks and if the

1We have explicitly added the const& to the arguments of operator+. If not provided explicitly, it would
have been added implicitly according to the concepts wording.



Doc. no: N2576=08-0086 4

template arguments meet the requirements stated by the constrained template. It is this
type-soundness that enables many of the other benefits of concepts, including improved error
messages, syntax adaptation via concept maps, and the elimination of the need for typename
and template when naming dependent types.

To enable separate type checking of an implementation from uses of that implementation,
one must describe the interface precisely, so that both implementer and user can refer to the
terms of the interface. Separate type-checking, then, is determining whether the two parties
have met the requirements of the interface, and how. In the function-call example, the
interface is defined by the function prototype, providing the types of the arguments and the
result of the function. With constrained templates, the interface is defined by the requires
clause and the concepts it refers to. The nature of that interface mitigates the interaction
between the two parties, who are otherwise blind to each other’s existence.

The interface provided by concepts is that of a forwarding function. The constrained
template implementation can make a call into that forwarding function, because it knows
the types of the arguments and the result. Thus, a requirement Addable<T> states that
there exists a function operator+(T const&, T const&) for every T that the constrained
template can be instantiated with. So long as the constrained template only uses functions
that are available within its template requirements, the constrained template has upheld its
side of the contract by using this interface.

On the other side of the interface, types like string provide implementations of those for-
warding functions within concept maps. In Hinnant’s example, the concept map Addable<string>
will be implicitly defined as:

concept map Addable<string> {
typedef string result type;
string operator+(const string& x, const string& y) { return x + y; }

}

Note that the operator+ defined in Addable<string> is not found when looking for a suitable
+ operator in its own body, so this definition is not recursive. Rather, the + operator selected
for the expression x + y is the first operator+ defined in Hinnant’s example, which adds two
lvalue strings together and returns a new, temporary string. With this definition, the user’s
data type—string—has satisfied the terms of the interface, so instantiation of the constrained
template test<string> proceeds without error.

Figure 1 illustrates graphically how calls to the + operator within the constrained tem-
plates are mapped into the forwarding function and through to the string’s concatenation
operator. The arrows represent the results of overload resolution, illustrating which calls
will go to which functions. Note that the concept is the interface layer between these two
pieces, and that there is (separate) type-checking on both sides of this interface which es-
tablishes the arrows. From here, we see why the constrained template always uses the
string-concatenation operator that operates on lvalues, missing the rvalue-based optimiza-
tions: every call to + within the constrained templates maps to a single operator+ in the
concept (which accepts lvalues and rvalues), and that operator+ requirement is satisfied by
the user-defined operator+(string const&, string const&).



Doc. no: N2576=08-0086 5

Constrained 
Template Addable<T> Requirement User-defined string Class

s1 + s2

rvalue + T()

rvalue + T()

rvalue + T()

operator+(T const&, T const&) operator+(string const&, string const&)

operator+(string const&, string&&)

operator+(string&&, string const&)

operator+(string&&, string&&)

Figure 1: Illustration of the mapping of constrained templates to the concept interface and
the mapping of the concept interface to a user-defined type. Follow the arrows to determine
which function each expression in the constrained template ends up calling.

4 Potential Solutions

There are several possible solutions to the problem illustrated by Hinnant’s example. Some
of these solutions trade some type-soundness for improved optimization opportunities, by
allowing more variation at the time that a constrained template is instantiated. This is
not a new idea for the concepts proposal, because there are already two places in concepts
where we sacrify some type-soundness to permit additional optimizations: allowing the use
of specializations in the instantiation of constrained templates, and instantiation-time partial
ordering of function templates called from constrained templates.

4.1 Manual Introduction of Overloads

From the diagram in Figure 1, we can see that the initial loss of rvalue information in the
use of + comes from the mapping from the constrained template into the concept interface.
Therefore, we can expand the interface described by the concept to differentiate between
lvalues and rvalues. For example, rather than use the standard Addable concept, we will use
the following RVAddable variant:

auto concept RVAddable<typename T, typename U> {
typename result type;
result type operator+(T const&, U const&);
result type operator+(T const&, U&&);
result type operator+(T&&, U const&);
result type operator+(T&&, U&&);

}

With this change, Hinnant’s example produces the same output for both the constrained
and the unconstrained templates, because we’ve made the rvalue-based versions part of the
interface. Figure 2 illustrates how this concept interface permits the optimizations.



Doc. no: N2576=08-0086 6

Constrained 
Template RVAddable<T> Requirement User-defined string Class

s1 + s2

rvalue + T()

rvalue + T()

rvalue + T()

operator+(T const&, T const&) operator+(string const&, string const&)

operator+(string const&, string&&)

operator+(string&&, string const&)

operator+(string&&, string&&)

operator+(T const&, T&&)

operator+(T&&, T const&)

operator+(T&&, T&&)

Figure 2: Illustration of the mapping of constrained templates to the RVAddable concept
interface and the mapping of the concept interface to a user-defined type.

4.2 “Eliminating” Forwarding Functions

This approach attempts to make associated functions a bit more abstract, allowing a single
associated function to resolve to different user functions depending on how it is called from
the constrained template. Figure 3 attempts to illustrate this process graphically, using the
LateAddable concept:

auto concept LateAddable<typename T, typename U = T> {
typename result type;
result type operator+(T const&, U const&);

}

In Figure 3, the LateAddable concept only provides a single associated function operator+
that accepts two arguments of types T const& and U const&, respectively. When filling in
the details of a concept map LateAddable<string>, a forwarding function like the following
will be implicitly defined:

concept map LateAddable<string> {
typedef string result type;
string operator+(T const& x, T const& y) { return x + y; }

}

With this new scheme, we intend to eliminate the forwarding function. Instead, we look
only at the body of the forwarding function, and attempt to compile the expression x + y,
where x and y are lvalues of type const string, just as in the forwarding function. When
successful, the + expression will bind to some candidate in overload resolution, whether it is
a function or a built-in. We call this candidate the seed. The return type of the seed is used
for deduction of associated types (e.g., result type), and the seed itself will be used to evaluate
which other functions will be considered to match the associated function requirements.

In the current, forwarding-function—based model, the seed function is the only function
that can be called via the constrained template. With this new scheme, we will use the seed
as a pattern to compute a candidate set containing other functions that could be called to
satisfy that same requirement. The candidate set contains:



Doc. no: N2576=08-0086 7

Constrained 
Template LateAddable<T> Requirement User-defined string Class

s1 + s2

rvalue + T()

rvalue + T()

rvalue + T()

operator+(T const&, T const&) operator+(string const&, string const&)

operator+(string const&, string&&)

operator+(string&&, string const&)

operator+(string&&, string&&)

Figure 3: Illustration of the mapping of constrained templates to the LateAddable concept
interface and the mapping of the concept interface to a user-defined type.

• the seed, if it is a non-template function or built-in operation,

• the function template from which the seed was instantiated, if the seed is a function
template specialization,

• any function with the same name as the seed function that

– is declared in the same namespace as the seed,

– has the same return type of the seed, after references and then top-level cv -
qualifiers have been removed, and

– has the same parameter types as the seed, after references and then top-level
cv -qualifiers have been removed and ignoring any parameters for which default
arguments have been used; and

• any function template with the same name as the seed function that is declared in the
same namespace as the seed.

This candidate set is stored for later use. When we instantiate a constrained template that
uses that concept map, e.g., LateAddable<string>, we replace calls to LateAddable<string>::
operator+ with calls to the functions in that candidate set. Function template specializa-
tions produced by template argument deduction on the templates in the candidate set are
only permitted to enter the overload set if they:

• have the same return type as the seed, after references and then top-level cv -qualifiers
have been removed, and

• have the same parameter types as the seed, after references and then top-level cv -
qualifiers have been removed and ignoring any parameters for which default arguments
have been used.

Since the candidate set permits variation in which functions are selected based on cv -
qualifiers and whether the argument is an lvalue or rvalue, we get “perfect” forwarding of
arguments, and Hinnant’s example produces the same result as in the unconstrained template
case:



Doc. no: N2576=08-0086 8

lv string + lv string
rv string += rv string
rv string += rv string
rv string += rv string

This mechanism trades type-soundness for optimization. By eliminating the forwarding func-
tion call completely, and saving the candidate set for later use, we get the most specific func-
tion from each call. However, we have opened up the possiblity for more instantiation-time
failures. For example, say the function operator+(string&&, string const&) was deleted:
in this case, the constrained template would be a part of the candidate set, but in some
cases—rvalue + lvalue—we would get an error when we end up calling the deleted function.
Other failures can occur due to overloading ambiguities, function template partial ordering
ambiguities, calls resolving to inaccessible functions, etc. These are some of the same prob-
lems that remain with the selection of more-specialized algorithms during the instantiation
of constrained templates, as we do with the binary search/advance example.

Syntax adaptation in concept maps : with this scheme, concept maps should also be
able to provide overload sets to satisfy the requirements of the concept. To do this, we can
just permit multiple overloads specified within concept maps for each requirement in the
concept.

Implementation experience : the latest version of ConceptGCC, available from the
ConceptGCC Subversion repository, implements this scheme as well as the existing concepts
proposal. To enable this scheme, use the flag -fabstract-signatures. I have confirmed that
Hinnant’s example properly deals with l/r-valueness, and of course that there are easy-to-
construct examples that do cause instantiation-time failures in constrained templates due to
this change. Note that the use of this flag does not break any existing test cases within the
GNU C++ compiler or its C++ Standard Library test suite, so this change does not seem
to have a significant impact on backward compatibility.

References

[1] Howard Hinnant. Some concerns about concepts. C++ Library Reflector message
c++std-lib-20050, January 2008.

[2] Jaakko Järvi, Douglas Gregor, Jeremiah Willcock, Andrew Lumsdaine, and Jeremy Siek.
Algorithm specialization in generic programming: Challenges of constrained generics in
C++. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 272–282, New York, NY, USA, 2006. ACM
Press.

[3] Sean Parent. Re: Some concerns about concepts. C++ Library Reflector message
c++std-lib-20052, January 2008.


	Introduction
	Hinnant's Example
	Type-Checking Templates
	Potential Solutions
	Manual Introduction of Overloads
	``Eliminating'' Forwarding Functions


