
Proposed Wording for Concepts
(Revision 2)

Authors: Douglas Gregor, Indiana University
Bjarne Stroustrup, Texas A&M University

Document number: N2398=07-0258
Revises document number: N2307=07-0167
Date: 2007-09-10
Project: Programming Language C++, Core Working Group
Reply-to: Douglas Gregor <doug.gregor@gmail.com>

Introduction

This document provides proposed wording for concepts. Readers unfamiliar with concepts are encouraged to read the
complete proposal [1]. It is recommended that readers “tour” this concepts wording using N2399=07-0259, which
provides an examples-directed view of the major language features involved in concepts, cross-referenced with this
document. This document provides wording for changes to the core language. Changes to the standard library are
discussed in separate documents:

— Concepts for the C++0x Standard Library: Approach [N2036=06-0106]

— Concepts for the C++0x Standard Library: Introduction [N2037=06-0107]

— Concepts for the C++0x Standard Library: Utilities (Revision 2) [N2322=07-0182]

— Concepts for the C++0x Standard Library: Containers [N2085=06-0155]

— Concepts for the C++0x Standard Library: Iterators (Revision 2) [N2323=07-0183]

— Concepts for the C++0x Standard Library: Algorithms (Revision 1) [N2084=06-0154]

— Concepts for the C++0x Standard Library: Numerics [N2041=06-0111]

Changes from N2307

The wording in this document reflects several changes to the formulation of concepts presented in N2307 [2], which
were discussed at the July 2007 C++ committee meeting in Toronto. The following changes are reflected in this wording:

— Changed the syntax of the “simple form” of concept requirements that use additional template parameters from
C<T2, T3> T1 to C T1<T2, T3>, as directed by the Core Working Group (14.1).

— Added “concept” and “concept map” to the list of entities in Clause 3.

— Fixed erroneous references to the concept and concept-map grammar terms in 3.3.1, which don’t actually exist
any more.

— Synchronized text in 3.3.7 with [basic.scope.class].

— Cleaned up the text in 3.4.3.

mailto:doug.gregor@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2036.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2037.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2322.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2085.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2323.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2084.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2041.pdf

2

— Clarified name lookup for concept maps of refinements in 3.4.3.3.

— Removed restriction on default arguments to associated functions in [dcl.decl].

— Used deleted functions rather than “inaccessible” to remove implicitly-declared special member functions that
will not compile (12).

— If there are multiple overloads of a constrained member with identical signatures (ignoring the requires clause),
use partial ordering of function templates to select the most specialized overload (14.5.1).

— Requirements from a primary class template are propagated to its class template partial specializations (14.5.5).

— Stated the restrictions on the template arguments in a concept map (14.5.8).

— Added as a SFINAE case the use of a template with template arguments that do not satisfy the requirements of
the template (14.8.2).

— Eliminated the term “associated parameter,” which was somewhat confusing. We instead talk about associated
types and associated templates, as necessary.

— Use deleted functions in the description of archetypes (14.10.2), and expand the list of implicitly-generated defi-
nitions in archetypes to include operators &, new, new[], delete, and delete[].

— Introduced the term concept instance to refer to a use of a concept with a specific set of arguments. Concept
instances are used when type-checking constrained templates (14.10.2).

— Added axioms with requirements clauses (14.9.1.4), per message c++std-ext-9808.

— Corrected description of matching function templates in concept maps to associated function templates in concepts
(14.9.2.1, p5).

— Clarified the relationship between uses of associated functions in concept instances and associated function defi-
nitions in concept maps at instantiation time (14.10.3).

— Cleaned up the grammar for concept-member-specification and concept-map-member-specification.

— Removed the change to [temp.over.link] paragraph 3; instead, updated the definition of signature ().

— Removed the change to [expr.call]; instead, added a general prohibition on the use of unconstrained templates
with archetypes inside a constrained template (14.10.2).

— Note that concept instances act as concept maps (14.10.2). Also, concept instances are synthesized in the definition
of a concept for each of the refinements of that concept (14.9.3).

— Changed the wording in (14.10.1 p3) to better reflect the rules specified in (14.5.8 p4).

Typographical conventions

Within the proposed wording, text that has been added will be presented in blue and underlined when possible. Text that
has been removed will be presented in red,with strike-through when possible.

Purely editorial comments will be written in a separate, shaded box.

Chapter 1 General [intro]

1.3 Definitions [intro.defs]

1.3.1 [defns.signature]
signature
the name and the parameter-type-list (??) of a function, as well as the class or namespace of which it is a member. If
a function or function template is a class member its signature additionally includes the cv-qualifiers (if any) on the
function or function template itself. The signature of a function template additionally includes its return type and, its
template parameter list, and its requirements clause (if any). The signature of a function template specialization includes
the signature of the template of which it is a specialization and its template arguments (whether explicitly specified or
deduced). [Note:Signatures are used as a basis for name mangling and linking. — end note]

1.3 Definitions General 4

4

Chapter 2 Lexical conventions [lex]

2.11 Keywords [key]

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated as keywords
in phase 7):

Table 3: keywords
asm continue friend register throw
auto default goto reinterpret_cast true
axiom delete if requires try
bool do inline return typedef
break double int short typeid
case dynamic_cast late_check signed typename
catch else long sizeof union
char enum mutable static unsigned
char16_t explicit namespace static_assert using
char32_t export new static_cast virtual
class extern operator struct void
concept false private switch volatile
concept_map float protected template wchar_t
const for public this while
const_cast

2.11 Keywords Lexical conventions 6

6

Chapter 3 Basic concepts [basic]

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a function,
enumerator, type, class member, template, namespace, or parameter pack, concept, or concept map.

6 Some names denote types, classes, concepts, enumerations, or templates. In general, it is necessary to determine whether
or not a name denotes one of these entities before parsing the program that contains it. The process that determines this
is called name lookup (3.4).

3.2 One definition rule [basic.def.odr]

1 No translation unit shall contain more than one definition of any variable, function, class type, concept, concept map,
enumeration type or template.

5 There can be more than one definition of a class type (clause 9), concept (14.9), concept map (14.9.2), enumeration
type ([dcl.enum]), inline function with external linkage ([dcl.fct.spec]), class template (clause 14), non-static func-
tion template (14.5.6), static data member of a class template ([temp.static]), member function of a class template
([temp.mem.func]), or template specialization for which some template parameters are not specified (14.7, 14.5.5) in
a program provided that each definition appears in a different translation unit, and provided the definitions satisfy the
following requirements. Given such an entity named D defined in more than one translation unit, then

3.3 Declarative regions and scopes [basic.scope]

3.3.1 Point of declaration [basic.scope.pdecl]

10 The point of declaration for a concept (14.9) is immediately after the identifier in the concept-definition. The point of
declaration for a concept map (14.9.2) is immediately after the concept-id in the concept-map-definition.

Add the following new sections to 3.3 [basic.scope] after [basic.scope.class]:

3.3.7 Concept scope [basic.scope.concept]

1 The following rules describe the scope of names declared in concepts and concept maps.

1) The potential scope of a name declared in a concept or concept map consists not only of the declarative region
following the name’s point of declaration, but also of all associated function bodies in that concept or concept
map.

2) A name N used in a concept or concept map S shall refer to the same declaration in its context and when re-
evaluated in the completed scope of S. No diagnostic is required for a violation of this rule.

3) If reordering declarations in a concept or concept map yields an alternate valid program under (1), the program is
ill-formed, no diagnostic is required.

3.3 Declarative regions and scopes Basic concepts 8

4) A name declared within an associated function definition hides a declaration of the same name whose scope
extends to or past the end of the associated function’s concept or concept map.

5) The potential scope of a declaration that extends to or past the end of a concept map definition also extends to the
regions defined by its associated function definitions, even if the associated functions are defined lexically outside
the concept map.

2 The name of a concept member shall only be used as follows:

— in the scope of its concept (as described above) or a concept refining (14.9.3) its concept,

— after the :: scope resolution operator (5.1) applied to the name of a concept map or template type parameter
(14.1).

3.3.8 Requirements scope [basic.scope.req]

1 In a template that contains a requirements clause (14.10.1), the names of all associated functions inside the concepts
named or implied by the concept-id requirements in the requirements clause are visible in the scope of the template
declaration. If the name of an associated function is the same as the name of a template-parameter in the scope of the
template, the program is ill-formed ([temp.local]).

[Example:

concept Integral<typename T> {

T::(const T&);

T operator-(T);

}

concept RAIterator<typename Iter> {

Integral difference_type;

difference_type operator-(Iter, Iter);

}

template<RAIterator Iter>

RAIterator<Iter>::difference_type distance(Iter first, Iter last) {

return -(first - last); // okay: name lookup for operator- finds RAIterator<Iter>::operator-
// and Integral<RAIterator<Iter>::difference_type>::operator-
// overload resolution picks the appropriate operator for both uses of -

}

— end example]

3.3.9 Name hiding [basic.scope.hiding]

Add the following new paragraph:

6 In an associated function definition, the declaration of a local name hides the declaration of a member of the concept or

8

9 Basic concepts 3.4 Name lookup

concept map with the same name; see 3.3.7.

3.4 Name lookup [basic.lookup]

1 The name lookup rules apply uniformly to all names (including typedef-names ([dcl.typedef]), namespace-names ([ba-
sic.namespace]), concept-names (14.9), and class-names ([class.name]) wherever the grammar allows such names in
the context discussed by a particular rule. Name lookup associates the use of a name with a declaration ([basic.def])
of that name. Name lookup shall find an unambiguous declaration for the name (see [class.member.lookup]). Name
lookup may associate more than one declaration with a name if it finds the name to be a function name; the declarations
are said to form a set of overloaded functions ([over.load]). Overload resolution ([over.match]) takes place after name
lookup has succeeded. The access rules (clause [class.access]) are considered only once name lookup and function
overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable)
and access checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

3.4.1 Unqualified name lookup [basic.lookup.unqual]

Add the following new paragraphs:

16 A name used in the definition of a concept or concept map X outside of an associated function body shall be declared in
one of the following ways:

— before its use in the concept or concept map X or be a member of a refined concept of X, or

— if X is a member of namespace N, before the definition of concept or concept map X in namespace N or in one of
N’s enclosing namespaces.

[Example:

concept Callable<class F, class T1> {

result_type operator() (F&, T1)

typename result_type; // error result_type used before declared
}

— end example]

17 A name used in the definition of an associated function (14.9.1.1) of a concept or concept map X following the associated
function’s declarator-id shall be declared in one of the following ways:

— before its use in the block in which it is used or in an enclosing block ([stmt.block]), or

— shall be a member of concept or concept map X or be a member of a refined concept of X, or

— if X is a member of namespace N, before the associated function definition, in namespace N or in one of N ’s
enclosing namespaces.

3.4.3 Qualified name lookup [basic.lookup.qual]

1 The name of a class, concept map, or namespace member can be referred to after the :: scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class, concept map, or namespace. During the lookup for a name

9

3.5 Program and linkage Basic concepts 10

preceding the :: scope resolution operator, object, function, and enumerator names are ignored. If the name found does
not designate a namespace, concept map, or a class or dependent type, the program is ill-formed.

Add the following paragraph to Qualified name lookup [basic.lookup.qual]

6 In a constrained template (14.10), a name prefixed by a nested-name-specifier that nominates a template type parameter
T is looked up in each concept named by a concept-id requirement (14.10.1) in the requirements clause whose argument
list contains T. That name shall refer to one or more associated types (names of associated functions are ignored) that
are all equivalent (14.4).

[Example:

concept C<typename T> {

typename assoc_type;

}

template<typename T> requires C<T>

T::assoc_type // okay: refers to C<T>::assoc_type
f();

— end example]

If qualified name lookup for associated types does not find any associated type names, qualified name lookup (3.4.3)
can still find the name within the archetype (14.10.2) of T.

Add the following subsection to Qualified name lookup [basic.lookup.qual]

3.4.3.3 Concept map members [concept.qual]

1 If the nested-name-specifier of a qualified-id nominates a concept map, the name specified after the nested-name-
specifier is looked up in the scope of the concept map (3.3.7) or any of the concept maps for concepts its concept
refines (14.9.3.1). The name shall represent one or more members of that concept map. [Note: a concept map member
can be referred to using a qualified-id at any point in its potential scope (3.3.7). [Example:

template<typename F, typename T1>

requires Callable1<F, T1>

Callable1<F, T1>::result_type

forward(F& f, const T1& t1) {

return f(t1);

}

— end example] — end note]

2 A concept map member name hidden by a name in a nested declarative region can still be found if qualified by the name
of its concept map followed by the :: operator.

3.5 Program and linkage [basic.link]

5 In addition, a member function, static data member, a named class or enumeration of class scope, or an unnamed class
or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for
linkage purposes (??), has external linkage if the name of the class has external linkage. An explicitly-defined associated
function definition (14.9.2.1) has external linkage.

10

Chapter 5 Expressions [expr]

Add the folllowing new paragraph to [expr]:

13 The address of a member of a concept or concept map (14.9.2) shall not be taken, either implicitly or explicitly.

5.1 Primary expressions [expr.prim]

7 An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-function-ids, see
??; for conversion-function-ids, see ??; for template-ids, see ??. A class-name prefixed by ∼ denotes a destructor; see
12.4. Within the definition of a non-static member function, an identifier that names a non-static member is transformed
to a class member access expression (??). — end note] The type of the expression is the type of the identifier. The
result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable, or data member.

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: template-id

nested-name-specifier:
type-name ::
namespace-name ::
nested-name-specifier identifier ::
nested-name-specifier templateopt template-id ::

nested-name-specifieropt concept-id ::

5.1 Primary expressions Expressions 12

12

Chapter 7 Declarations [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
concept-definition
concept-map-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration
alias-declaration

alias-declaration:
using identifier = type-id

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

static_assert-declaration:
static_assert (constant-expression , string-literal) ;

[Note: asm-definitions are described in ??, and linkage-specifications are described in ??. Function-definitions are de-
scribed in ?? and template-declarations are described in clause 14. Namespace-definitions are described in ??, concept-
definitions are described in 14.9.1, concept-map-definitions are described in 14.9.2, using-declarations are described in
?? and using-directives are described in ??. — end note] The simple-declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in ?? and declarators,
the components of an init-declarator-list, are described in clause ??.

Declarations 14

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a function or
defines a class, concept, concept map, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances in clause 7
about components in, of, or contained by a declaration or subcomponent thereof refer only to those components of the
declaration that are not nested within scopes nested within the declaration.

14

Chapter 9 Classes [class]

9.2 Class members [class.mem]
member-specification:

member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration:
member-requirementopt decl-specifier-seqopt member-declarator-listopt ;

member-requirementopt function-definition ;opt
::opt nested-name-specifier templateopt unqualified-id ;

using-declaration
static_assert-declaration
template-declaration

member-requirement:
requires-clause

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt
declarator constant-initializeropt
identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

Add the following new paragraphs to 9 [class]
19 A non-template member-declaration that contains a member-requirement (14.10.1) is a constrained member and shall

only occur in a class template (14.5.1) or nested class thereof. A constrained member shall be a member function. A
constrained member is treated as a constrained template (14.10).

9.2 Class members Classes 16

16

Chapter 12 Special member functions [special]

12.1 Constructors [class.ctor]

5 A default constructor for a class X is a constructor of class X that can be called without an argument. If there is no user-
declared constructor for class X, and if all of the non-static data members and base classes of X can be default-initialized
([dcl.init]). a default constructor is implicitly declared. An implicitly-declared default constructor is an inline public
member of its class. A default constructor is trivial if it is implicitly-declared and if:

— its class has no virtual functions (??) and no virtual base classes (??), and

— all the direct base classes of its class have trivial default constructors, and

— for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivial
default constructor.

12.4 Destructors [class.dtor]

3 If a class has no user-declared destructor, a destructor is declared implicitly. An implicitly-declared destructor is an
inline public member of its class. If any non-static data member of class type or any base class has an inaccessible
or deleted destructor, the implicitly-declared destructor is a deleted function ([dcl.fct.def]). A destructor is trivial if it is
implicitly-declared and if:

— all of the direct base classes of its class have trivial destructors and

— for all of the non-static data members of its class that are of class type (or array thereof), each such class has a
trivial destructor.

12.8 Copying class objects [class.copy]

5 The implicitly-declared copy constructor for a class X will have the form

X::X(const X&)

if

— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const B& or const
volatile B&, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class type has a
copy constructor whose first parameter is of type const M& or const volatile M&.1)

1) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue; see ??.

12.8 Copying class objects Special member functions 18

Otherwise, the implicitly declared copy constructor will have the form

X::X(X&)

An implicitly-declared copy constructor is an inline public member of its class. If any of the direct and virtual base
classes of X or any of the non-static members of class type in X have inaccessible or deleted copy constructors, the
implicitly-declared copy constructor is a deleted function ([dcl.fct.def]).

10 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. The implicitly-
declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)

if

— each direct base class B of X has a copy assignment operator whose parameter is of type const B&, const
volatile B& or B, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class type has a
copy assignment operator whose parameter is of type const M&, const volatile M& or M.2)

Otherwise, the implicitly declared copy assignment operator will have the form

X& X::operator=(X&)

The implicitly-declared copy assignment operator for class X has the return type X&; it returns the object for which the
assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy assignment operator is an
inline public member of its class. If any of the direct and virtual base classes of X or any of the non-static members
of class type in X have inaccessible or deleted copy assignment operators; the implicitly-declared copy assignment
operator is a deleted function ([dcl.fct.def]). Because a copy assignment operator is implicitly declared for a class if
not declared by the user, a base class copy assignment operator is always hidden by the copy assignment operator of a
derived class (??). A using-declaration (??) that brings in from a base class an assignment operator with a parameter
type that could be that of a copy-assignment operator for the derived class is not considered an explicit declaration of a
copy-assignment operator and does not suppress the implicit declaration of the derived class copy-assignment operator;
the operator introduced by the using-declaration is hidden by the implicitly-declared copy-assignment operator in the
derived class.

2) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile lvalue; see ??.

18

Chapter 14 Templates [temp]

1 A template defines a family of classesor functions, functions, or concept maps, or an alias for a family of types.

template-declaration:
exportopt late_checkopt template < template-parameter-list > requires-clauseopt declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

The declaration in a template-declaration shall

— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class nested within
a class template, or

— define a member template of a class or class template, or

— be an alias-declaration., or

— define a concept map.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration defines a function,
a class, a concept map, or a static data member.

5 A class template shall not have the same name as any other template, class, concept, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.5). Except that a function template
can be overloaded either by (non-template) functions with the same name or by other function templates with the same
name (??), a template name declared in namespace scope or in class scope shall be unique in that scope.

Add the following new paragraphs to [temp]:
12 A template-declaration with a requires-clause that does not contain the late_check keyword is a constrained template;

see 14.10. The requires-clause specifies template requirements (14.10.1).

13 A template-declaration with a requires-clause may contain the late_check keyword. Such a template is said to be
late-checked. Late-checked templates are described in 14.10.4.

14.1 Template parameters [temp.param]

1 The syntax for template-parameters is:

14.4 Type equivalence Templates 20

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class ...opt identifieropt
class identifieropt = type-id
typename ...opt identifieropt
typename identifieropt = type-id
template < template-parameter-list > class ...opt identifieropt
template < template-parameter-list > class identifieropt = id-expression
::opt nested-name-specifieropt concept-name ...opt identifieropt
::opt nested-name-specifieropt concept-name identifieropt = type-id
::opt nested-name-specifieropt concept-name ...opt identifier < template-argument-listopt >

::opt nested-name-specifieropt concept-name identifier < template-argument-listopt > = type-id

Add the following new paragraph to 14.1 [temp.param]
18 A type-parameter declared with a concept-name is a template type parameter that specifies a template requirement

(14.10.1) using the simple form of template requirements. A template type parameter written ::opt nested-name-specifieropt

C T, where C is a concept-name, is equivalent to a template type parameter written as typename T with the template
requirement ::opt nested-name-specifieropt C<T> added to the requirements clause (14.10.1). A template type parameter
written ::opt nested-name-specifieropt C T<T2, T3, ..., TN>, is equivalent to a template type parameter written as typename
T with the template requirement ::opt nested-name-specifieropt C<T, T2, T3, ..., TN> added to the requirements clause. The
first concept parameter of concept C shall be a type parameter, and all concept parameters not otherwise specified shall
have default values. [Example:

concept C<typename T> { ... }

concept D<typename T, typename U, typename V = U> { ... }

template<C T, D P<T>> void f(T, P);

// equivalent to
template<class T, class P> requires C<T> && D<P, T, T> void f(T, P);

— end example]

When the type-parameter is a template type parameter pack, the equivalent requirement is a pack expansion (14.5.3).
[Example:

concept C<typename T> { }

template<C... Args> void g(Args const&...);

// equivalent to
template<typename... Args> requires C<Args>... void g(Args const&...);

— end example]

14.4 Type equivalence [temp.type]

Add the following new paragraph to 14.4 [temp.type]
2 In a constrained template (14.10), two types are the same type if some same-type requirement makes them equivalent

20

21 Templates 14.5 Template declarations

(14.10.1).

14.5 Template declarations [temp.decls]

14.5.1 Class templates [temp.class]

Add the following new paragraph to 14.5.1 [temp.class]
5 A constrained member (9.2) in a class template is only declared in instantiations in which its requirements clause

(14.10.1) is satisfied. If there exist multiple overloads of the constrained member with identical signatures, ignoring
the requirements clause, only the most specialized overload, as determined by partial ordering of function templates
(14.5.6.1), will be declared in the instantiation. If partial ordering results in more than one overload, a deleted function
with the given signature will be declared in the instantiation. [Example:

auto concept LessThanComparable<typename T> {

bool operator<(T, T);

}

concept Radix<T> : LessThanComparable<T> { /∗ ... ∗/ }

template<typename T>

class list {

requires LessThanComparable<T> void sort(); // #1
requires Radix<T> void sort(); // #2

}

struct X { };

concept_map Radix<int> { /∗ ... ∗/ }

void f(list<float> lf, list<int> li, list<X> lX)

{

lf.sort(); // okay: LessThanComparable<float> implicitly defined, calls #1
li.sort(); // okay: calls #2, which is more specialized than #1
lX.sort(); // error: no ’sort’ member in list<X>

}

— end example]

14.5.3 Variadic templates [temp.variadic]

1 A template parameter pack is a template parameter that accepts zero or more template arguments. [Example:

template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments
Tuple<int> t1; // Types contains one argument: int
Tuple<int, float> t2; // Types contains two arguments: int and float

Tuple<0> eror; // error: 0 is not a type

— end example]

[Note: a template parameter pack can also occur in a concept parameter list (14.9.1). [Example:

21

14.5 Template declarations Templates 22

auto concept Callable<typename F, typename... Args> {

typename result_type;

result_type operator()(F&, Args...);

}

— end example] — end note]

4 A pack expansion is a sequence of tokens that names one or more parameter packs, followed by an ellipsis. The sequence
of tokens is called the pattern of the expansion; its syntax depends on the context in which the expansion occurs. Pack
expansions can occur in the following contexts:

— In an expression-list (??); the pattern is an assignment-expression.

— In an initializer-list (??); the pattern is an initializer-clause.

— In a base-specifier-list (??); the pattern is a base-specifier.

— In a mem-initializer-list (??); the pattern is a mem-initializer.

— In a template-argument-list (??); the pattern is a template-argument.

— In an exception-specification (??); the pattern is a type-id.

— In a requirement-list (14.10.1); the pattern is a requirement.

6 The instantiation of an expansion produces a comma-separated list E1,⊕ E2,⊕ ...,⊕ EN , where N is the number of ele-
ments in the pack expansion parameters and ⊕ is the syntactically-appropriate separator for the list. Each Ei is generated
by instantiating the pattern and replacing each pack expansion parameter with its ith element. All of the Ei become
elements in the enclosing list. [Note: The variety of list varies with the context: expression-list, base-specifier-list,
template-argument-list, requirement-list, etc. — end note]

14.5.5 Class template partial specializations [temp.class.spec]

9 Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the partial special-
ization except when the argument expression is a simple identifier. [Example:

template <int I, int J> struct A {};

template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};

template <int I> struct B<I, I> {}; // OK

— end example]

— The type of a template parameter corresponding to a specialized non-type argument shall not be dependent on a
parameter of the specialization. [Example:

template <class T, T t> struct C {};

template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};

22

23 Templates 14.5 Template declarations

int array[5];

template< int X > class A<X,&array> { }; // error

— end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary template,
unless the specialization contains a requirements clause that is more specific (14.5.6.1) than the primary template’s
requirements clause. [Example:

concept Hashable<typename T> { int hash(T); }

template<typename T> class X { /∗ ... ∗/ }; // #6
template<typename T> requires Hashable<T> class X<T> { /∗ ... ∗/ }; //#7, okay

— end example]

The template parameter list of a specialization shall not contain default template argument values.3)

— An argument shall not contain an unexpanded parameter pack. If an argument is a pack expansion (14.5.3), it
shall be the last argument in the template argument list.

10 The requirements clause of a primary class template is implicitly propagated (14.10.1.1) to its class template partial
specializations. [Example:

concept LessThanComparable<typename T> { /∗ ... ∗/ }

concept Hashable<typename T> { /∗ ... ∗/ }

template<typename T> requires LessThanComparable<T> class Y { /∗ ... ∗/ };

template<typename T>

requires Hashable<T> // same as requires LessThanComparable<T> && Hashable<T>
class Y<T> { /∗ ... ∗/ };

— end example]

14.5.5.1 Matching of class template partial specializations [temp.class.spec.match]

2 A partial specialization matches a given actual template argument list if the template arguments of the partial special-
ization can be deduced from the actual template argument list (14.8.2) and the deduced template arguments satisfy the
requirements in the partial specialization’s requirements clause, if any. [Example:

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

concept_map Hashable<int> { /∗ ... ∗/ }

struct Y { };

3) There is no way in which they could be used.

23

14.5 Template declarations Templates 24

X<int> x1; // uses #7
X<Y> x2; // uses #6

— end example]

4 In a type name that refers to a class template specialization, (e.g., A<int, int, 1>) the argument list must match
the template parameter list of the primary template. If the primary template has a requirements clause, the arguments
shall satisfy the requirements of the primary template. The template arguments of a specialization are deduced from the
arguments of the primary template.

14.5.5.2 Partial ordering of class template specializations [temp.class.order]

2 [Example:

concept Con1<typename T> { }

concept Con2<typename T> : Con1<T> { }

template<int I, int J, class T> class X { };

template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2
template<int I, int J, class T> requires Con1<T> class X<I, J, T>; // #3

template<int I, int J, class T> requires Con2<T> class X<I, J, T>; // #4

template<int I, int J> void f(X<I, J, int>); // #A
template<int I> void f(X<I, I, int>); // #B
template<int I, int J, class T> requires Con1<T> void f(X<I, J, T>); // C

template<int I, int J, class T> requires Con2<T> void f(X<I, J, T>); // D

The partial specialization #2 is more specialized than the partial specialization #1 because the function template #B
is more specialized than the function template #A according to the ordering rules for function templates. The partial
specialization #4 is more specialized than the partial specialization #3 because the function template D is more specialized
than the function template C according to the ordering rules for function templates. — end example]

14.5.6 Function templates [temp.fct]

7 Two function templates are equivalent if they are declared in the same scope, have the same name, have identical tem-
plate parameter lists, have identical requirements clauses, and have return types and parameter lists that are equivalent
using the rules described above to compare expressions involving template parameters. Two function templates are
functionally equivalent if they are equivalent except that one or more expressions that involve template parameters in
the return types and parameter lists are functionally equivalent using the rules described above to compare expressions
involving template parameters. If a program contains declarations of function templates that are functionally equivalent
but not equivalent, the program is ill-formed; no diagnostic is required.

14.5.6.1 Partial ordering of function templates [temp.func.order]

2 Partial ordering selects which of two function templates is more specialized than the other by transforming each template
in turn (see next paragraph) and performing template argument deduction using the function parameter types, or in the
case of a conversion function the return type. If template argument deduction succeeds, the deduced arguments are
used to determine if the requirements of the template are satisfied. The deduction process determines whether one of
the templates is more specialized than the other. If so, the more specialized template is the one chosen by the partial
ordering process.

24

25 Templates 14.5 Template declarations

3 To produce the transformed template, for each type, non-type, or template template parameter (including template
parameter packs thereof) synthesize a unique type, value, or class template respectively and substitute it for each occur-
rence of that parameter in the function type of the template. When the template is a constrained template, the unique
type is an archetype and concept maps for each of the requirements stated in or implied by its requirements clause are
also synthesized; see 14.10. [Note: because the unique types are archetypes, two template type parameters may share
the same archetype due to same-type constraints. — end note]

4 Using the transformed function template’s function parameter list, or in the case of a conversion function its transformed
return type, perform type deduction against the function parameter list (or return type) of the other function. The
mechanism for performing these deductions is given in ??.

[Example:

template<class T> struct A { A(); };

template<class T> void f(T);

template<class T> void f(T*);

template<class T> void f(const T*);

template<class T> void g(T);

template<class T> void g(T&);

template<class T> void h(const T&);

template<class T> void h(A<T>&);

void m() {

const int *p;

f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;

g(x); // Ambiguous: g(T) or g(T&)
A<int> z;

h(z); // overload resolution selects h(A<T>&)
const A<int> z2;

h(z2); // h(const T&) is called because h(A<T>&) is not callable
}

— end example]

If the signatures of two function templates are identical ignoring the requirements clause, if any, partial ordering of
function templates compares the requirements clauses. If one of the function templates has a requirements clause
and the other does not, the function template with a requirements clause is more specialized. If both templates have
requirements clauses, partial ordering determines whether the transformed function type (with its synthesized concept
maps, 14.10.2) satisfies the requirements in the other template’s requirements clause. [Example:

template<class T> struct A { A(); };

concept C<typename T> { }

concept D<typename T> : C<T> { }

concept_map C<int*> { }

concept_map D<float> { }

template<typename T> concept_map D<A<T>> { }

25

14.5 Template declarations Templates 26

template<class T> requires C<T> void f(T&) { } // #1
template<class T> requires D<T> void f(T&) { } // #2
template<class T> requires C<A<T>> void f(A<T>&) { } // #3

void m() {

int *p;

f(p); // #1 is called because #2 and #3 are not callable
float x;

f(x); // #2 is called because #3 is not callable and #2 is more specialized than #1
A<int> z;

f(z); // #3 is called because partial ordering based on requirements clauses does not come into effect

}

— end example]

Add the following new subsection to Template declarations [temp.decls]

14.5.8 Concept map templates [temp.concept.map]

1 A concept map template defines an unbounded set of concept maps with a common set of associated function, associated
type, and associated template definitions. [Example:

concept F<typename T> {

typename type;

type f(T);

}

template<typename T>

concept_map F<T*> {

typedef T& type;

T& f(T*);

}

— end example]

2 A concept map template not containing the late_check keyword is a constrained template (14.10) [Note: a concept
map template may be a constrained template even if it does not have a requirements clause. — end note]

3 Within the template-argument-list of the concept-id in a concept map template (including nested template argument
lists), the following restrictions apply:

— A non-type argument expression shall not involve a template parameter of the concept map except when the
argument expression is a simple identifier.

— The type of a template parameter corresponding to a non-type argument shall not be dependent on a parameter of
the concept map.

— The template parameter list of a concept map template shall not contain default template argument values.4)

4) There is no way in which they could be used.

26

27 Templates 14.5 Template declarations

4 When a particular concept map is required, concept map matching determines whether a particular concept map template
can be used. Concept map matching matches the concept arguments in the concept-id to the concept arguments in the
concept map template, using matching of class template partial specializations (14.5.5.1).

5 If more than one concept map template matches a specific concept-id, partial ordering of concept map templates proceeds
as partial ordering of class template specializations (14.5.5.2).

6 A concept map template that is not a late-checked template (14.10.4) shall satisfy the requirements of its corresponding
concept (14.9.2) at the time of definition of the concept map template. [Example:

concept F<typename T> {

void f(T);

}

template<typename T> struct X;

template<typename T>

concept_map F<X<T>> { } // error: requirement for f(X<T>) not satisfied

template<F T> void f(X<T>); // #1

template<F T>

concept_map F<X<T>> { } // okay: uses #1 to satisfy requirement for f(X<T>)

— end example]

7 If the definition of a concept map template instantiates a primary class template or a class template partial specialization
(14.5.5) with template arguments that contain one or more archetypes (14.10.2), and instantiation of the concept map
template results in a different specialization of that class template with an incompatible definition, the program is ill-
formed. The specialization is considered to have an incompatible definition if the specialization’s definition causes a
different definition of any associated type or associated template in the concept map, if its definition causes any of
the associated function definitions to be ill-formed, or if the resulting concept map fails to satisfy the axioms of the
corresponding concept. [Example:

concept Stack<typename X> {

typename value_type;

value_type& top(X&);

// ...
}

template<typename T> struct dynarray {

T& top();

}

template<> struct dynarray<bool> {

bool top();

}

template<typename T>

concept_map Stack<dynarray<T>> {

typedef T value_type;

27

14.6 Name resolution Templates 28

T& top(dynarray<T>& x) { return x.top(); }

}

template<Stack X>

void f(X& x) {

X::value_type& t = top(x);

}

void g(dynarray<int>& x1, dynarray<bool>& x2) {

f(x1); // okay
f(x2); // error: Stack<dynarray<bool> > uses the dynarray<bool> class specialization

// rather than the dynarray primary class template, and the two
// have incompatible signatures for top()

}

— end example]

8 A concept map template shall be declared before the first use of a concept map that would make use of the concept
map template as the result of an implicit or explicit instantiation in every translation unit in which such a use occurs; no
diagnostic is required.

14.6 Name resolution [temp.res]

No changes in this section; it is here only to allow cross-references

14.6.2 Dependent names [temp.dep]

14.6.2.1 Dependent types [temp.dep.type]

14.6.2.2 Type-dependent expressions [temp.dep.expr]

14.6.2.3 Value-dependent expressions [temp.dep.constexpr]

14.6.2.4 Dependent template arguments [temp.dep.temp]

14.6.3 Non-dependent names [temp.nondep]

1 Non-dependent names used in a template definition are found using the usual name lookup and bound at the point they
are used. [Example:

void g(double);

void h();

template<class T> class Z {

public:

void f() {

g(1); // calls g(double)
h++; // ill-formed: cannot increment function;

// this could be diagnosed either here or
// at the point of instantiation

28

29 Templates 14.7 Template instantiation and specialization

}

};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

— end example]

Add the following new paragraph to Non-dependent names [temp.nondep]
2 [Note: if a template contains a requirements clause, name lookup of non-dependent names in the template definition can

find the names of associated functions in the requirements scope (3.3.8). — end note]

14.7 Template instantiation and specialization [temp.spec]

1 The act of instantiating a function, a class, a concept map, a member of a class template or a member template is referred
to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from a class
template is called an instantiated class. A concept map instantiated from a concept map template is called an instantiated
concept map. A member function, a member class, or a static data member of a class template instantiated from the
member definition of the class template is called, respectively, an instantiated member function, member class or static
data member. A member function instantiated from a member function template is called an instantiated member
function. A member class instantiated from a member class template is called an instantiated member class.

14.7.1 Implicit instantiation [temp.inst]

5 If the overload resolution process can determine the correct function to call without instantiating a class template defi-
nition or concept map template definition, it is unspecified whether that instantiation actually takes place. [Example:

template <class T> struct S {

operator int();

};

void f(int);

void f(S<int>&);

void f(S<float>);

void g(S<int>& sr) {

f(sr); // instantiation of S<int> allowed but not required
// instantiation of S<float> allowed but not required

};

— end example]

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual member func-
tion, a member class or a static data member of a class template that does not require instantiation. [Note: because the
instantiation of a concept map template has no visible side effects, an implementation is permitted to instantiate concept
map templates that do not require instantiation, so long as instantiation of an ill-formed concept map template does
not make a well-formed program ill-formed. — end note] It is unspecified whether or not an implementation implicitly
instantiates a virtual member function of a class template if the virtual member function would not otherwise be instanti-
ated. The use of a template specialization in a default argument shall not cause the template to be implicitly instantiated

29

14.7 Template instantiation and specialization Templates 30

except that a class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes specializations in the default argument to be
implicitly instantiated.

10 Implicitly instantiated class, concept map, and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in the namespace
where the enclosing class template is defined. Implicitly instantiated member templates are placed in the namespace
where the enclosing class or class template is defined. [Example:

namespace N {

template<class T> class List {

public:

T* get();

// ...
};

}

template<class K, class V> class Map {

N::List<V> lt;

V get(K);

// ...
};

void g(Map<char*,int>& m)

{

int i = m.get("Nicholas");

// ...
}

a call of lt.get() from Map<char*,int>::get() would place List<int>::get() in the namespace N rather than
in the global namespace. — end example]

Add the following new paragraph to [temp.inst]
15 Unless a concept map specialization has been explicitly defined, the concept map is implicitly instantiated when the

concept map is referenced in a context that requires the concept map definition, either to satisfy a concept requirement
(14.10.1) or when name lookup refers to a concept map member.

14.7.2 Explicit instantiation [temp.explicit]

1 A class, a concept map, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated from the member
definition associated with its class template.

14.7.3 Explicit specialization [temp.expl.spec]

Add the following new paragraph to [temp.expl.spec]:

23 The template arguments provided for an explicit specialization shall satify the requirement clause of the primary tem-
plate. [Example:

concept C<typename T> { }

concept_map C<float> { }

30

31 Templates 14.8 Function template specializations

template<typename T> requires C<T> void f(T);

template<> void f<float>(float); // okay: concept_map C<float> satisfies requirement
template<> void f<int>(int); // ill-formed: no concept map satisfies the requirement for C<int>

— end example]

14.8 Function template specializations [temp.fct.spec]

14.8.2 Template argument deduction [temp.deduct]

2 When an explicit template argument list is specified, the template arguments must be compatible with the template
parameter list and must result in a valid function type as described below; otherwise type deduction fails. Specifically,
the following steps are performed when evaluating an explicitly specified template argument list with respect to a given
function template:

— The specified template arguments must match the template parameters in kind (i.e., type, non-type, template).
There must not be more arguments than there are parameters, unless at least one parameter is a template parameter
pack. Otherwise type deduction fails.

— Non-type arguments must match the types of the corresponding non-type template parameters, or must be con-
vertible to the types of the corresponding non-type parameters as specified in ??, otherwise type deduction fails.

— All references in the function type and requirements clause of the function template to the corresponding template
parameters are replaced by the specified template argument values. If a substitution in a template parameter or in
the function type of the function template results in an invalid type, type deduction fails. [Note: The equivalent
substitution in exception specifications is done only when the function is instantiated, at which point a program is
ill-formed if the substitution results in an invalid type.] Type deduction may fail for the following reasons:

— Attempting to create an array with an element type that is void, a function type, a reference type, or an
abstract class type, or attempting to create an array with a size that is zero or negative. [Example:

template <class T> int f(T[5]);

int I = f<int>(0);

int j = f<void>(0); // invalid array

— end example]

— Attempting to use a type that is not a class type in a qualified name. [Example:

template <class T> int f(typename T::B*);

int i = f<int>(0);

— end example]

— Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain the
specified member, or

— the specified member is not a type where a type is required, or

— the specified member is not a template where a template is required, or

31

14.8 Function template specializations Templates 32

— the specified member is not a non-type where a non-type is required., or

— the member is an associated type or template but no concept map has been defined, either implicitly
(14.9.4) or explicitly (14.9.2).

[Example:

template <int I> struct X { };

template <template <class T> class> struct Z { };

template <class T> void f(typename T::Y*){}

template <class T> void g(X<T::N>*){}

template <class T> void h(Z<T::template TT>*){}

struct A {};

struct B { int Y; };

struct C {

typedef int N;

};

struct D {

typedef int TT;

};

int main()

{

// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y
f(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

}

— end example]

— Attempting to create a pointer to reference type.

— Attempting to create a reference to void.

— Attempting to create “pointer to member of T” when T is not a class type. [Example:

template <class T> int f(int T::*);

int i = f<int>(0);

— end example]

— Attempting to give an invalid type to a non-type template parameter. [Example:

template <class T, T> struct S {};

template <class T> int f(S<T, T()>*);

struct X {};

int i0 = f<X>(0);

— end example]

— Attempting to perform an invalid conversion in either a template argument expression, or an expression used
in the function declaration. [Example:

32

33 Templates 14.9 Concepts

template <class T, T*> int f(int);int i2 = f<int,1>(0); // can’t conv 1 to int*

— end example]

— Attempting to create a function type in which a parameter has a type of void.

— Attempting to instantiate a pack expansion containing multiple parameters packs whose lengths are different.

— Attempting to use a class or function template with template arguments that do not satisfy the requirements
in the template’s requirements clause. [Example:

concept C<typename T> { /∗ ... ∗/ }

template<typename T> requires C<T> class X { /∗ ... ∗/ };

template<typename T> int f(X<T>*);

int i0 = f<int>(0);

— end example]

— If the specified template arguments do not satisfy the requirements of the template, type deduction fails.

Add the following new sections to 14 [temp]:

14.9 Concepts [concept]

1 Concepts describe an abstract interface that can be used to constrain templates (14.10). Concepts state certain syntactic
and semantic requirements (14.9.1) on a set of template type, non-type, and template parameters.

concept-id:
concept-name < template-argument-listopt >

concept-name:
identifier

2 A concept-id refers to a specific concept map (14.9.2) by its concept-name and a specific set of concept arguments.
[Example: CopyConstructible<int> is a concept-id if name lookup (3.4) determines that the identifier CopyCon-
structible refers to a concept-name. — end example]

14.9.1 Concept definitions [concept.def]

1 The grammar for a concept-definition is:

concept-definition:
autoopt concept identifier < template-parameter-list > refinement-clauseopt concept-body ;opt

2 Concept-definitions are used to make concept-names. A concept-name is inserted into the scope in which it is declared
immediately after the concept-name is seen. A concept is considered defined after the closing brace of its concept-body
has been seen.

3 Concepts shall only be defined at namespace or global scope.

33

14.9 Concepts Templates 34

4 A concept with a preceding auto is an implicit concept (14.9.4). A concept without a preceding auto is an explicit
concept.

5 The template-parameter-list of a concept-definition shall not contain any requirements specified in the simple form
(14.10.1).

6

concept-body:
{ concept-member-specificationopt }

concept-member-specification:
concept-member concept-member-specificationopt

concept-member:
associated-function
type-parameter ;
associated-requirements
axiom-definition

The body of a concept contains associated functions (14.9.1.1), associated types (14.9.1.2), associated templates, as-
sociated requirements (14.9.1.3), and axioms (14.9.1.3) that describe the behavior of the concept parameters in its
template-parameter-list.

14.9.1.1 Associated functions [concept.fct]

1 Associated functions describe functions, member functions, or operators that describe the functional behavior of the
concept arguments and associated types and templates (14.9.1.2). Concept maps (14.9.2) for a given concept must
provide, either implicitly (14.9.2.3) or explicitly (14.9.2.1), definitions for each associated function in the concept.

associated-function:
simple-declaration
function-definition
template-declaration

2 An associated-function shall be the declaration or definition of a function, a function template, or a member function
or member function template for which the nested-name-specifier in the declarator of the function names a template
parameter of the enclosing concept. An associated function shall not be inline or a friend function. An associated
function shall not contain an exception-specification ([except.spec]).

3 Associated functions can specify requirements for non-member functions and operators. [Example:

concept Monoid<typename T> {

T operator+(T, T);

T identity();

}

— end example]

4 With the exception of the assignment operator ([over.ass]), associated functions shall specify requirements for operators
as non-member functions. [Note: This restriction applies even to the operators (), [], and ->, which can otherwise
only be overloaded via non-static member functions ([over.oper]): [Example:

concept Convertible<typename T, typename U> {

34

35 Templates 14.9 Concepts

operator U(T); // okay: conversion from T to U
T::operator U*() const; // error: cannot specify requirement for member operator

}

— end example] — end note]

5 Associated functions can specify requirements for static or non-static member functions, constructors and destructors.
[Example:

concept Container<typename X> {

X::X(int n);

X::~X();

bool X::empty() const;

}

— end example]

6 Associated functions can specify requirements for function templates and member function templates. [Example:

concept Sequence<typename X> {

typename value_type;

template<InputIterator Iter>

requires Convertible<InputIterator<Iter>::value_type, Sequence<X>::value_type>

X::X(Iter first, Iter last);

};

— end example]

7 Concepts may contain overloaded associated functions (clause [over]). [Example:

concept C<typename X> {

void f(X);

void f(X, X); // okay
int f(X, X); // error: differs only by return type

};

— end example]

8 Associated non-member functions may have a default implementation. This implementation will be instantiated when
implicit definition of an implementation (14.9.4) for the associated function (14.9.2.1) fails. A default implementation
of an associated function is a constrained template (14.10). [Example:

concept EqualityComparable<typename T> {

bool operator==(T, T);

bool operator!=(T x, T y) { return !(x == y); }

};

class X {};

bool operator==(const X&, const X&);

concept_map EqualityComparable<X> { }; // okay, operator!= uses default

35

14.9 Concepts Templates 36

— end example]

14.9.1.2 Associated types and templates [concept.assoc]

1 Associated types and associated templates are types and templates, respectively, defined in the concept body and used
in the description of the concept.

2 An associated type specifies a type in a concept body. Associated types are typically used to express the parameter and
return types of associated functions. [Example:

concept Callable1<typename F, typename T1> {

typename result_type;

result_type operator()(F, T1);

}

— end example]

3 Associated types and templates may be provided with a default value. The default value will be used to define the
associated type or template when no corresponding definition is provided in a concept map (14.9.2.2). [Example:

concept Iterator<typename Iter> {

typename difference_type = int;

}

concept_map Iterator<int*> { } // okay, difference_type is int

— end example]

4 Associated types and templates may use the simple form to specify requirements (14.10.1) on the associated type or
template. The simple form is equivalent to a declaration of the associated type or template followed by an associated
requirement (14.9.1.3) stated using the general form (14.10.1). [Example:

concept InputIterator<typename Iter> { /∗ ... ∗/ }

concept Container<typename X> {

InputIterator iterator; // same as typename iterator; requires InputIterator<iterator>;

}

— end example]

14.9.1.3 Associated requirements [concept.req]

1 Associated requirements place additional requirements on concept parameters, associated types, and associated tem-
plates. Associated requirements have the same form and behavior as a requirements clause for constrained templates
(14.10).

associated-requirements:
requires-clause ;

[Example:

concept Iterator<typename Iter> {

typename difference_type;

requires SignedIntegral<difference_type>;

}

36

37 Templates 14.9 Concepts

— end example]

14.9.1.4 Axioms [concept.axiom]

1 Axioms allow the expression of the semantic properties of concepts.

axiom-definition:
requires-clauseopt axiom identifier (parameter-declaration-clause) axiom-body

axiom-body:
{ axiom-seqopt }

axiom-seq:
axiom axiom-seqopt

axiom:
expression-statement
if (condition) expression-statement

An axiom-definition defines a new semantic axiom whose name is specified by its identifier. [Example:

concept Semigroup<typename Op, typename T> : CopyConstructible<T> {

T operator()(Op, T, T);

axiom Associativity(Op op, T x, T y, T z) {

op(x, op(y, z)) == op(op(x, y), z);

}

}

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {

T identity_element(Op);

axiom Identity(Op op, T x) {

op(x, identity_element(op)) == x;

op(identity_element(op), x) == x;

}

}

— end example]

2 Within the body of an axiom-definition, equality (==) and inequality (!=) operators are available for each concept type
parameter and associated type T. These implicitly-defined operators have the form:

bool operator==(const T&, const T&);

bool operator!=(const T&, const T&);

[Example:

concept CopyConstructible<typename T> {

T::T(const T&);

axiom CopyEquivalence(T x) {

T(x) == x; // okay, uses implicit ==

37

14.9 Concepts Templates 38

}

}

— end example]

3 Name lookup within an axiom will only find the implicitly-declared == and != operators if the corresponding operation
is not declared as an associated function (14.9.1.1) in the concept, one of the concepts it refines (14.9.3), or in an
associated requirement (14.9.1.3). [Example:

concept EqualityComparable<typename T> {

bool operator==(T, T);

bool operator!=(T, T);

axiom Reflexivity(T x) {

x == x; // okay: refers to EqualityComparable<T>::operator==
}

}

— end example]

The != operator is semantically equivalent to the logical negation of the == operator, whether the == and != operators
are explicitly or implicitly defined.

4 Where axioms state the equality of two expressions, implementations are permitted to replace one expression with the
other. [Example:

template<typename Op, typename T> requires Monoid<Op, T>

T identity(const Op& op, const T& t) {

return op(t, identity_element(op)); // equivalent to “return t;”
}

— end example]

5 Axioms can state conditional semantics using if statements. When the condition can be proven true, and the expression-
statement states the equality of two expressions, implementations are permitted to replace one expression with the other.
[Example:

concept TotalOrder<typename Op, typename T> {

bool operator()(Op, T, T);

axiom Reflexivity(Op op, T x) { op(x, x); }

axiom Antisymmetry(Op op, T x, T y) { if (op(x, y) && op(y, x)) x == y; }

axiom Transitivity(Op op, T x, T y, T z) { if (op(x, y) && op(y, z)) op(x, z) == true; }

}

— end example]

6 An axiom containing a requires-clause only applies when the requirements clause is satisfied. [Example:

concept EqualityComparable2<typename T, typename U = T> {

bool operator==(T, U);

bool operator!=(T, U);

38

39 Templates 14.9 Concepts

requires SameType<T, U> axiom Reflexivity(T x) {

x == x; // okay: T and U have the same type
}

}

— end example]

7 [Note: the intent of axioms is to provide a mechanism to express the semantics of concepts. Such semantic information
can be used for optimization, software verification, software testing, and other program analyses and transformations,
all of which are outside the scope of this International Standard. — end note]

14.9.2 Concept maps [concept.map]

1 The grammar for a concept-map-definition is:

concept-map-definition:
concept_map concept-id { concept-map-member-specificationopt } ;opt

concept-map-member-specification:
concept-map-member concept-map-member-specificationopt

concept-map-member:
simple-declaration
function-definition
template-declaration

2 Concept maps describe how a set of template arguments satisfy the requirements stated in the body of a concept definition
(14.9.1). Whenever a constrained template (14.10) is named, there shall be a concept map corresponding to each
concept-id requirement in the requirements clause. This concept map may be written explicitly (14.9.2), instantiated
from a concept map template (14.5.8), or generated implicitly (14.9.4). [Example:

class student_record {

public:

string id;

string name;

string address;

};

concept EqualityComparable<typename T> {

bool operator==(T, T);

}

concept_map EqualityComparable<student_record> {

bool operator==(const student_record& a, const student_record& b) {

return a.id == b.id;

}

};

template<typename T> requires EqualityComparable<T> void f(T);

f(student_record()); // okay, have concept_map EqualityComparable<student_record>

39

14.9 Concepts Templates 40

— end example]

3 Concept maps shall provide, either implicitly (14.9.2.3) or explicitly (14.9.2.1, 14.9.2.2), definitions for every associated
function (14.9.1.1), associated type (14.9.1.2), and associated template of the concept named by its concept-id and any
of its refined concepts (14.9.3). [Example:

concept C<typename T> { T f(T); }

concept_map C<int> {

int f(int); // okay: matches requirement for f in concept C
}

— end example]

4 Concept maps shall be defined in the same namespace as their corresponding concept.

5 Concept maps shall not contain declarations that do not match any requirement in their corresponding concept or its
refined concepts. [Example:

concept C<typename T> { }

concept_map C<int> {

int f(int); // error: no requirement for function f
}

— end example]

6 At the point of definition of a concept map, all associated requirements (14.9.1.3) of the corresponding concept and its
refined concepts (14.9.3) shall be satisfied. [Example:

concept SignedIntegral<typename T> { /∗ ... ∗/ }

concept ForwardIterator<typename Iter> {

typename difference_type;

requires SignedIntegral<difference_type>;

}

concept_map SignedIntegral<ptrdiff_t> { };

concept_map ForwardIterator<int*> {

typedef ptrdiff_t difference_type;

} // okay: there exists a concept_map SignedIntegral<ptrdiff_t>

class file_iterator { ... };

concept_map ForwardIterator<file_iterator> {

typedef long difference_type;

} // error: no concept_map SignedIntegral<long> if ptrdiff_t is not long

— end example]

7 If a concept map is provided for a particular concept-id, then that concept map shall be defined before the corresponding
concept-id is required. If the introduction of a concept map changes a previous result (e.g., in template argument

40

41 Templates 14.9 Concepts

deduction (14.8.2)), the program is ill-formed, no diagnostic required. Concept map templates must be instantiated if
doing so would affect the semantics of the program.

8 The implicit or explicit definition of a concept map asserts that the axioms (14.9.1.4) stated in its corresponding concept
(and the refinements of that concept) hold. [Note: axioms may be used for transformation and optimization of programs
without verifying their correctness. — end note]

14.9.2.1 Associated function definitions [concept.map.fct]

1 Associated non-member function requirements (14.9.1.1) are satisfied by function definitions in the body of a concept
map. These definitions can be used to adapt the syntax of the concept arguments to the syntax expected by the concept.
[Example:

concept Stack<typename S> {

typename value_type;

bool empty(S);

void push(S&, value_type);

void pop(S&);

value_type& top(S&);

}

// Make a vector behave like a stack
template<Regular T>

concept_map Stack<std::vector<T> > {

typedef T value_type;

bool empty(std::vector<T> vec) { return vec.empty(); }

void push(std::vector<T>& vec, value_type value) { vec.push_back(value); }

void pop(std::vector<T>& vec) { vec.pop_back(); }

value_type& top(std::vector<T>& vec) { return vec.back(); }

}

— end example]

2 A function declaration in a concept map matches an associated function of the same name when the signature of the
function declaration is equivalent to the signature of the associated function after substitution of concept arguments and
transformation of parameter types to references, described below.

3 All arguments to associated function definitions are passed by reference. Given the declared type P of a parameter in a
function declaration in a concept map (whether it is declared implicitly 14.9.2.3 or explicitly), the actual type Q of that
parameter is P, if P is a reference, or P const&, if P is not a reference. [Example:

concept C<typename X> {

void f(X);

};

struct Y {};

concept_map C<Y> {

void f(const Y&); // okay: matches requirement for f
};

concept_map C<Y&&> {

41

14.9 Concepts Templates 42

void f(Y&&); // okay: matches requirement for f
};

struct Z {};

concept_map C<Z> {

void f(Z); // okay: “Z” parameter becomes “const Z&” parameter, matches requirement for f
};

— end example]

4 Functions declared within a concept map may be defined outside the concept map. [Example:

// c.h
concept C<typename X> {

void f(X);

};

concept_map C<int> {

void f(int);

};

// c.cpp
void C<int>::f(int) {

// ...
}

— end example]

5 Function templates declared within a concept map match an associated function template with the same signature.
[Example:

concept InputIterator<typename Iter> {

typename value_type;

// ...
}

concept C<typename X> {

typename value_type;

template<InputIterator Iter>

requires Convertible<Iter::value_type, value_type>

void assign(X&, Iter first, Iter last); // #1
}

concept_map C<MyContainer> {

typedef int value_type;

template<InputIterator Iter>

requires Convertible<Iter::value_type, int>

void assign(MyContainer&, Iter first, Iter last) { ... } // matches #1
}

42

43 Templates 14.9 Concepts

— end example]

6 Associated member function and member function template requirements (14.9.1.1), including constructors and destruc-
tors, are satisfied by member functions or member function templates in the corresponding concept map argument (call
it X). Let parm1, parm2, ..., parmN be the parameters of the associated member function or member function template
and parm1′, parm2′, ..., parmN′ be expressions, where each parmi′ is an id-expression naming parmi. If the type of
parmi is an rvalue reference, then parmi′ is an rvalue, otherwise, parmi′ is an lvalue; then

— if the associated member function or member function template requirement is a constructor requirement, the
requirement is satisfied if X can be direct-initialized with arguments parm1′, parm2′, ..., parmN′, [Example:

concept IntConstructible<typename T> {

T::T(int);

}

concept_map IntConstructible<float> { } // okay: float can be initialized with an int

struct X { X(long); };

concept_map IntConstructible<X> { } // okay: X has a constructor that can accept an int (converted to a long)

— end example]

— if the associated member function requirement is a destructor requirement, the requirement is satisfied if X is a
built-in type or has a public, non-deleted destructor, [Example:

concept Destructible<typename T> {

T::~T();

}

concept_map Destructible<int> { } // okay: int is a built-in type

struct X { };

concept_map Destructible<X> { } // okay: X has implicitly-declared, public destructor

struct Y { private: ~Y(); };

concept_map Destructible<Y> { } // error: Y’s destructor is inaccessible

— end example]

— otherwise, the associated member function or member function template requirement requires a member function
or member function template f, respectively. If x is an lvalue of type cv X, where cv are the cv-qualifiers on
the associated member function requirement, the requirement is satisfied if the expression x.f(parm1′, parm2′,
..., parmN′) is well-formed and its type is implicitly convertible to the return type of the associated member
function or member function template requirement. [Example:

concept MemberSwap<typename T> {

void T::swap(T&);

}

struct X {

X& swap(X&);

43

14.9 Concepts Templates 44

};

concept_map MemberSwap<X> { } // okay: X has a member function swap and its return type is convertible to void

— end example]

14.9.2.2 Associated type and template definitions [concept.map.assoc]

1 Definitions in the concept map provide types and templates that satisfy requirements for associated types and templates
(14.9.1.2), respectively.

2 Associated type parameter requirements are satisfied by type definitions in the body of a concept map. [Example:

concept ForwardIterator<typename Iter> {

typename difference_type;

}

concept_map ForwardIterator<int*> {

typedef ptrdiff_t difference_type;

}

— end example]

3 Associated template parameter requirements are satisfied by class template definitions or template aliases ([temp.alias])
in the body of the concept map. [Example:

concept Allocator<typename Alloc> {

template<class T> class rebind;

}

template<typename T>

concept_map Allocator<my_allocator<T>> {

template<class U>

class rebind {

public:

typedef my_allocator<U> type;

};

};

— end example]

14.9.2.3 Implicit definitions [concept.map.implicit]

1 Any of the requirements of a concept and its refined concepts (14.9.3) that are not satisfied by the definitions in the body
of a concept map (14.9.2.1, 14.9.2.2) are unsatisfied requirements.

2 Definitions for unsatisfied requirements in a concept map are implicitly defined from the requirements and their default
values as specified by the matching of implicit concepts (14.9.4). If any unsatisfied requirement is not matched by this
process, the concept map is ill-formed.

14.9.3 Concept refinement [concept.refinement]

1 The grammar for a refinement-clause is:

44

45 Templates 14.9 Concepts

refinement-clause:
: refinement-specifier-list

refinement-specifier-list:
refinement-specifier , refinement-specifier-list
refinement-specifier

refinement-specifier:
::opt nested-name-specifieropt concept-id

2 Refinements specify an inheritance relationship among concepts. A concept B named in a refinement-specifier of concept
D is a refined concept of D and D is a refining concept of B. A concept refinement inherits all requirements in the body
of a concept (14.9.1), such that the requirements of the refining concept are a superset of the requirements of the refined
concept. [Note: when a concept D refines a concept B, every set of concept arguments that satisfies the requirements of
D also satisfies the requirements of B. — end note] [Example: In the following example, EquilateralPolygon refines
Polygon. Thus, every EquilateralPolygon is a Polygon, and constrained templates (14.10) that are well-formed
with a Polygon constraint are well-formed when given an EquilateralPolygon.

concept Polygon<typename P> { /∗ ... ∗/ }

concept EquilateralPolygon<typename P> : Polygon<P> { /∗ ... ∗/ }

— end example]

3 The concepts referred to in the refinement clause shall correspond to defined concepts. [Example:

concept C<typename T> : C<vector<T>> {/∗ ... ∗/ } // error: concept C is not defined

— end example]

4 A refinement-specifier in the refinement clause shall not refer to associated types.

5 The template arguments of a refinement-specifier shall refer to at least one of the concept parameters. [Example:

concept InputIterator<typename Iter>

: Incrementable<int> // error: Incrementable<int> uses no concept parameters
{

// ...
}

— end example]

6 Within the definition of a concept, a concept instance (14.10.2) is synthesized for each refinement-specifier in the con-
cept’s refinement-clause (if any).

14.9.3.1 Concept member lookup [concept.member.lookup]

1 Concept member lookup determines the meaning of a name (id-expression) in concept scope (3.3.7). The following steps
define the result of name lookup for a member name f in concept scope C. CR is the set of concept scopes corresponding
to the concepts refined by the concept whose scope is C.

2 If the name f is declared in concept scope C, and f refers to an associated type or template (14.9.1.2), then the result of
name lookup is the associated type or template.

45

14.9 Concepts Templates 46

3 If the name f is declared in concept scope C, and f refers to one or more associated functions (14.9.1.1), then the result
of name lookup is an overload set containing the associated functions in C in addition to the overload sets in each concept
scope in CR for which name lookup of f results in an overload set. [Example:

concept C<typename T> : CopyConstructible<T> {

T f(T); // #1
}

concept D<typename T> : C<T> {

T f(T, T); // #2
}

template<typename T>

requires D<T>

void f(T x)

{

D<T>::f(x); // name lookup finds #1 and #2, overload resolution selects #1
}

— end example]

4 If the name f is not declared in C, name lookup searches for f in the scopes of each of the refined concepts (CR). If name
lookup of f is ambiguous in any concept scope CR, name lookup of f in C is ambiguous. Otherwise, the set of concept
scopes CR′ is a subset of CR containing only those concept scopes for which name lookup finds f. The result of name
lookup for f in C is defined by:

— if CR′ is empty, name lookup of f in C returns no result, or

— if CR′ contains only a single concept scope, name lookup for f on C is the result of name lookup for f in CR′ , or

— if f refers to an overload set in all concept scopes in CR′ , then f refers to an overload set containing all associated
functions from each of these overload sets, or

— if f refers to an associated type in all concept scopes in CR′ , and all of the associated types are equivalent (14.10.1),
the result is the associated type f found first by a depth-first traversal of the refinement clause,

— otherwise, name lookup of f in C is ambiguous.

5 When name lookup in a concept scope C results in an overload set, duplicate associated functions are removed from
the overload set. If more than one associated function in the overload set has the same signature (), the associated
function found first by a depth-first traversal of the refinements of C starting at C will be retained and the other associated
functions will be removed as duplicates. [Example:

concept A<typename T> {

T f(T); // #1a
}

concept B<typename T> {

T f(T); // #1b
T g(T); // #2a

}

46

47 Templates 14.9 Concepts

concept C<typename T> : A<T>, B<T> {

T g(T); // #2b
}

template<typename T>

requires C<T>

void h(T x) {

C<T>::f(x); // overload set contains #1a; #1b was removed as a duplicate
C<T>::g(x); // overload set contains #2b; #2a was removed as a duplicate

}

— end example]

14.9.3.2 Implicit concept maps for refined concepts [concept.implicit.maps]

1 When a concept map is defined for a concept C that has a refinement clause, concept maps for each of the concepts
refined by C are implicitly defined. [Example:

concept A<typename T> { }

concept B<typename T> : A<T> { }

concept_map B<int> { } // implicitly defines concept map A<int>

— end example]

2 When a concept map is implicitly defined for a refined concept, definitions in the concept map can be used to satisfy the
requirements of the refined concept. [Example:

concept C<typename T> {

T f(T);

}

concept D<typename T> : C<T> { }

concept_map D<int> {

int f(int x); // satisfies requirement for C<int>::f
}

— end example]

3 Concept map templates (14.5.8) are implicitly defined only for refinements for which the template parameters of the
original concept map are deducible from the refinement. Concept maps for which the template parameters of the original
concept map are not all deducible shall have been defined either implicitly or explicitly, and associated functions and
parameters for these refined concepts shall not be defined in the original concept map. [Example:

concept Ring<typename AddOp, typename MulOp, typename T>

: Group<AddOp, T>, Monoid<MulOp, T> { /∗ ... ∗/ }

template<Integral T>

concept_map Ring<std::plus<T>, std::multiplies<T>, T> { }

47

14.9 Concepts Templates 48

// okay, implicitly generates:
template<Integral T> concept_map Group<std::plus<T>, T> { }

template<Integral T> concept_map Monoid<std::multiplies<T>, T> { }

template<Integral T, Integral V>

requires MutuallyConvertible<T, V>

concept_map Group<std::plus<T>, V> { }

// okay, used to instead of implicitly-generated Group refinement in the following concept map

template<Integral T, Integral U, Integral V>

requires MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&

MutuallyConvertible<U, V>

concept_map Ring<std::plus<T>, std::multiplies<U>, V> { }

// ill-formed, cannot implicitly define:
template<Integral T, Integral U, Integral V>

requires MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&

MutuallyConvertible<U, V>

concept_map Monoid<std::multiplies<U>, V> { }

— end example]

14.9.4 Implicit concepts [concept.implicit]

1 Concept maps for implicit concepts (i.e., those concepts containing the auto keyword) are implicitly defined when
they are required to satisfy the requirements of a constrained template (14.10), the associated requirements of a concept
(14.9.1.3), or a concept map of a refined concept that cannot be implicitly defined from the concept map for the refining
concept (14.9.3.2). [Example:

auto concept Addable<typename T> {

T::T(const T&);

T operator+(T, T);

}

template<typename T>

requires Addable<T>

T add(T x, T y) {

return x + y;

}

int f(int x, int y) {

return add(x, y); // okay: concept map Addable<int> implicitly defined
}

— end example]

2 The implicit definition of a concept map involves the implicit definition of concept map members for each associated
non-member function (14.9.1.1) and associated type or template (14.9.1.2) requirement, described below. If the im-
plicit definition of a concept map member would produce an invalid definition, or if any of the requirements of the
concept would be unsatisfied by the implicitly-defined concept map (14.9.2), the implicit definition of the concept map

48

49 Templates 14.9 Concepts

fails [Note: failure to implicitly define a concept map does not imply that the program is ill-formed. — end note]
[Example:

auto concept F<typename T> {

void f(T);

}

auto concept G<typename T> {

void g(T);

}

template<typename T> requires F<T> void h(T); // #1
template<typename T> requires G<T> void h(T); // #2

struct X { };

void g(X);

void func(X x) {

h(x); // okay: implicit concept map F<X> fails, causing template argument deduction to fail for #1; calls #2
}

— end example]

3 The implicit concept map member defined for an associated non-member function or function template requirement
(14.9.1.1) has the same signature as the associated function or function template, after the concept map parameters
have been substituted into the associated function or function template [Note: the implicitly-defined function matches
the associated function or function template requirement (14.9.2.1) — end note]. Let parm1, parm2, ..., parmN be
the parameters of the associated function and parm1′, parm2′, ..., parmN′ be expressions, where each parmi′ is an id-
expression naming parmi. If the type of parmi is an rvalue reference, then parmi′ is an rvalue, otherwise, parmi′ is
an lvalue. If the return type of the function is void, the body of the function contains a single expression-statement;
otherwise, the body of the function contains a single return statement. The expression in the expression-statement or
return statement is defined as follows:

— if the associated function or function template requirement is a prefix unary operator Op, the expression is Op
parm1′, or

— if the associated function or function template requirement is a postfix unary operator Op, the expression is parm1′

Op, or

— if the associated function or function template requirement is a binary operator Op, the expression is parm1′ Op
parm2′, or

— if the associated function or function template requirement is the function call operator, the expression is parm1′(parm2′,
parm3′, ..., parmN′),

— otherwise, the associated function or function template requirement is a function or function template (call it f).
The expression is an unqualified call ([expr.call]) to f whose arguments are the parameters parm1′, parm2′, ...,
parmN′.

If the expression is ill-formed, and the associated non-member function requirement has a default implementation
(14.9.1.1), the implicit concept map member is defined by substituting the concept map arguments into the default

49

14.9 Concepts Templates 50

implementation.

4 Implicitly-defined associated function definitions cannot have their addresses taken (5). It is unspecified whether these
functions have linkage. [Note: Implementations are encouraged to optimize away implicitly-defined associated function
definitions, so that the use of constrained templates does not incur any overhead relative to unconstrained templates. —
end note]

5 The implicit concept map member defined for an associated type or template parameter can have its value deduced from
the return type of an associated function requirement defined implicitly (14.9.4) or explicitly (14.9.2.1), using template
argument deduction (14.8.2). Let P be the return type of the associated function requirement after substitution of the
concept arguments specified by the concept map with their concept parameters, and where each undefined associated
type parameter and associated template parameter has been replaced with a newly invented type or template template
parameter, respectively. Let A be the return type of its corresponding function definition in the concept map. The
definitions of the associated parameters are determined using the rules of template argument deduction from a function
call ([temp.deduct.call]), where P is a function template parameter type and A the corresponding argument type. If the
deduction fails, no concept map members are implicitly defined by that associated function definition. If the results
of deduction produced by different associated function definitions result in inconsistent deductions for any associated
type or template, that associated type or template is not implicitly defined by any associated function requirement.
[Example:

auto concept Dereferenceable<typename T> {

typename value_type;

value_type& operator*(T&);

}

template<typename T> requires Dereferenceable<T> void f(T&);

void g(int* x) {

f(x); // okay: Dereferenceable<int*> implicitly defined
// implicitly-defined Dereferenceable<int*>::operator* calls built-in * for integer pointers
// implicitly-defined Dereferenceable<int*>::value_type is int

}

— end example]

6 If an associated type or template (14.9.1.2) has a default argument, a concept map member satisfying the associated type
or template requirement shall be implicitly defined by substituting the concept map arguments into the default argument.
If this substitution does not produce a valid type or template (14.8.2), the concept map member is not implicitly defined.
[Example:

auto concept A<typename T> {

typename result_type = typename T::result_type;

}

auto concept B<typename T> {

T::T(const T&);

}

template<typename T> requires A<T> void f(const T&); // #1
template<typename T> requires B<T> void f(const T&); // #2

50

51 Templates 14.10 Constrained templates

struct X {};

void g(X x) {

f(x); // okay: A<X> cannot satisfy result_type requirement, and is not implicitly defined, calls #2
}

— end example]

14.10 Constrained templates [temp.constrained]

1 A template that has a requires-clause (or declares any template type parameters using the simple form of requirements
(14.1)) but not containing the late_check keyword is a constrained template. Constrained templates can only be used
with template arguments that satisfy the requirements of the constrained template. The template definitions of con-
strained templates are similarly constrained, requiring all names to be declared in either the requirements clause or is
found through normal name lookup (3.4). [Note: The practical effect of constrained templates is that they provide im-
proved diagnostics at template definition time, such that any use of the constrained template that satisfies the template’s
requirements is likely to result in a well-formed instantiation. — end note]

2 A template that is not a constrained template is an unconstrained template.

3 [Note: Due to the use of archetypes (14.10.2) in the processing of the definition of a constrained template, a constrained
template contains no dependent types (14.6.2.1), and therefore no type-dependent expressions (14.6.2.2) or dependent
names (14.6.2). Instantiation of constrained templates (14.10.3) still substitutes types, templates and values for template
parameters, but the substitution does not require additional name lookup (3.4). — end note]

14.10.1 Template requirements [temp.req]

1 A template has a requirements clause if it contains a requires-clause or any of its template parameters were specified
using the simple form of requirements (14.1). A requirements clause states the conditions under which the template can
be used.

requires-clause:
requires requirement-list
requires (requirement-list)

requirement-list:
requirement ...opt && requirement-list
requirement ...opt

requirement:
::opt nested-name-specifieropt concept-id
! ::opt nested-name-specifieropt concept-id

2 A requires-clause contains a list of requirements, all of which must be satisfied by the template arguments for the
template. A requirement not containing a ! is a concept-id requirement. A requirement containing a ! is a negative
requirement.

3 A concept-id requirement requires that there be a most specific concept map or concept instance according to concept
map matching and partial ordering of concept map templates (14.5.8). [Example:

concept A<typename T> { }

51

14.10 Constrained templates Templates 52

auto concept B<typename T> { T operator+(T, T); }

concept_map A<float> { }

concept_map B<float> { }

template<typename T> requires A<T> void f(T);

template<typename T> requires B<T> void g(T);

struct X { };

void h(float x, int y, int X::* p) {

f(x); // okay: uses concept map A<float>
f(y); // error: no concept map A<int>; requirement not satisfied
g(x); // okay: uses concept map B<float>
g(y); // okay: implicitly defines and uses concept map B<int>
g(p); // error: no implicit definition of concept map B<int X::*>; requirement not satisfied

}

— end example]

4 A negative requirement requires that no concept map corresponding to its concept-id be defined, implicitly or explicitly.
[Example:

concept A<typename T> { }

auto concept B<typename T> { T operator+(T, T); }

concept_map A<float> { }

concept_map B<float> { }

template<typename T> requires !A<T> void f(T);

template<typename T> requires !B<T> void g(T);

struct X { };

void h(float x, int y, int X::* p) {

f(x); // error: concept map A<float> has been defined
f(y); // okay: no concept map A<int>
g(x); // error: concept map B<float> has been defined
g(y); // error: implicitly defines concept map B<int>, requirement not satisfied
g(p); // okay: concept map B<int X::*> cannot be implicitly defined

}

— end example]

5 A concept-id requirement that refers to the SameType concept ([concept.support]) is a same-type requirement. A same-
type requirement is satisfied when its two concept arguments refer to the same type. In a constrained template (14.10),
a same-type requirement SameType<T1, T2> makes the types T1 and T2 equivalent. If T1 and T2 cannot be made
equivalent, the program is ill-formed. [Note: type equivalence is a congruence relation, thus

— SameType<T1, T2> implies SameType<T2, T1>,

— SameType<T1, T2> and SameType<T2, T3> implies SameType<T1, T3>,

— SameType<T1, T1> is trivially true,

52

53 Templates 14.10 Constrained templates

— SameType<T1*, T2*> implies SameType<T1, T2> and SameType<T1**, T2**>, etc.

— end note] [Example:

concept C<typename T> {

typename assoc;

assoc a(T);

}

concept D<typename T> {

T::T(const T&);

T operator+(T, T);

}

template<typename T, typename U>

requires C<T> && C<U> && SameType<C<T>::assoc, C<U>::assoc> && D<C<T>::assoc>

C<T>::assoc f(T t, U u) {

return a(t) + a(u); // okay: C<T>::assoc and D<T>::assoc are the same type
}

— end example]

6 A concept-id requirement that refers to the DerivedFrom concept ([concept.support]) is a derivation requirement. A
derivation requirement is satisfied when its both concept arguments are class types and the first concept argument is
either equal to or publicly and unambiguously derived from the second concept argument. [Example:

struct Base { };

struct Derived1 : public Base { };

struct Derived2 : private Base { };

template<typename T> void f(T*); // #1
template<typename T> requires DerivedFrom<T, Base> void f(T*); // #2

void g(Derived1* d1, Derived2* d2) {

f(d1); // okay, calls #2
f(d2); // okay, calls #1: Base is not an accessible base of Derived2 from g

}

— end example]

7 A requirement followed by an ellipsis is a pack expansion (14.5.3). Requirement pack expansions place requirements
on all of the arguments in one or more template parameter packs. [Example:

auto concept OutputStreamable<typename T> {

std::ostream& operator<<(std::ostream&, const T&);

}

template<typename T, typename... Rest>

requires OutputStreamable<T> && OutputStreamable<Rest>...

void print(const T& t, const Rest&... rest) {

std::cout << t;

print(rest);

53

14.10 Constrained templates Templates 54

}

template<typename T>

requires OutputStreamable<T>

void print(const T& t) {

std::cout << t;

}

void f(int x, float y) {

print(17, ", ", 3.14159); // okay: implicitly-generated OutputStreamable<int>, OutputStreamable<const char*>,
// and OutputStreamable<double>

print(17, " ", std::cout); // error: no concept map OutputStreamable<std::ostream>
}

— end example]

14.10.1.1 Requirement propagation [temp.req.prop]

1 In a template with a requirements clause, additional requirements implied by the declaration of the template are implic-
itly available in the definition of a constrained template (14.10). The requirements are implied by a template-id, the
template arguments of a class template partial specialization (14.5.5), the concept arguments of a concept map template
(14.5.8), and the use of associated types and templates (14.9.1.2).

2 For every template-id X<A1, A2, ..., AN>, where X is a constrained template, the requirements of X (after substitut-
ing the arguments A1, A2, ..., AN into the requirements) are implied. [Example:

template<LessThanComparable T> class set { /∗ ... ∗/ };

template<CopyConstructible T>

void maybe_add_to_set(std::set<T>& s, const T& value);

// use of std::set<T> implicitly adds requirement LessThanComparable<T>

— end example]

3 In the definition of a class template partial specialization, the requirements of its primary class template (14.5.5), after
substitution of the template arguments of the class template partial specialization, are implied. [Note: this rule implies
that a class template partial specialization of a constrained template is a constrained template, even if does not have a
requires-clause specified, unless the class template partial specialization is specified with late_check. — end note] If
this substitution results in a requirement that does not depend on any template parameter, then the requirement must be
satisfied (14.10.1); otherwise, the program is ill-formed. [Example:

template<typename T>

requires EqualityComparable<T>

class simple_set { };

template<typename T>

class simple_set<T*> // implies EqualityComparable<T*>
{

};

54

55 Templates 14.10 Constrained templates

— end example]

4 For every associated type or template concept-id::name, the requirement concept-id is implied. [Example:

concept Addable<typename T, typename U> {

CopyConstructible result_type;

result_type operator+(T, U);

}

template<CopyConstructible T, CopyConstructible U>

Addable<T, U>::result_type // implicitly adds Addable<T, U> to the requirements clause
add(T t, U u) {

return t + u;

}

— end example]

5 For every concept-id requirement in the requirements clause (either explicitly, or added implicitly), requirements for the
refinements of the associated concept (14.9.3) and associated requirements of the concept (14.9.1.3) are implied.

6 Two requirements clauses are identical if they contain the same concept-id, negative, same-type, and derivation require-
ments.

14.10.2 Archetypes [temp.archetype]

1 A type in a constrained template has an archetype if it is:

— a template type parameter (14.1),

— an associated type (14.9.1.2), or

— a template-id whose template-name is a template template parameter (14.1) or an associated template parameter
(14.9.1.2).

2 An archetype is a class type (9) whose members are defined by the template requirements (14.10.1) of its constrained
template. Whenever a type T with archetype T′ is used in a constrained template, it behaves as if it were the archetype T′

within the definition of the constrained template. [Note: this substitution of archetypes (which are not dependent types)
for their corresponding types (which would be dependent types in an unconstrained template) effectively treats all types
(and therefore both expressions and names) in a constrained template as “non-dependent”. — end note]

3 If two types, T1 and T2, both have archetypes and are considered equivalent (e.g., due to one or more same-type
requirements (14.10.1)), then T1 and T2 have the same archetype T′.

4 The archetype T′ of T contains a public member function or member function template corresponding to each member
function or member function template of each concept instance corresponding to a concept-id requirement that names T
(14.10.1). [Example:

concept CopyConstructible<typename T> {

T::T(const T&);

}

concept MemSwappable<typename T> {

void T::swap(T&);

55

14.10 Constrained templates Templates 56

}

template<typename T>

requires CopyConstructible<T> && MemSwappable<T>

void foo(T& x) {

// archetype T′ of T contains a copy constructor T′::T′(const T′&) from CopyConstructible<T>
// and a member function void swap(T′&) from MemSwappable<T>
T y(x);

y.swap(x);

}

— end example]

5 If no requirement specifies a default constructor for a type T, a default constructor is not implicitly declared (12.1) for
the archetype of T.

6 If no requirement specifies a copy constructor for a type T, a copy constructor is implicitly declared (12.8) in the
archetype of T with the following signature:

T(const T&) = delete;

[Example:

concept DefaultConstructible<typename T> {

T::T();

}

concept MoveConstructible<typename T> {

T::T(T&&);

}

template<typename T>

requires DefaultConstructible<T> && MoveConstructible<T>

void f(T x) {

T y = T(); // okay: move-constructs y from default-constructed T
T z(x); // error: overload resolution selects implicitly-declared

// copy constructor, which is deleted
}

— end example]

7 If no requirement specifies a copy assignment operator for a type T, a copy assignment operator is implicitly declared
(12.8) in the archetype of T with the following signature:

T& T::operator=(const T&) = delete;

8 If no requirement specifies a destructor for a type T, a destructor is implicitly declared (12.4) in the archetype of T with
the following signature:

~T() = delete;

56

57 Templates 14.10 Constrained templates

9 If no requirement specifies a unary & operator for a type T, a unary member operator & is implicitly declared in the
archetype of T for each cv that is a valid cv-qualifier-seq:

cv T* operator&() cv = delete;

10 For each of the allocation functions new, new[], delete, and delete[] ([class.free]), if no requirement specifies the
corresponding operator with a signature below, that allocation function is implicitly declared as a member function in
the archetype T′ of T with the corresponding signature from the following list:

static void* T′::operator new(std::size_t) = delete;

static void* T′::operator new(std::size_t, void*) = delete;

static void* T′::operator new(std::size_t, const std::nothrow_t&) throw() = delete;

static void* T′::operator new[](std::size_t) = delete;

static void* T′::operator new[](std::size_t, void*) = delete;

static void* T′::operator new[](std::size_t, const std::nothrow_t&) throw() = delete;

static void T′::operator delete(void*) = delete;

static void T′::operator delete(void*, void*) = delete;

static void T′::operator delete(void*, const std::nothrow_t&) throw() = delete;

static void T′::operator delete[](void*) = delete;

static void T′::operator delete[](void*, void*) = delete;

static void T′::operator delete[](void*, const std::nothrow_t&) throw() = delete;

11 If the requirements clause contains a derivation requirement DerivedFrom<T, Base>, then the archetype of T is pub-
licly derived from the archetype of Base. [Note: If the same derivation requirement occurs more than once within the
requirements clause, the repeated derivation requirements are ignored. — end note]

12 If two associated member function or member function template requirements for a type T have the same signature, and
the return types are equivalent, the duplicate signature is ignored. If the return types are not equivalent, the program is
ill-formed.

13 If the processing of a constrained template definition requires the instantiation of a template whose arguments contain
a type T with an archetype T′ or whose template U has an archetype U′, the template is instantiated (14.7) with the
archetype T′ substituted for each occurrence of T. The template shall not be an unconstrained template. [Note: partial
ordering of class template partial specializations (14.5.5.2) will depend on the properties of the archetype, as defined
by the requirements clause of the constrained template. When the constrained template is instantiated (14.10.3), partial
ordering of class template partial specializations will occur a second time based on the actual template arguments. — end
note] [Example:

template<EqualityComparable T>

struct simple_multiset {

bool includes(const T&);

void insert(const T&);

// ...
};

template<LessThanComparable T>

struct simple_multiset<T> { // A
bool includes(const T&);

void insert(const T&);

// ...
};

57

14.10 Constrained templates Templates 58

template<LessThanComparable T>

bool first_access(const T& x) {

static simple_multiset<T> set; // instantiates simple_multiset<T′>, where T′ is the archetype of T ,
// from the partial specialization of simple_multiset marked ’A’

return set.includes(x)? false : (set.insert(x), true);

}

— end example]

14 In a constrained template, for each concept-id requirement that is stated in or implied by the requirements clause, a
concept instance for that requirement is synthesized by substituting the archetype of T for each occurrence of T within the
concept arguments of the requirement. The concept instance acts as a concept map, and is used to resolve name lookup
into requirements scope (3.3.8) and satisfy the requirements of templates used inside the definition of the constrained
template. Concept instances act as concept maps [Example:

concept SignedIntegral<typename T> {

T::T(const T&);

T operator-(T);

}

concept RandomAccessIterator<typename T> {

SignedIntegral difference_type;

difference_type operator-(T, T);

}

template<SignedIntegral T> T negate(const T& t) { return -t; }

template<RandomAccessIterator Iter>

RandomAccessIterator<Iter>::difference_type distance(Iter f, Iter l) {

typedef RandomAccessIterator<Iter>::difference_type D;

D dist = f - l; // okay: - operator resolves to synthesized operator- in
// the concept instance RandomAccessIterator<Iter′>,
// where Iter′ is the archetype of Iter

return negate(dist); // okay, concept instance RandomAccessIterator<Iter′>
// implies the concept instance SignedIntegral<D′>,
// where D′ is the archetype of D

— end example]

14.10.3 Instantiation of constrained templates [temp.constrained.inst]

1 Instantiation of a constrained template replaces each template parameter within the definition of the template with its
corresponding template argument, using the same process as for unconstrained templates (14.7).

2 In the instantiation of a constrained template, a call to a function or a use of an operator that resolves to an associated
function in a concept instance (14.10.2) will be instantiated with a call to the corresponding associated function definition
in the concept map that satisfies the concept-id requirement (14.10.1). [Example:

concept LessThanComparable<typename T> {

bool operator<(T, T);

}

58

59 Templates 14.10 Constrained templates

template<LessThanComparable T>

const T& min(const T& x, const T& y) {

return x < y? x : y; // < resolves to LessThanComparable<T′>::operator<
// uses LessThanComparable<X>::operator< when instantiated with T=X

}

struct X { int member; };

concept_map LessThanComparable<X> {

bool operator<(X x1, X x2) {

return x1.member < x2.member;

}

}

void f(X x1, X x2) {

min(x, y); // okay: concept map LessThanComparable<X> satisfies requirement
// for LessThanComparable<T> (with T = X).

}

— end example]

3 In the instantiation of a constrained template, a call to a function template will undergo a second partial ordering of
function templates. The function template selected at the time of the constrained template’s definition is called the seed
function. At instantiation time, the candidate set of functions for the instantiation will contain all functions in the same
scope as the seed function that

— succeed at template argument deduction (14.8.2),

— have the same name as the seed function,

— have the same signature and return type as the seed function after substitution of the template arguments (ignoring
the requirements clause,

— are more specialized (14.5.6.1) than the seed function.

Partial ordering of function templates (14.5.6.1) determines which of the function templates in the candidate set will be
called in the instantiation of the constrained template. [Example:

concept InputIterator<typename Iter> {

typename difference_type;

}

concept BidirectionalIterator<typename Iter> : InputIterator<Iter> { }

concept RandomAccessIterator<typename Iter> : BidirectionalIterator<Iter> { }

template<InputIterator Iter> void advance(Iter& i, Iter::difference_type n); // #1
template<BidirectionalIterator Iter> void advance(Iter& i, Iter::difference_type n); // #2
template<RandomAccessIterator Iter> void advance(Iter& i, Iter::difference_type n); // #3

template<BidirectionalIterator Iter> void f(Iter i) {

advance(i, 1); // seed function is #2
}

59

14.10 Constrained templates Templates 60

concept_map RandomAccessIterator<int*> {

typedef std::ptrdiff_t difference_type;

}

void g(int* i) {

f(i); // in call to advance(), #2 and #3 are in the candidate set
// partial ordering of function templates selects #3

}

— end example]

4 In the instantiation of a constrained template, a template specialization whose template arguments involve archetypes
(14.10.2) will be replaced by the instantiation of the same template name, where each occurrence of an archetype
is replaced by the instantiation of its corresponding type. The resulting template specialization may be an explicit
specialization, instantiated from a class template partial specialization, or instantiated from the primary template. [Note:
the definition of the template specialization determined at instantiation time of the constrained template may be different
from the definition used at definition time of the constrained template, potentially resulting in instantiation-time errors.
— end note] [Example:

template<typename T>

struct vector { // A
vector(int, T const &);

T& front();

};

template<typename T>

struct vector<T*> { // B
vector(int, T* const &);

T*& front();

};

template<>

struct vector<bool> { // C
vector(int, bool);

bool front();

};

template<CopyConstructible T>

void f(const T& x) {

vector<T> vec(1, x);

T& ref = vec.front();

}

void g(int i, int* ip, bool b) {

f(i); // okay: instantiation of f<int> uses vector<int>, instantiated from A
f(ip); // okay: instantiation of f<int*> uses vector<int*>, instantiated from B
f(b); // ill-formed, detected in the instantiation of f<bool>, which uses the vector<bool> specialization C:

// cannot bind temporary of type ’bool’ to an lvalue reference to ’bool’
}

60

61 Templates 14.10 Constrained templates

— end example]

5 In the instantiation of a constrained template, the use of a member of an archetype (14.10.2) instantiates to a use of the
corresponding member in the type that results from substituting the template arguments from the instantiation into the
type corresponding to the archetype. [Example:

auto concept MemSwappable<typename T> {

void T::swap(T&);

}

template<MemSwappable T>

void swap(T& x, T& y) {

x.swap(y); // when instantiated, calls X::swap(X&)
}

struct X {

void swap(X&);

};

void f(X& x1, X& x2) {

swap(x1, x2); // okay
}

— end example]

14.10.4 Late-checked templates [temp.late]

1 A late-checked template is a template whose template declaration contains the late_check keyword, or a concept map
template (14.5.8) that contains the late_check keyword. A late-checked template is an unconstrained template (14.10)
[Note: it therefore follows the normal rules for computing dependent types (14.6.2.1), type-dependent expressions
(14.6.2.2), and dependent names (14.6.2), and does not provide the instantiation guarantees provided by constrained
templates. — end note]

2 A late-checked template may only be used when the requirements in its requirements clause are satisfied by the template
arguments. [Note: The definition of a late-checked template may still use dependent names that will be looked up at
instantiation time, bypassing the declarations in concept maps that would be found if the template were a constrained
template. — end note] [Example:

concept Semigroup<typename T> {

T::T(const T&);

T operator+(T, T);

}

concept_map Semigroup<int> {

int operator+(int x, int y) { return x * y; }

}

template<Semigroup T>

T add(T x, T y) {

return x + y;

61

14.10 Constrained templates Templates 62

}

late_check template<Semigroup T>

T late_add(T x, T y) {

return x + y;

}

void f() {

add(1, 2); // returns 2, because Semigroup<int>::operator+ is implemented with operator*
late_add(1, 2); // returns 3, because late-checked template finds built-in operator+ as instantiation time

}

— end example]

62

Appendix B
(informative)
Implementation quantities [implimits]

Add the following bullet to paragraph 2 :

— Recursively nested implicit concept map definitions [1024]

Acknowledgments

The effort to introduce concepts into C++ has been shaped by many. The authors of the “Indiana” and “Texas” con-
cepts proposals have had the most direct impact on concepts: Gabriel Dos Reis, Ronald Garcia, Jaakko Järvi, Andrew
Lumsdaine, Jeremy Siek, and Jeremiah Willcock. Other major contributors to the introduction of concepts in C++ in-
clude David Abrahams, Matthew Austern, Mat Marcus, David Musser, Sean Parent, Sibylle Schupp, and Alexander
Stepanov. Howard Hinnant helped introduce support for rvalue references. Daniel Krügler, Jens Maurer, and James
Widman provided extremely detailed feedback on various drafts and prior revisions of this wording, and the wording
itself has benefited greatly from their efforts and the efforts of the C++ committee’s Core Working Group.

Bibliography

[1] D. Gregor and B. Stroustrup. Concepts (revision 1). Technical Report N2081=06-0151, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, October 2006.

[2] D. Gregor and B. Stroustrup. Proposed wording for concepts (revision 1). Technical Report N2307=07-0167,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, July 2007.

	General
	Definitions

	Lexical conventions
	Keywords

	Basic concepts
	One definition rule
	Declarative regions and scopes
	Point of declaration
	Concept scope
	Requirements scope
	Name hiding

	Name lookup
	Unqualified name lookup
	Qualified name lookup
	Concept map members

	Program and linkage

	Expressions
	Primary expressions

	Declarations
	Classes
	Class members

	Special member functions
	Constructors
	Destructors
	Copying class objects

	Templates
	Template parameters
	Type equivalence
	Template declarations
	Class templates
	Variadic templates
	Class template partial specializations
	Matching of class template partial specializations
	Partial ordering of class template specializations

	Function templates
	Partial ordering of function templates

	Concept map templates

	Name resolution
	Dependent names
	Dependent types
	Type-dependent expressions
	Value-dependent expressions
	Dependent template arguments

	Non-dependent names

	Template instantiation and specialization
	Implicit instantiation
	Explicit instantiation
	Explicit specialization

	Function template specializations
	Template argument deduction

	Concepts
	Concept definitions
	Associated functions
	Associated types and templates
	Associated requirements
	Axioms

	Concept maps
	Associated function definitions
	Associated type and template definitions
	Implicit definitions

	Concept refinement
	Concept member lookup
	Implicit concept maps for refined concepts

	Implicit concepts

	Constrained templates
	Template requirements
	Requirement propagation

	Archetypes
	Instantiation of constrained templates
	Late-checked templates

	Implementation quantities

