
Initializer lists WP wording (WG21/N2531=J16/08-0041)

Doc No: WG21/N2531=J16/08-0041
Date: 2008-02-02

Reply to: Bjarne Stroustrup
bs@cs.tamu.edu

Initializer lists WP wording (Revision 2)

J. Stephen Adamczyk, Gabriel Dos Reis, Bjarne Stroustrup

Abstract
This is the proposed WP wording for the initializer proposal as described in N2215
Initializer lists with the clarifications explained in N2477 Uniform initialization design
choices and its revision N2532. There are four intentional differences between the
wording here and the design presented in N2215:

• The term “sequence constructor” has been replaced by “initializer-list
constructor” to minimize the confusion with other kinds of sequences and lists.

• The meaning of an initializer list as the subscript for an array has been specified.
• Narrowing is defined (as agreed by EWG and CWG in Kona) so that all floating-

point to integer conversions are considered narrowing.
• A match on f(std::initializer_list<T>) is preferred to a match on f(T) where T is

a template parameter.
This wording also reflects the clarifications from N2477 (as opposed to changes from
N2215), as prompted by questions and discussions in Kona:

• Non-narrowing and direct-initialization now applies to aggregate element
initialization and to the arguments passed to constructors for initializer-list
initialization.

• The initialization and overload resolution rules have been reworked to eliminate
any preference between different initializer-list constructors. Initializer-list
constructors are still preferred over other kinds of matches, but an initializer-list
constructor that exactly matches the inferred type is no longer any better than one
that requires conversions on the list members.

• The initializer for an initializer-list constructor must be (syntactically) an
initializer list or a std::initializer_list object.

• A type std::initializer_list<Some_type> can be deduced from a homogenous
(without conversions) initializer list for a template parameter T or an auto
variable. Similarly, the T in std::initializer_list<T> can be deduced.

This paper is a revision of N2385.

In 8.5 [dcl.init], change

initializer:

Initializer lists WP wording (WG21/N2532=J16/08-0041) 2

= initializer-clause
(expression-list)
direct-initializer

initializer-clause:

assignment-expression
{ initializer-list ,opt }
{ }
init-list

initializer-list:

initializer-clause ...opt
initializer-list , initializer-clause ...opt

direct-initializer:

(expression-list)
untyped-init-list

untyped-init-list:

bare-init-list

init-list:

untyped-init-list
typed-init-list

bare-init-list:

{ initializer-list ,opt }
{ }

typed-init-list:

simple-type-specifier bare-init-list
typename-specifier bare-init-list

In 5.2 [expr.post], change

postfix-expression:
 …

postfix-expression [expression]
postfix-expression [init-list]

 …
expression-list:

assignment-expression ...opt
expression-list , assignment-expression ...opt
initializer-list

Initializer lists WP wording (WG21/N2532=J16/08-0041) 3

In 5.3.4 [expr.new], change

new-initializer:
(expression-listopt)
direct-initializer

In 5.17 [expr.ass], change

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
logical-or-expression assignment-operator initializer-clause
throw-expression

In 6.6 [stmt.jump], change

jump-statement:

…
return expressionopt ;
return init-list ;
…

In 12.6.2 [class.base.init], change

mem-initializer:
mem-initializer-id (expression-listopt)
mem-initializer-id direct-initializer

In 8.5 [dcl.init], change paragraph 12:

The initialization that occurs in argument passing, function return, throwing an
exception (15.1), and handling an exception (15.3), and brace-enclosed initializer
lists (8.5.1) is called copy-initialization and is equivalent to the form

In 8.5 [dcl.init], replace paragraph 14:

If T is a scalar type, then a declaration of the form
T x = { a };

is equivalent to
T x = a;

Initialization from a brace-enclosed initializer list is called list-initialization
([dcl.init.list]). The form using “=”, where allowed, is equivalent to the form
without “=”. [Example:

Initializer lists WP wording (WG21/N2532=J16/08-0041) 4

T x = { a, b, c };
T y { a, b, c };

 --- end example]

In 8.5 [dcl.init], change the beginning of paragraph 15:

The semantics of initializers are as follows. The destination type is the type of the
object or reference being initialized and the source type is the type of the
initializer expression. The source type is not defined when the initializer is an
initializer list or when it is a parenthesized list of expressions.

• If the destination type is a reference type, see 8.5.3.
• If the destination type is an array of characters, an array of char16_t, an

array of char32_t, or an array of wchar_t, and the initializer is a
string literal, see 8.5.2.

• If the initializer is an initializer list (i.e., an untyped-init-list or typed-
init-list), see [dcl.init.list].

• If the initializer is (), the object is value-initialized.
• Otherwise, if the destination type is an array, see 8.5.1 the program is ill-

formed.
• If the destination type is a (possibly cv-qualified) class type:

 If the class is an aggregate (8.5.1), and the initializer is a brace-
enclosed list, see 8.5.1.

 If the initialization is direct-initialization, …

In 8.5.1 [decl.init.aggr] paragraph 2, change

When an aggregate is initialized the initializer can contain an initializer-clause
consisting of a brace-enclosed , comma-separated list of initializer-clause When,
as specified in 8.5.4 [dcl.init.list], an aggregate is initialized by an initializer
list, the elements of the initializer list are taken as initializers for the members
of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the
subaggregate. Each member is direct-initialized from the corresponding
initializer-clause according to the initialization rules in 8.5 [dcl.init]; if the
initializer-clause is an expression, and a narrowing conversion ([dcl.init.list])
is required to convert it to the member type, the program is ill-formed. [
Note: If an initializer-clause is itself an initializer list, the member is list-
initialized, and if the member is an aggregate that will result in a recursive
application of the rules in this section.] [Example: …

In 8.5 [dcl.init], add a new section as 8.5.4 [dcl.init.list]:

8.5.4 List-initialization [dcl.init.list]

Initializer lists WP wording (WG21/N2532=J16/08-0041) 5

List-initialization is initialization of an object or reference from a brace-enclosed
list having the form of an untyped-init-list or typed-init-list. Such an initializer is
called an initializer list, and the comma-separated expressions or nested initializer
lists of the list are called the elements of the initializer list. An initializer list may
be empty. [Example:
 int a = {1};
 complex<double> z{1,2};
 new vector<string>{"once", "upon", "a", "time"}; // 4 string elements
 f({"Nicholas", "Annemarie"}); // pass list of two elements
 return { "Norah" }; // return list of one element

int* e {}; // initialization to zero / null pointer
x=double{1}; // explicitly construct a double
map<string,int> anim = { {"bear",4}, {"cassowary",2}, {"tiger",7} };

--- end example]

[Note: List-initialization can be used
• as the initializer in a variable definition (8.5 [dcl.init])
• as the initializer in a new expression (5.3.4 [expr.new])
• in a return statement (6.6.3 [stmt.return])
• as a function argument (5.2.2 [expr.call])
• as a subscript (5.2.1 [expr.sub])
• as an argument to a constructor invocation (8.5 [dcl.init], 5.2.3

[expr.type.conv])
• as a base-or-member initializer (12.6.2 [class.base.init])
--- end note]

The type std::initializer_list ([support.initlist]) has a special
relationship to initializer lists. In certain contexts (see below, [over.ics.list], and
[temp.deduct.call]), an initializer list can be implicitly converted to an
initializer_list object that points to an array containing the elements of
the initializer list. Constructors and other functions can be written to accept an
initializer list in this form. Of particular utility is an initializer-list constructor, a
constructor taking a single argument of type std::initializer_list<E>
for some type E. [Note: Initializer-list constructors are favored over other
constructors in certain contexts.] The type std::initializer_list is not
predefined; if the header <initializer_list> is not included prior to a use
of initializer_list (even an implicit use in which the type is not named),
the program is ill-formed.

The simple-type-specifier or typename-specifier of a typed-init-list specifies the
type of such a list, which shall not be (possibly cv-qualified) void.

The inferred type of an initializer list is its specified type, for a typed-init-list. An
untyped-init-list has an inferred type only if it has at least one element, and all of
its elements --- after application of lvalue-to-rvalue (4.1 [conv.lvalue]), array-to-

Initializer lists WP wording (WG21/N2532=J16/08-0041) 6

pointer (4.2 [conv.array]), and function-to-pointer (4.3 [conv.func]) conversions,
if applicable --- have the same type E [Note: This type is possibly an inferred type
from an initializer list or an initializer-list expression]. In that case, the inferred
type of the initializer list is std::initializer_list<E>. [Note: As
described in 14.8.2.1 [temp.deduct.call], the inferred type of an initializer list is
used for template argument deduction. [Example:

 template<class T> void f(T);
 f({}); // error: cannot deduce type of empty initializer list
 f({1,2,3}); // ok: T is initializer_list<int>
 f({1,2,3,4.0}); // error: the list is not homogenous without conversions
 int a [10];
 int *p = a;
 f({p,a}); // ok: array decay accepted
 f({p,0}); // error: the list is not homogenous without conversions

--- end example]]

List-initialization of an object or reference of type T is defined as follows. If the
initializer list is a typed-init-list, its type shall match T.

1. If T is an aggregate, do aggregate initialization (8.5.1 [dcl.init.aggr]).
[Example:

double ad[] = { 1, 2.0 }; // ok
int ai[] = { 1, 2.0 }; // error: narrowing

--- end example]
2. Otherwise, if T is a class type, do a modified version of direct-

initialization using the elements of the initializer list as arguments. The
constructors of T are enumerated according to [over.match.list], and the
best one is chosen through overload resolution ([over.match]). If an
initializer-list constructor is selected, construct the
initializer_list object (as described below) and call that
initializer-list constructor. If another kind of constructor is selected, the
constructor is called with the elements of the initializer list as arguments.
[Note: as indicated in [over.match.list], the constructor parameters are
initialized from the arguments by direct-initialization, and no narrowing
conversions are allowed.]

[Example:
struct S {
 S(std::initializer_list<double>); // #1
 S(std::initializer_list<int>); // #2
 // …
};
S s1 = {1.0, 2.0, 3.0 }; // invoke #1
S s2 = { 1, 2, 3 }; // ambiguous: #1 or #2

--- end example]

Initializer lists WP wording (WG21/N2532=J16/08-0041) 7

[Example:
struct Map {
 Map(std::initializer_list<std::pair<std::string,int>>);
};
Map<std::string,int> ship = {{"Sophie",14}, {"Surprise",28}};

--- end example]
[Example:

struct S {
 // S(std::initializer_list<double>);

// no initializer-list constructors
 S(int, double, double); // #2
 S(); // #3
 // …
};
S s1 = {1, 2, 3.0 }; // ok: invoke #2
S s2 { 1.0, 2, 3 }; // error: narrowing
S s3 { }; // ok: invoke #3

struct S2 {
 int m1;
 double m1,m3;
};
S2 s21 = {1, 2, 3.0 }; // ok
S2 s22 { 1.0, 2, 3 }; // error: narrowing
S2 s23 {}; // ok: default to 0,0,0

--- end example]
3. Otherwise, if T is a reference type, do list-initialization of an rvalue

temporary of the type referenced by T, and bind the reference to that
temporary. [Note: The binding will fail and the program is ill-formed if
the reference type is an lvalue reference to a non-const type.]

[Example:
struct S {
 S(std::initializer_list<double>); // #1
 S(const std::string&); // #2
 // …
};
const S& r1 = {1, 2, 3.0 }; // ok: invoke #1
const S& r2 { "Spinach" }; // ok: invoke #2
S& r3 = { 1, 2, 3 }; // error: initializer is not an lvalue

--- end example]
4. Otherwise (i.e., if T is not an aggregate, class type, or reference) if the

initializer list has a single element, do direct-initialization from it; if a
narrowing conversion (see below) is required to convert the element to T,
the program is ill-formed; [Example:

int x1 {2}; // ok
int x2 {2.0}; // error: narrowing

Initializer lists WP wording (WG21/N2532=J16/08-0041) 8

string s{"can call explicit constructor"}; // ok
--- end example]

• if the initializer list has no elements, do value-initialization of the object;
[Example

int** pp {}; // initialized to null pointer
--- end example]

• otherwise, the program is ill-formed.

[Example:

 struct A { int i; int j; };

A a1 { 1, 2 }; // aggregate initialization
A a2 { 1.2 }; // error: narrowing
struct B {

B(std::initializer_list<int>);
};
B b1 { 1, 2 }; // creates initializer_list<int> and calls constructor
B b2 { 1, 2.0 }; // error: narrowing
struct C {

C(int i, double j);
};
C c1 = { 1, 2.2 }; // calls constructor with arguments (1, 2.2)
C c2 = { 1.1, 2 }; // error: narrowing

int j { 1 }; // initialize to 1
int k {}; // initialize to 0

--- end example]

When an initializer list is implicitly converted to a
std::initializer_list<E>, the object passed is constructed as if the
implementation allocated an array of N elements of type E, where N is the
number of elements in the initializer list and E is the element type deduced or
specified for the elements. Each element of that array is initialized with the
corresponding element of the initializer list converted to E, and the
initializer_list<E> object is constructed to refer to that array. [Example:

 void f(std::initializer_list<double> v);
 f({ 1,2,3 });

The call will be implemented in a way equivalent to this:

 double __a[3] = {double{1}, double{2}, double{3}};
 f(std::initializer_list<double>(__a, __a+3);

Initializer lists WP wording (WG21/N2532=J16/08-0041) 9

assuming that the implementation can construct an initializer_list with a
pair of pointers. --- end example]

The lifetime of the initializer_list object and the array (and its elements)
is identical to that of a temporary created in the same place as the initializer list.
[Example:

 typedef std::complex<double> cmplx;
 vector<cmplx> v1 = { 1, 2, 3 };
 void g(const vector<cmplx>&);

 void f()
 {
 vector<cmplx> v2 = { 1, 2, 3 };
 g({ 1, 2, 3 });
 }

In each case, the object and array created for { 1, 2, 3 } have the same lifetime,
that is, full-expression lifetime. --- end example]

A narrowing conversion is an implicit conversion

• from a floating-point type to an integer type, or
• from long double to double or float, or from double to

float, except where the source is a constant expression and the
actual value after conversion will fit into the target type and will
produce the original value when converted back to the original type, or

• from an integer type or unscoped enumeration type to a floating-point
type, except where the source is a constant expression and the actual
value after conversion will fit into the target type and will produce the
original value when converted back to the original type, or

• from an integer type or unscoped enumeration type to an integer type
with lesser integer conversion rank (4.13 [conv.rank]) except where
the source is a constant expression and the actual value after
conversion will fit into the target type and will produce the original
value when converted back to the original type.

[Note: As indicated above, such conversions are not allowed at the top level
in list-initializations. [Example:

 int x = 999; // x is not a constant expression
 const int y = 999;
 const int z = 99;
 char c1 = x; // ok, might narrow (in this case, it does narrow)
 char c2{x}; // error, might narrow
 char c3{y}; // error: narrows
 char c4{z}; // ok, no narrowing needed
 unsigned char uc1= {5}; // ok: no narrowing needed
 unsigned char uc2 = {-1} // error: narrows

Initializer lists WP wording (WG21/N2532=J16/08-0041) 10

 unsigned int ui1 = {-1} // error: narrows
 signed int si1 = { (unsigned int)-1 }; // error: narrows

int ii = {2.0}; // error: narrows
float f1 { x }; // error: narrowing
float f2 { 7 }; // ok: 7 can be exactly represented as a float
int f(int);
int a[] = { 2, f(2), f(2.0) }; // ok: the double-to-int conversion

// is not at the top level
--- end example]]

In 5.2.1 [expr.sub], add as a new paragraph 2:

An init-list may appear as a subscript for a user-defined operator[]. In that
case, the initializer list is treated as the initializer for the subscript argument of the
operator[]. An initializer list shall not be used with the built-in subscript
operator. [Example:

struct X {
 Z operator[](std::initializer_list<int>);
 };
 X x;
 x[{1,2,3}] = 7; // ok: meaning x.operator[]({1,2,3})
 int a[10];
 a[{1,2,3}] = 7; // error: built-in subscripting

--- end example]

In 5.3.4 [expr.new] paragraph 16, change part of the bullet list:

• …
• If the new-initializer is of the form (), the item is value-initialized (8.5);
• If the new-initializer is of the form (expression-list) and T is a class type, the

appropriate constructor is called, using expression-list as the arguments (8.5);
• If the new-initializer is of the form (expression-list) and T is an arithmetic,

enumeration, pointer, or pointer-to-member a scalar type and expression-list
comprises exactly one expression, then the object is initialized to the (possibly
converted) value of the expression (8.5);

• Otherwise the new-expression is ill-formed.
• Otherwise, the new-initializer is interpreted according to the initialization

rules of 8.5 [dcl.init] for direct-initialization.

In 5.17 [expr.ass], add as a new final paragraph:

An initializer list may appear on the right-hand side of

Initializer lists WP wording (WG21/N2532=J16/08-0041) 11

• an assignment to a scalar, in which case the initializer list must have at
most a single element. The meaning of x={v}, where T is the scalar type
of the expression x, is that of x=T(v) except that no narrowing conversion
is allowed. The meaning of x={} is x=T(). If the initializer list is a typed-
init-list, its type shall be T, ignoring cv-qualifiers.

• an assignment defined by a user-defined assignment operator, in which
case the meaning is defined by the initialization rules for that operator
function’s argument.

[Example:
 complex<double> z;

z = { 1,2 }; // meaning z.operator=({1,2})
z += { 1, 2}; // meaning z.operator+=({1,2})
a = b = { 1 }; // meaning a=b=1;
a = { 1 } = b; // syntax error

--- end example]

In 6.6.3 [stmt.return] paragraph 2, change

A return statement without an expression can be used only in functions that do not
return a value, that is, a function with the return type void, a constructor (12.1), or
a destructor (12.4). A return statement with an expression of non-void type can be
used only in functions returning a value; the value of the expression is returned to
the caller of the function. The expression is implicitly converted to the return type
of the function in which it appears. A return statement can involve the
construction and copy of a temporary object (12.2). [Note: A copy operation
associated with a return statement may be elided or considered as an rvalue for the
purpose of overload resolution in selecting a constructor (12.8). — end note] A
return statement with an init-list initializes the object or reference to be
returned from the function by list-initialization (8.5.4 [dcl.init.list]) from the
specified initializer list. [Example:

std::pair<string,int> f(const char* p, int x)
{

return {p,x};
}

--- end example]
Flowing off the end of a function is equivalent to a return with no value; this
results in undefined behavior in a value-returning function.

In 7.1.5.4 [dcl.spec.auto], paragraph 6, change

Once the type of a declarator-id has been determined according to 8.3, the type of
the declared variable using the declarator-id is determined from the type of its
initializer using the rules for template argument deduction. Let T be the type that
has been determined for a variable identifier d. Obtain P from T by replacing the

Initializer lists WP wording (WG21/N2532=J16/08-0041) 12

occurrences of auto with a new invented type template parameter U. Let A be the
type of the initializer expression for d. If the initializer is an initializer list, let A
be its inferred type (8.5.4 [dcl.init.list]; as described in 14.8.2.1
[temp.deduct.call], if the initializer list does not have an inferred type the
deduction will fail). [Example:

auto x1 = { 1,2 }; // x1 is an initializer_list<int>
auto x2 = { 1, 2.0 }; // error: no inferred type

--- end example]
 The type deduced for the variable d is then the deduced type determined using
the rules of template argument deduction from a function call (14.8.2.1), where P
is a function template parameter type and A is the corresponding argument type.
If the deduction fails, the declaration is ill-formed.

In 12.2 [class.temporary], paragraph 3, change

The second context is when a reference is bound to a temporary. The temporary to
which the reference is bound or the temporary that is the complete object of a
subobject to which the reference is bound persists for the lifetime of the reference
except as specified below. A temporary bound to a reference member in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A
temporary bound to a reference parameter in a function call (5.2.2) persists until
the completion of the full expression containing the call. A temporary bound to
the returned value in a function return statement (6.6.3) persists until the function
exits. A temporary bound to a reference in a new-initializer (5.3.4 [expr.new])
persists until the completion of the full expression containing the new-
initializer[Example:

struct S { int mi; const std::pair<int,int>& mp; };
S a { 1, {2,3} };
S* p = new S{1, {2,3} }; // Creates dangling reference

--- end example] [Note: This may introduce a dangling reference, and
implementations are encouraged to issue a warning in such a case.] The
destruction of a temporary whose lifetime is not extended by being bound to a
reference is sequenced before the destruction of every temporary which is
constructed earlier in the same full-expression. …

In 12.6.1 [class.expl.init] paragraph 2, change

When an aggregate (whether class or array) contains members of class type and is
initialized by a brace-enclosed initializer-list (8.5.1), each such member is copy-
initialized (see 8.5) by the corresponding assignment-expression. If there are
fewer initializer s in the initializer-list than members of the aggregate, each
member not explicitly initialized shall be value-initialized (8.5). [Note: 8.5.1
describes how assignment-expression s in an initializer-list are paired with the
aggregate members they initialize. —end note] An object of class type can also
be initialized by a brace-enclosed initializer list. List-initialization semantics
apply; see 8.5 [dcl.init] and 8.5.4 [dcl.init.list]. [Example: …

Initializer lists WP wording (WG21/N2532=J16/08-0041) 13

In 12.6.2 [class.base.init] paragraph 3, change

The expression-list direct-initializer in a mem-initializer is used to initialize the
base class or non-static data member subobject denoted by the mem-initializer-id
according to the initialization rules of 8.5 [dcl.init] for direct-initialization.
The semantics of a mem-initializer are as follows:

• if the expression-list of the mem-initializer is omitted, the base class or
member subobject is value-initialized (see 8.5);

• otherwise, the subobject indicated by mem-initializer-id is direct-
initialized using expression-list as the initializer (see 8.5).

Add a new section 13.3.1.7:

13.3.1.7 Initialization by list-initialization [over.match.list]

When objects of class type are list-initialized ([dcl.init.list]), overload resolution selects
the constructor. Assuming that “cv1 T” is the type of the object being initialized, with T a
class type, the candidate functions are selected as follows:

• The constructors of T that are not initializer-list constructors are

candidates. The argument list is the elements of the initializer list.
However, the arguments are considered to direct-initialize the
corresponding parameter, rather than copy-initializing it, and a
constructor is not considered viable if calling it requires a narrowing
conversion ([dcl.init.list]).

• The initializer-list constructors of T are considered. Those whose
parameter type is std::initializer_list<X> or reference to const
std::initializer_list<X>, where either std::initializer_list<X> is the
inferred type of the initializer list, or the initializer list is an untyped-init-
list and all its elements can be implicitly converted to X without use of a
narrowing conversion, are candidate functions. The argument list is a
single rvalue object of type std::initializer_list<X>.

Add a new section under 13.3.3.1 [over.best.ics]:

13.3.3.1.5 List-initialization [over.ics.list]

When an argument is an initializer list (8.5.4 [dcl.init.list]), it is not an expression
and special rules apply for converting it to a parameter type.

If the parameter type is std::initializer_list<X> or reference to const
std::initializer_list<X>,

• if the inferred type (8.5.4 [dcl.init.list]) of the initializer list is
std::initializer_list<X>, the implicit conversion sequence is
the identity conversion; [Example:

Initializer lists WP wording (WG21/N2532=J16/08-0041) 14

void f(std::initializer_list<int>);
f({1,2,3}); // ok: f(initializer_list<int>) identity conversion

--- end example]
• otherwise, if the initializer list is an untyped-init-list, and all the elements

of the initializer list can be implicitly converted to X without a narrowing
conversion (8.5.4 [dcl.init.list]), the implicit conversion sequence is the
identity conversion. [Example:

struct A {
A(std::initializer_list<int>);

 };
void f(A);
f({'a', 'b',}); // ok: f(A(initializer<int>)) identity conversion
f({1.0}); // error: narrowing

--- end example]

Otherwise, if the parameter type is cv X or reference to const X where X is a
class type, and the argument is a typed-init-list with type T or an untyped-init-list,

• if X is not an aggregate (8.5.1 [dcl.init.aggr]), if the rules for list-
initialization given in 8.5.4 ([dcl.init.list]) choose a single best constructor
of X to perform the initialization of an object of type X from the argument
initializer list, the implicit conversion sequence is a user-defined
conversion sequence; [Example:

struct A {
A(int, double);

 };
void f(A);
f({'a', 'b',}); // ok: f(A(int,double)) user-defined conversion
f({1.0, 1,0}); // error: narrowing

--- end example]
• if X is an aggregate, then if each element of the initializer list [Footnote:

There might be zero elements, in which case the requirement is vacuously
satisfied.] can be converted to the type of the corresponding initializable
member of X according to the rules for aggregate initialization (8.5.1
[dcl.init.aggr]) and there are no more initializers than there are initializable
members, the implicit conversion sequence is a user-defined conversion
sequence. [Example:

struct A {
int m1;
double m2;

 };

void f(A);
f({'a', 'b',}); // ok: f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing

--- end example]

Initializer lists WP wording (WG21/N2532=J16/08-0041) 15

Otherwise, if the parameter type is a reference to a non-array type, and the
reference can be bound to an rvalue of the referenced type (e.g., if it is an lvalue
reference to a const type), the implicit conversion sequence is the one required to
convert the initializer list to the referenced type according to this section, if such a
conversion is possible. [Example:

struct A {
int m1;
double m2;

 };

void f(const A&);
f({'a', 'b',}); // ok: f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing

void g(const double &);
g({1}); // same conversion as int to double

--- end example]

Otherwise, if the parameter type is cv X, with X not a class or reference type, and
the argument is a typed-init-list with type (possibly cv-qualified) X or an untyped-
init-list,

• if the initializer list has one element, the implicit conversion sequence is
the one required to convert the element to the parameter type, if such a
conversion is possible without using a narrowing conversion (8.5.4
[dcl.init.list]); [Example:

void f(int);
f({'a'}); // ok: same conversion as char to int
f({1.0}); // error: narrowing

--- end example]
• if the initializer list has no elements, the implicit conversion sequence is

the identity conversion. [Example:
void f(int);
f({ }); // ok: identity conversion

--- end example]

In all cases other than those enumerated above, no conversion is possible.

In 13.3.3.2 [over.ics.rank] paragraph 3, under the bullet beginning “Standard conversion
sequence S1 is a better conversion sequence than standard conversion sequence S2 if”,
add a new final sub-bullet:

• The argument is an initializer list (8.5.4 [decl.init.list]), S1 and S2 are
both identity conversions, S1 is a conversion to std::initializer_list<T> or
reference to const std::initializer_list<T>, and S2 is not such a
conversion.

Initializer lists WP wording (WG21/N2532=J16/08-0041) 16

In 14.5.3 [temp.variadic], paragraph 4, change the first bullet:

• In an expression-list (5.2); the pattern is an assignment-expression
initializer-clause.

In 14.8.2.1 [temp.deduct.call] paragraph 1, change

Template argument deduction is done by comparing each function template
parameter type (call it P) with the type of the corresponding argument of the call
(call it A) as described below. If the argument is an initializer list (8.5.4
[dcl.init.list]), its inferred type is used for A; if the initializer list does not
have an inferred type, the associated parameter is considered a non-deduced
context (14.8.2.5 [temp.deduct.type]). [Example:

template<class T> void f(std::initializer_list<T>); // #1
f({1,2,3}); // T deduced to int
f({1,"asdf"}); // error: no inferred type; no deduction

template<class T> void g(T);
g({1,2,3}); // T deduced to initializer_list<int>

template<class T> void f(T); // #2
f({1,2,3}); // invoke #1 (more specialized); T deduced to int

--- end example] For a function parameter pack, …

In 14.8.2.5 [temp.deduct.type] paragraph 5, add as a final bullet at the top level (not the
second bullet level)

• A function parameter for which the associated argument is an initializer
list (8.5.4 [dcl.init.list]) that does not have an inferred type. [Example:

template<class T> void f(std::initializer_list<T>); // #1
f({1,"asdf"}); // error: no inferred type; no deduction

template<class T> void g(T);
g({1,2.0}); // error: no inferred type; no deduction

--- end example]

In 18 [language.support] paragraph 2, change

The following subclauses describe common type definitions used throughout the
library, characteristics of the predefined types, functions supporting start and
termination of a C++ program, support for dynamic memory management,
support for dynamic type identification, support for exception processing,
support for initializer lists, and other runtime support, as summarized in Table
16.

Initializer lists WP wording (WG21/N2532=J16/08-0041) 17

…and add 18.7 Initializer lists <initializer_list> to Table 16.

Add a new section after 18.7 [support.exception] and before 18.8 [support.runtime]:

 18.8. Initializer lists [support.initlist]

The header <initializer_list> defines one type.

template<class E> class initializer_list {
public:
 initializer_list();

 size_t size() const; // number of elements
 const E* begin() const; // first element
 const E* end() const; // one past the last element
};

An initializer_list provides access to an array of objects of type const E. [Note:
A pair of pointers or a pointer plus a length would be obvious representations for
initializer_list; initializer_list is used to implement initializer lists as specified in
8.5.4 [dcl.init.list]. Copying an initializer list does not copy the underlying
elements. --- end note]

18.8.1 Initializer list constructors [support.initlist.cons]

initializer_list();

Effects: constructs an empty initializer list
Postconditions: size() == 0
Throws: nothing

18.8.2 Initializer list access [support.initlist.access]

const E* begin() const;

Returns: a pointer to the beginning of the array
Throws: nothing

const E* end() const;

Returns: begin() + size()
Throws: nothing

size_t size() const;

Initializer lists WP wording (WG21/N2532=J16/08-0041) 18

Returns: the number of elements in the array
Throws: nothing

