
Doc No: SC22/WG21/N2347 = J16/07-0207

Date: 2007-07-19

Project: JTC1.22.32

References: Revision of SC22/WG21/N2213 = J16/07-0073

Reply to: David E. Miller Herb Sutter Bjarne Stroustrup

Atlantic International Inc. Microsoft Corp. Computer Science Dept.

67 Wall Street, 22nd Floor 1 Microsoft Way Texas A&M University, TAMU 3112

New York NY 10005 Redmond WA USA 98052 College Station TX USA 77843-3112

Email: j16p0403@atl-intl.com Email: hsutter@microsoft.com Email: bs@cs.tamu.edu

Strongly Typed Enums (revision 3)

1. Overview .. 2

2. The Problem, and Current Workarounds .. 2

2.1. Problem 1: Implicit conversion to an integer .. 3

2.2. Problem 2: Inability to specify underlying type.. 4

2.2.1. Predictable and specifiable space... 4

2.2.2. Predictable/specifiable type (notably signedness)... 4

2.3. Problem 3: Scope.. 5

2.4. Problem 4: Incompatible extensions to address these issues .. 6

3. Proposal .. 6

3.1. Create a new kind of enum that is strongly typed: enum class.. 6

3.2. Extend existing enums: Underlying type and explicit scoping.. 8

4. Interactions and Implementability.. 8

4.1. Interactions ... 8

4.2. Implementability.. 8

5. Proposed Wording.. 9

5.1. Updating [dcl.enum] ... 9

5.2. Other core changes .. 13

5.3. [Informational, not proposed] Possible library changes.. 14

6. References .. 14

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 2

Strongly Typed Enums (revision 3)

1. Overview

“C enumerations constitute a curiously half-baked concept.”

— [Stroustrup94], p. 253

C++ [C++03] provides only incremental improvements over C [C99] enums. Problems remain, nota-

bly in the areas of type safety, unintended errors, code clarity, and code portability. Some of these

problems can manifest as silent behavioral changes when programs are compiled using different

compilers, including different versions of the same compiler. The results from such silent safety holes

can be catastrophic in life-critical software, so we should close as many as we can.

For some, today’s workarounds boil down to not using enums, or at least never exposing them di-

rectly. Some of the workarounds require serious thought on the part of library authors and/or users.

This paper proposes extensions to enums that will reduce the likelihood of undetected errors while

enabling code to be written more clearly and portably. The proposed changes are pure extensions to

ISO C++ that will not affect the meaning of existing programs.

This paper is a revision of [Miller03] and [Sutter04] incorporating direction from the Evolution Work-

ing Group at the October 2004 WG21 meeting. In particular, the EWG direction was that the proposal

should be revised to:

• focus on three specific problems with C++ enums (their implicit conversion to integer, the in-

ability to specify the underlying type, and the absence of strong scoping);

• come up with a different syntax than originally proposed;

• provide a distinct new enum type having all the features that are considered desirable; and

• provide pure backward-compatible extensions for existing enums with a subset of those fea-

tures (e.g., the ability to specify the underlying type).

The proposed syntax and wording for the distinct new enum type is based on the C++/CLI [C++/CLI]

syntax for this feature. The proposed syntax for extensions to existing enums is designed for similar-

ity.

This proposal falls into the following categories:

• Improve support for library building and security, by providing better type safety without

manual workarounds.

• Make C++ easier to teach and learn, by removing common stumbling blocks that trip new pro-

grammers.

• Improve support for systems programming, particularly for programmers targeting platforms

such as [CLI] that already provide native support for strongly typed enums.

• Remove embarrassments.

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 3

Strongly Typed Enums (revision 3)

2. The Problem and Current Workarounds

2.1.Problem 1: Implicit conversion to an integer

Current C++ enums are not type-safe. They do have some type safety features; in particular, it is not

permitted to directly assign from one enumeration type to another, and there is no implicit conver-

sion from an integer value to an enumeration type. But other type safety holes exist notably because

“[t]he value of an enumerator or an object of an enumeration type is converted to an integer by inte-

gral promotion” ([C++03] §7.2(8)).

For example:

enum Color { ClrRed, ClrOrange, ClrYellow, ClrGreen, ClrBlue, ClrViolet };
enum Alert { CndGreen, CndYellow, CndRed };

Color c = ClrRed;
Alert a = CndGreen;

a = c; // error
a = ClrYellow; // error
bool armWeapons = (a >= ClrYellow); // ok; oops

The current workaround is simply not to use the enum. At minimum, the programmer manually

wraps the enum inside a class to get type-safety:

class Color { // class simplified for clarity
 enum Color_ { Red_, Orange_, Yellow_, Green_, Blue_, Violet_ };
 Color_ value;

public:
 static const Color Red, Orange, Yellow, Green, Blue, Violet;

 explicit Color(Color& other) : value(other.value) { }

 bool operator<(Color const& other) { return value < other.value; }

 int toInt() const { return value; }
};

const Color Color::Red(Color::Red_);
 // etc.

// … here, repeat all the above scaffolding for Alert …

Alert a = Alert::Green;
bool armWeapons = (a >= Color::Yellow); // error

This solution can be close to ideal logically, but a full-blown class is not a POD and many ABIs fail to

pass small structures in registers, so turning an enum into a class for logical reasons may impose a

surprising (and sometimes significant) cost on its users.

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 4

Strongly Typed Enums (revision 3)

2.2.Problem 2: Inability to specify underlying type

Current C++ enums have an implementation-defined underlying type, and this type cannot be speci-

fied explicitly by the programmer. This causes two related problems that merit distinct attention.

2.2.1.Predictable and specifiable space

It can be necessary to specify definitely how much space will be used by the representation of an

enumeration variable, particularly to be able to lay out fields in a struct with the expectation those

fields will have the same sizes and layouts across multiple compilers, as in data communications and

storage applications. Because current C++ enums allow implementations to take either the minimal

space necessary or a larger amount, they cannot be used reliably in such structures.

For example, consider the following subtle portability pitfall:

enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet {
 Version ver; // bad, size can vary by implementation
 // … more data …

 Version getVersion() const { return ver; }
};

The current workaround is, again, not to use the enum:

enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet {
 unsigned char ver; // works, but requires casting
 // … more data …

 Version getVersion() const { return (Version)ver; }
};

2.2.2.Predictable/specifiable type (notably signedness)

It can be necessary to specify how a value of the enumeration will be treated when used as a number,

notably whether it will be signed or unsigned. The difference can affect program correctness, and we

should enable making this portably reliable without heroic efforts from the library writer or user.

For example, consider the behavior of enum E in this code, where the naïve user declared Ebig using a

constant ending in a suffix specifying unsignedness and expected the compiler to understand the in-

tent:

enum E { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

int main() {
 cout << sizeof(E) << endl;
 cout << "Ebig = " << Ebig << endl;
 cout << "E1 ? -1 =\t" << (E1 < -1 ? “less” : E1 > -1 ? “greater” : “equal”) << endl;
 cout << "Ebig ? -1 =\t" << (Ebig < -1 ? “less” : Ebig > -1 ? “greater” : “equal”) << endl;

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 5

Strongly Typed Enums (revision 3)

}

This result of all three tests (the value of Ebig, and E1’s and Ebig’s comparisons to -1) is actually im-

plementation-defined and thus nonportable. This is counter-intuitive to users.

To illustrate, here is a sampling of the variety of results across compilers on the same Windows XP

test platform, all of which report sizeof(E) to be 4:

Compiler Ebig = ? E1 ? -1 Ebig ? -1 Warning

Borland 5.5.1 -16 greater less none

Digital Mars 8.38 4294967280 greater greater none

Comeau 4.3.3 (EDG

3.3)

4294967280 less less integer conversion re-

sulted in a change of sign

gcc 2.95.3 4294967280 less less comparison between

signed and unsigned

gcc 3.3.2 4294967280 less less comparison between

signed and unsigned

integer expressions

Metrowerks Code-

Warrior 8.3

-16 greater less none

Microsoft Visual C++

6.0

-16 greater less none

Microsoft Visual C++

7.1

4294967280 less less none

Microsoft Visual C++

8.0 (alpha)

-16 greater less signed/unsigned mis-

match

Note the variance of behaviors across compilers, and from version to version of the same compiler.

Current workarounds require forgoing enums (losing notational advantages and type checking)

and/or writing class wrappers (as in §2.1) or explicit casts (as in §2.2.1).

2.3.Problem 3: Scope

C++ enums are not strongly scoped. That is, the enumerators of an enum are exported to the scope in

which the enum is defined. This is a relict from the earliest days of C where scoping was very weak.

In the case of enumerators, there are nasty implications. In particular:

• It is not legal for two enumerations in the same scope to have enumerators with the same

name. For example:

enum E1 { Red };
enum E2 { Red }; // error

• The name of an enumerator exists in the enclosing scope, which can cause surprising results. For

example:

namespace NS1 {

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 6

Strongly Typed Enums (revision 3)

 enum Color { Red, Orange, Yellow, Green, Blue, Violet };
};

namespace NS2 {
 enum Alert { Green, Yellow, Red };
};

using namespace NS1;

NS2::Alert a = NS2::Green;
bool armWeapons = (a >= Yellow); // ok; oops

The current workaround is not to use the enum and instead write a class wrapper (as in §2.1).

2.4.Problem 4: Incompatible extensions to address these issues

Implementations already vary widely in practice in some of these areas, as shown in §2.2.2.

Some implementations already have added incompatible extensions to address some of these prob-

lems, which is undesirable. It would be better if the extensions were instead provided consistently

and reliably as standardized extensions in ISO C++ itself.

3. Proposal

This proposal is in two parts, following the EWG direction to date:

• provide a distinct new enum type having all the features that are considered desirable:

o enumerators are in the scope of their enum

o enumerators and enums do not implicitly convert to int

o enums have a defined underlying type

• provide pure backward-compatible extensions for plain enums with a subset of those features

o the ability to specify the underlying type

o the ability to qualify an enumerator with the name of the enum

The proposed syntax and wording for the distinct new enum type is based on the C++/CLI [C++/CLI]

syntax for this feature. The proposed syntax for extensions to existing enums is designed for similarity.

3.1.Create a new kind of enum that is strongly typed: enum class

We propose adding a distinct new enum type with the following features:

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 7

Strongly Typed Enums (revision 3)

• Declaration: The new enum type is declared using enum class, which does not conflict with

existing enums and conveys the strongly-typed and scoped nature of these enums. The body

between the braces is the same as for existing enums. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

• Conversions: There is no implicit conversion to or from an integer. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

void f(E e) {
 if(e >= 100) // error: no E to int conversion
 ;
}

int i = E::E2; // error: no E to int conversion

• Underlying type: The underlying type is always well-specified. The default is int, and can be

explicitly specified by the programmer by writing : type following the enumeration name,

where the underlying type type may be any integer type except wchar_t, and the enumera-

tion and all enumerators have the specified type. For example:

enum class E : unsigned long { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

• Scoping: Like a class, the new enum type introduces its own scope. The names of enumerators

are in the enum’s scope, and are not injected into the enclosing scope. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

E e1 = E1; // error
E e2 = E::E2; // ok

The following example, demonstrate how the removal of the implicit conversion and the addition of

strong scoping help solve the problems described in §2.1 and §2.3:

// these enumerators do not clash because they are not in the same scope
enum class Color { Red, Orange, Yellow, Green, Blue, Violet };
enum class Alert { Green, Yellow, Red };

Color c = Color::Red; // explicit qualification is required
Alert a = Color::Green;

bool b = (a >= Color::Yellow); // error: cannot compare and Alert to a Color

The following example demonstrates how the specification of underlying type helps solve the prob-

lem described in §2.2:

enum class Version : UINT8 { Ver1 = 1, Ver2 = 2 };

struct Packet {
 Version ver; // ok, portable (for suitable definitions of UINT8)
 // … more data …

 Version getVersion() const { return ver; }
};

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 8

Strongly Typed Enums (revision 3)

3.2.Extend existing enums: Underlying type and explicit scoping

We propose extending existing enums with a subset of the features listed in §3.1:

• Underlying type: The underlying type may be specified. The default is to follow the existing

implementation-defined rules; otherwise, the underlying type can be explicitly specified by

the programmer by writing: type following the enumeration name, where the underlying

type type may be any integer type except wchar_t, and the enumeration and all enumerators

have the specified type. For example:

enum E : unsigned long { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

enum Ex { Exa = 1, Exb = 2, Exbig = 0xFFFFFFF0U }; // unchanged semantics

• Scoping: Existing enums now introduce their own scopes. The names of enumerators are in

the enum’s scope, and they are also injected into the enclosing scope. This design achieves

two goals:

o It preserves backward compatibility so that the meaning of existing programs is un-

changed

o it enables programmers to write enum-agnostic code that operates on both kinds of

enums, because enumerators may be (redundantly) referred to by explicit scope quali-

fication using the enum name. For example:

enum E { E1, E2, E3 = 100, E4 /* = 101 */ };

E e1 = E1; // ok
E e2 = E::E2; // ok

4. Interactions and Implementability

4.1.Interactions

Particularly in the Conversions clause, references to enumerations need to reflect that only non-ex-

plicit enumerations have an implicit conversion to an integral type.

By design, there are no effects on legacy code.

4.2.Implementability

There are no known or anticipated difficulties in implementing these features. These features have

been implemented in Microsoft Visual C++ 8.0 (beta).

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 9

Strongly Typed Enums (revision 3)

5. Proposed Wording

In this section, where changes are either specified by presenting changes to existing wording, strike-

through text refers to existing text that is to be deleted, and underscored text refers to new text that is

to be added.

5.1.Updating [dcl.enum]

Change §7.2 as follows. Existing footnotes are unchanged, and some existing references to grammar

elements have been italicized for consistency (these changes to italics only are unmarked):

7.2 Enumeration declarations [dcl.enum]

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-

name, within its scope.

enum-name:

identifier

enum-specifier:

enum enum-key identifieropt enum-baseopt { enumerator-listopt }

enum enum-key identifieropt enum-baseopt { enumerator-list , }

enum-key:

enum
enum class
enum struct

enum-base:

: type-specifier-seq

enumerator-list:

enumerator-definition

enumerator-list , enumerator-definition

enumerator-definition:

enumerator

enumerator = constant-expression

enumerator:

identifier

2 An enumeration type declared with an enum-key of only enum is an unscoped enumeration, and

its enumerators are unscoped enumerators. The enum-keys enum class and enum struct are se-

mantically equivalent; an enumeration type declared with one of these is a scoped enumeration,

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 10

Strongly Typed Enums (revision 3)

and its enumerators are scoped enumerators. The type-specifier-seq of an enum-base shall name an

integral type; any cv-qualification is ignored. The identifiers in an enumerator-list are declared

as constants, and can appear wherever constants are required. An enumerator-definition with =

gives the associated enumerator the value indicated by the constant-expression. The constant-ex-

pression shall be of integral or enumeration type. If the first enumerator has no initializer, the

value of the corresponding constant is zero. An enumerator-definition without an initializer

gives the enumerator the value obtained by increasing the value of the previous enumerator by

one.

[Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. —end example]

3 The point of declaration for an enumerator is immediately after its enumerator-definition. [Ex-

ample:

const int x = 12;
{ enum { x = x }; }

4 Here, the enumerator x is initialized with the value of the constant x, namely 12. —end exam-

ple]

5 Each enumeration defines a type that is different from all other types. Each enumeration also

has an underlying type. The underlying type can be explicitly specified using enum-base; if not

explicitly specified, the underlying type of a scoped enumeration type is int. In these cases,

the underlying type is said to be fixed. Following the closing brace of an enum-specifier, each

enumerator has the type of its enumeration. If the underlying type is fixed, the type of each

enumerator pPrior to the closing brace, is the underlying type; if the value of an enumerator

cannot be represented by the underlying type, the program is ill-formed. If the underlying

type is not fixed, the type of each enumerator is the type of its initializing value.:

— If an initializer is specified for an enumerator, the initializing value has the same type

as the expression.

— If no initializer is specified for the first enumerator, the type is initializing value has an

unspecified integral type.

— Otherwise the type of the initializing value is the same as the type of the initializing

value of the preceding enumerator unless the incremented value is not representable

in that type, in which case the type is an unspecified integral type sufficient to contain

the incremented value.

6 For an enum type whose underlying type is not fixed, the underlying type The underlying type

of an enumeration is an integral type that can represent all the enumerator values defined in

the enumeration. If no integral type can represent all the enumerator values, the enumeration

is ill-formed. It is implementation-defined which integral type is used as the underlying type

for an enumeration except that the underlying type shall not be larger than int unless the val-

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 11

Strongly Typed Enums (revision 3)

ue of an enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the

underlying type is as if the enumeration had a single enumerator with value 0. The value of

sizeof() applied to an enumeration type, an object of enumeration type, or an enumerator, is

the value of sizeof() applied to the underlying type.

7 For an enum type whose underlying type is fixed, the values of the enumeration are the val-

ues of the underlying type. Otherwise, fFor an enumeration where emin is the smallest enumer-

ator and emax is the largest, the values of the enumeration are the values in the range bmin to

bmax, defined as follows: Let K be 1 for a two’s complement representation and 0 for a one’s

complement or sign-magnitude representation. bmax is the smallest value greater than or

equal to max(|emin| − K, |emax|) and equal to 2M −1, where M is a non-negative integer. bmin is

zero if emin is non-negative and −(bmax+K) otherwise. The size of the smallest bit-field large

enough to hold all the values of the enumeration type is max(M,1) if bmin is zero and M+1 oth-

erwise. It is possible to define an enumeration that has values not defined by any of its enu-

merators.

8 Two enumeration types are layout-compatible if they have the same underlying type.

9 The value of an object or enumerator of an unscoped enumeration type is converted to an inte-

ger by integral promotion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) { } // ...

makes color a type describing various colors, and then declares col as an object of that type,

and cp as a pointer to an object of that type. The possible values of an object of type color are

red, yellow, green, blue; these values can be converted to the integral values 0, 1, 20, and

21. Since enumerations are distinct types, objects of type color can be assigned only values of

type color.

color c = 1; // error: type mismatch,

// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1

// integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:

enum class Col { red, yellow, green };
int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) { } // error: no Col to bool conversion

—end example]

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 12

Strongly Typed Enums (revision 3)

10 An expression of arithmetic or enumeration type can be converted to an enumeration type ex-

plicitly. The value is unchanged if it is in the range of enumeration values of the enumeration

type; otherwise the resulting enumeration value is unspecified.

11 TheEach enum-name and each unscoped enumerator declared by an enum-specifier is declared

in the scope that immediately contains the enum-specifier. Each scoped enumerator is declared

in the scope of the enumeration. These names obey the scope rules defined for all names in

3.3 and 3.4. [Example:

enum direction { left=’l’, right=’r’ };

void g()
{

direction d; // OK

d = left; // OK

d = direction::right; // OK

}

enum class altitude { high=’h’, low=’l’ };

void h()
{

altitude a; // OK

a = high; // error: high not in scope

a = altitude::low; // OK

}

—end example] An enumerator declared in class scope can be referred to using the class mem-

ber access operators (::, . (dot) and -> (arrow)), see 5.2.5. [Example:

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: direction not in scope

X::direction d2; // ok
int i;

i = p->f(left); // error: left not in scope

i = p->f(X::right); // OK

i = p->f(p->left); // OK

// ...
}

—end example]

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 13

Strongly Typed Enums (revision 3)

5.2.Other core changes

Add the following new subclause:

3.3.6a Enumeration scope [basic.scope.enum]

1 The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its

point of declaration and terminates at the end of the enum-specifier.

After §3.4.1(11), add the following new paragraph:

During the lookup for a name used in the constant-expression of an enumerator-definition, previ-

ously-declared enumerators of the enumeration are visible and hide the names of entities de-

clared in the block, class, or namespace scopes containing the enum-specifier.

In §3.4.3(1), change the initial part of the paragraph as follows:

1 The name of a class or namespace member or enumerator can be referred to after the :: scope

resolution operator (5.1) applied to a nested-name-specifier that nominates its class, or name-

space, or enumeration. During the lookup for a name preceding the :: scope resolution opera-

tor, object, function, and enumerator names are ignored. If the name found does not desig-

nate a namespace or a class, enumeration, or dependent type, the program is ill-formed. …

After §3.4.3(4), add the following new paragraph:

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent

an enumerator of that enumeration.

In §4.5(2), change “enumeration” to “unscoped enumeration” as follows:

2 ...An rvalue of an unscoped enumeration type (7.2) can be converted to an rvalue of the first

of the following types that can represent all the values of the enumeration (i.e., the values in

the range bmin to bmax as described in 7.2): int, unsigned int, long int, unsigned long int,

long long int, or unsigned long long int. If none of the types in that list can represent all

the values of the enumeration, an rvalue of an unscoped enumeration type can be converted

to an rvalue of the extended integer type with lowest integer conversion rank (4.13) greater

than the rank of long long in which all the values of the enumeration can be represented. If

there are two such extended types, the signed one is chosen.

In §4.7(1), §4.9(2), §4.12(1), change “enumeration” to “unscoped enumeration”.

After §5.1(8), add the following new paragraph:

A nested-name-specifier that names an enumeration (7.2), followed by the name of an enumera-

tor of that enumeration, is a qualified-id that refers to the enumerator. The result is the enumer-

ator. The type of the result is the type of the enumeration. The result is an rvalue.

In §7.1.5.3, change one production of elaborated-type-specifier as follows:

elaborated-type-specifier:

…

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 14

Strongly Typed Enums (revision 3)

enumenum-key ::opt nested-name-specifieropt identifier

…

In §7.1.5.3(3) (two places), change “enum keyword” to “enum-key”. At the end of that paragraph,

add:

The enum-key used in an elaborated-type-specifier need not match the one in the enumeration’s

definition. [Example:

enum class E { a, b };
enum E x = E::a; // ok

—end example]

After §7.3.3(6), add the new paragraph:

A using-declaration shall not name a scoped enumerator.

5.3. [Informational, not proposed] Possible library changes

This is just an informational sketch about where the extensions to existing enums to specify an under-

lying type might perhaps be used in the standard library. This is not part of the proposal.

In §18.2.1.3, change the declaration of float_round_style to add the enum-base : signed char .

In §18.2.1.4, change the declaration of float_denorm_style to add the enum-base : signed char .

In §22.2.1, change the declaration of ctype_base to add the enum-base : unsigned char .

In §22.2.1.5, change the declaration of codecvt_base to add the enum-base : unsigned char .

In §22.2.5.1, change the declaration of time_base to add the enum-base : unsigned char .

In §22.2.6.3, change the declaration of money_base::part to add the enum-base : unsigned char .

In §27.4.2, change the declaration of ios_base::event to add the enum-base : unsigned char .

In §27.4.2(1), change “an enumerated type, seekdir” to “an enumerated type with underlying type

unsigned char, seekdir”.

6. References

[C99] Programming Language C (ISO/IEC 9899:1999(E)).

[C++03] Programming Language C++ (ISO/IEC

14882:2003(E)).

[C++/CLI] C++/CLI Language Specification (Ecma/TC39-TG5).

[CLI] Common Language Infrastructure (CLI) (ECMA-

335, 2nd edition, December 2002).

ISO/IEC JTC1/SC22/WG21 D2347 = ANSI/INCITS J16 07-0207 page 15

Strongly Typed Enums (revision 3)

[Miller03] D. Miller. “Improving Enumeration Types”

(ISO/IEC JTC1/SC22/WG21 N1513 = ANSI/IN-

CITS J16 03-0096).

[Stroustrup94] B. Stroustrup. The Design and Evolution of C++

(Addison-Wesley, 1994).

[Sutter04] H. Sutter and D. Miller. “Strongly Typed

Enums” (ISO/IEC JTC1/SC22/WG21 N1579 = AN-

SI/INCITS J16 04-0019).

