
Doc No: SC22/WG21/N2341
J16/07-0201
of project JTC1.22.32

Date: 2007-07-18 Phone: +358 40 507 8729 (mobile)
+1-503-712-8433

Reply to: Attila (Farkas) Fehér

Clark Nelson

Email: attila f feher at ericsson com
wolof at freemail hu
clark.nelson@intel.com

Adding Alignment Support to the C++
Programming Language / Wording

Short summary

Document status: wording proposal to be considered by CWG and LWG.

One-liner: Extending the standard language and library with alignment related features.

Problems targeted:

• Allow most efficient implementation of fixed capacity-dynamic size containers

• Allow most efficient implementation of optional elements

• Allow specially aligned variables/buffers for hardware related programming

• Allow building heterogeneous containers at run time

• Allow programming of discriminated unions

• Allow optimized code generation for data with stricter alignment

Related issues not addressed:

• Class-type “packing” (although allowed)

• Requesting specially aligned memory from allocators (new, malloc)

Proposed changes:

• New: alignment-specifier (alignas) to declarations

• New: alignof expression to retrieve alignment requirements of a type (like sizeof for

size)

• New: alignment arithmetic by library support (aligned_storage, aligned_union)

• New: standard function (std::align) for pointer alignment at run time

The numbering in this document is based on N2315 Working
Draft, Standard for Programming Language C++.

Typographical conventions:

- New paragraphs, notes examples etc. are normally typesetted

- Insertions into existing text are green and double underlined

WG21/N2301 = J16/07-0161 Alignment page 2

Core WG Proposal Wording of 10

- Deletions from existing text are green and stricken through

- Any other change to existing text is unintentional and shall be ignored

Special thanks to Premanand Rao of HP for his hands with design and wording, Clark Nelson
of Intel for his effective guidance on managing the task and Benjamin Kosnik for his help with
Library wording.

Alignment Wording Proposal

Add new keywords to 2.11 Keywords [lex.key]

Add the words alignas and alignof before the asm keyword.

Add new bullet to 3.2 One definition rule §4 note [basic.def.odr]

- the type T is the subject of an alignof expression (5.3.6) or an alignas specifier
(7.1.6), or

Update 3.7.3.1 Allocation functions §2 [basic.stc.dynamic.allocation]

2 The allocation function attempts to allocate the requested amount of storage. If it is
successful, it shall return the address of the start of a block of storage whose length in bytes
shall be at least as large as the requested size. There are no constraints on the contents of
the allocated storage on return from the allocation function. The order, contiguity, and initial
value of storage allocated by successive calls to an allocation function is are unspecified.
The pointer returned shall be suitably aligned so that it can be converted to a pointer of any
complete object type with a fundamental alignment requirement (3.11) and then used to
access the object or array in the storage allocated (until the storage is explicitly deallocated
by a call to a corresponding deallocation function). Even if the size of the space requested is
zero, the request can fail. If the request succeeds, the value returned shall be a non-null
pointer value (4.10) p0 different from any previously returned value p1, unless that value p1
was subsequently passed to an operator delete. The effect of dereferencing a pointer
returned as a request for zero size is undefined.37)

Update 3.9 Types [basic.types]

Move paragraph 5 to 3.11 Alignment below, as paragraph 1, with the indicated modifications.
References to alignment in 3.9 should be changed to refer to 3.11 (there are about seven such
references).

Add note to 3.9.2 Compound types §3 [basic.compound]

[Note: Pointers to over-aligned types have no special representation, but their valid value
range is restricted by the extended alignment requirement. This international standard
specifies only two ways of obtaining such a pointer: taking the address of a valid object with
over-aligned type, or using one of the runtime pointer alignment functions. An implementation

WG21/N2301 = J16/07-0161 Alignment page 3

Core WG Proposal Wording of 10

may provide other means of obtaining a valid pointer value for an over-aligned type. – end
note]

Add 3.11 Alignment [basic.align]

1 Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions on the
addresses at which an object of that type may be allocated. The An alignment of a
complete object type is an implementation-defined integer value representing a the number
of bytes between successive addresses at which a given object can be allocated. an object
is allocated at an address that meets the alignment requirements of its object type. An
object type imposes an alignment requirement on every object of that type; stricter
alignment can be requested using alignas.

2 A fundamental alignment is represented by an alignment less than or equal to the greatest
alignment supported by the implementation in all contexts, which is equal to
alignof(std::max_align_t) (18.1).

3 An extended alignment is represented by an alignment greater than
alignof(std::max_align_t). It is implementation-defined whether any extended

alignments are supported and the contexts in which they are supported (7.1.6). A type
having an extended alignment requirement is an over-aligned type. [Note: Every over-
aligned type is or contains a class type with a non-static data member to which an extended
alignment has been applied. – end note]

4 Alignments are represented as values of the type std::size_t. Valid alignments include

only those values returned by an alignof expression for the fundamental types, plus an

additional implementation-defined set of values, which may be empty. [Footnote: It is
intended that every valid alignment value is an integral power of two. – end footnote]

5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments
have larger alignment values. An address that satisfies an alignment requirement also
satisfies any lesser valid alignment requirement.

6 The alignment requirement of a complete type can be queried using an alignof expression

(5.3.6). Furthermore the types char, signed char and unsigned char shall have the

weakest alignment requirement. [Note: This enables the character types to be used as the
underlying type for an aligned memory area (7.1.6).– end note]

7 Comparing alignments is meaningful and provides the obvious results:

- Two alignments are equal when their numeric values are equal.

- Two alignments are different when their numeric values are not equal.

- When an alignment is larger than another it represents a stricter alignment.

8 [Note: The run-time pointer alignment functions (20.4.7) can be used to obtain an aligned
pointer within a buffer; and aligned-storage support templates in the library can be used to
obtain aligned storage (20.6.8).]

9 If a request for a specific extended alignment in a specific context is not supported by an
implementation, the implementation is allowed to reject the request as ill-formed. The
implementation is also allowed to silently disregard the requested alignment. [Note:

WG21/N2301 = J16/07-0161 Alignment page 4

Core WG Proposal Wording of 10

Additionally, a request for run-time allocation of dynamic memory for which the alignment
cannot be honored may be treated as an allocation failure. – end note]

Update 5.3 Unary expressions §1 [expr.unary]

1 Expressions with unary operators group right-to-left.

unary-expression:
 postfix-expression
 ++ cast-expression

 -- cast-expression

 unary-operator cast-expression
 sizeof unary-expression

 sizeof (type-id)

 alignof (type-id)

 new-expression
 delete-expression

unary-operator: one of
 * & + - ! ~

Update 5.3.4 New §1, §11 [expr.new]

1 The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which
it is applied. The type of that object is the allocated type. This type shall be a complete object
type, but not an abstract class type or array thereof (1.8, 3.9, 10.4). It is implementation-
defined whether over-aligned types are supported (3.11). [Note: because references are not
objects, …

11 A new-expression passes the amount of space requested to the allocation function as the
first argument of type std::size_t. That argument shall be no less than the size of the

object being created; it may be greater than the size of the object being created only if the
object is an array. For arrays of char and unsigned char, the difference between the

result of the new-expression and the address returned by the allocation function shall be an
integral multiple of the most stringent strictest fundamental alignment requirement (3.9, 3.11)
of any object type whose size is no greater than the size of the array being created. [Note:
Because allocation functions are assumed to return pointers to storage that is appropriately
aligned for objects of any type with fundamental alignment, this constraint on array allocation
overhead permits the common idiom of allocating character arrays into which objects of other
types will later be placed. — end note]

Add 5.3.6 Alignof [expr. alignof]

1 An alignof expression yields the alignment requirement of its operand type. The operand

shall be a type-id representing a complete object type.

2 The result is an integral constant of type std::size_t.

WG21/N2301 = J16/07-0161 Alignment page 5

Core WG Proposal Wording of 10

3 When alignof is applied to a reference type, the result is the alignment of the referenced type.

When alignof is applied to an array type, the result is the alignment of the element type.

4 A type shall not be defined in an alignof expression.

Update 5.19 Constant expressions §1 [expr. const]

Note: these changes will not be necessary once the constexpr proposal has been

adopted.

1 In several places, C++ requires expressions that evaluate to an integral or enumeration
constant: as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths
(9.6), as enumerator initializers (7.2), as static member initializers (9.4.2), and as integral or
enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expression shall involve only literals of arithmetic types (2.13, 3.9.1),
enumerators, non-volatile const variables and static data members of integral and

enumeration types initialized with constant expressions (8.5), non-type template parameters
of integral and enumeration types, and sizeof expressions, and alignof expressions.

Floating literals (2.13.3) shall appear only if they are cast to integral or enumeration types.
Only type conversions to integral and enumeration types shall be used. In particular, except
in sizeof and alignof expressions, functions, class objects, pointers, or references shall

not be used, and assignment, increment, decrement, function call (including new-expressions
and delete-expressions), comma operators, and throw-expressions shall not be used.

Update 7.1 Specifiers §1 [dcl.spec]

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend

typedef

alignment-specifier

Insert 7.1.6 Alignment specifier [dcl.align]

1 The alignment specifier has the form

alignment-specifier:
alignas (constant-expression)

alignas (type-id)

2 When the alignment specifier is of the form alignas(constant-expression):

- the constant expression shall be an integral constant expression

WG21/N2301 = J16/07-0161 Alignment page 6

Core WG Proposal Wording of 10

- if the constant expression evaluates to a fundamental alignment, the alignment
requirement of the declared object shall be the specified fundamental alignment

- if the constant expression evaluates to an extended alignment and the implementation
supports that alignment in the context of the declaration, the alignment of the declared
object shall be that alignment

- if the constant expression evaluates to an extended alignment and the implementation
does not support that alignment in the context of the declaration, the program is ill-
formed

- if the constant expression evaluates to zero, the alignment specifier shall have no
effect

- otherwise, the program is ill-formed

3 When the alignment specifier is of the form alignas(type-id), it shall have the same effect

as alignas(alignof(type-id)) (5.3.6).

4 When multiple alignment specifiers are specified for an object, the alignment requirement
shall be set to the strictest specified alignment.

5 The combined effect of all alignment specifiers in a declaration shall not specify an alignment
that is less strict than the alignment that would otherwise be required for the object being
declared.

6 An alignment specifier shall not be specified in a declaration of a typedef, or a bit-field, or a
reference, or a function parameter or return type, or an object declared with the register

storage-class specifier. [Note: In short, the specifier can be used on automatic variables,
namespace scope variables, members of class types (as long as they are not bit-fields). In
other words it cannot be used in contexts where it would become part of a type so it would
affect name mangling, name lookup or ordering of function templates. – end note.]

7 If the defining declaration of an object has an alignment specifier, any non-defining
declaration of that object shall either specify equivalent alignment or have no alignment
specifier. No diagnostic is required if declarations of an object have different alignment
specifiers in different translation units.

8 [Example: An aligned buffer, with an alignment requirement of A and an element type T
other than char, signed char or unsigned char, can be declared as:

T alignas(T) alignas(A) buffer[N];

// where N is the number of T elements making up the buffer

Specifying alignas(T) in the alignment specifier list will ensure that the final requested

alignment will not be weaker than alignof(T), and therefore the program will not be ill-

formed. – end example]

9 [Note: The alignment of a union type can be strengthened by applying the alignment
specifier to any member of the union. – end note]

10 [Note: The aligned_union template (20.4.7) can be used to create a union containing a

type with a non-trivial constructor or destructor. – end note]

WG21/N2301 = J16/07-0161 Alignment page 7

Core WG Proposal Wording of 10

Update 8.1 Type names §1 [dcl.name]

1 To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or

typeid, the name of a type shall be specified. This can be done with a type-id, which is

syntactically a declaration for an object or function of that type that omits the name of the
object or function.

The rest of the paragraph is unchanged.

Update 14.6.2.2 Type-dependent expressions §4 [temp.dep.expr]

4 Expressions of the following forms are never type-dependent (because the type of the
expression cannot be dependent):

literal

postfix-expression . pseudo-destructor-name

postfix-expression -> pseudo-destructor-name

sizeof unary-expression

sizeof (type-id)

alignof (type-id)

typeid (expression)

typeid (type-id)

::opt delete cast-expression

::opt delete [] cast-expression

throw assignment-expressionopt

[Note: For the standard library macro offsetof, see 18.1. —end note]

Update 14.6.2.3 Value-dependent expressions §2 [temp.dep.constexpr]

2 An identifier is value-dependent if it is:

- a name declared with a dependent type,

- the name of a non-type template parameter,

- a constant with integral or enumeration type and is initialized with an expression that is
value-dependent.

Expressions of the following form are value-dependent if the unary-expression is type-
dependent or the type-id is dependent (even if sizeof unary-expression and sizeof (type-id

) are not type-dependent):

sizeof unary-expression

WG21/N2301 = J16/07-0161 Alignment page 8

Core WG Proposal Wording of 10

sizeof (type-id)

alignof (type-id)

[Note: For the standard library macro offsetof, see 18.1. —end note]

Update 18.1 Types table 17 [support.types]
Table 17: Header <cstddef> synopsis

Type Name(s)

Macros: NULL offsetof

Types: ptrdiff_t size_t max_align_t

Add 18.1 Types §5 [support.types]

5 max_align_t is a POD type whose alignment requirement is at least as great as that of

every scalar type, and whose alignment requirement is supported in every context.

Add 20.1.2 Allocator requirements §6 [allocator.requirements]

6 If the alignment associated with a specific over-aligned type is not supported by an allocator,
instantiation of the allocator for that type is allowed to fail. The allocator is also allowed to
silently disregard the alignment. [Note: Additionally, allocate for that type may fail by

throwing std::bad_alloc. – end note]

Update 20.4.2 Header <type_traits> synopsis [meta.type.synop]

Add aligned_union synopsis:

 // [20.4.7] other transformations:

template <std::size_t Len, class ... Types> struct aligned_union;

Add to 20.4.7 Other transformations [meta.trans.other]

Table 51: Other transformations

Template Condition Comments

template <template

<std::size_t Len,

std::size_t Align>

struct aligned_storage;

Len is nonzero. Align is

equal to
alignment_of<T>::value

for some type T.

The member typedef type shall be a

POD type suitable for use as
uninitialized storage for any object
whose size is at most Len and whose
alignment is a divisor of Align.

template <

 std::size_t Len,

 class ... Types

> struct aligned_union;

At least one type is
provided.

The member typedef type shall

be a POD type suitable for use as
uninitialized storage for any
object whose type is listed in
Types; its size shall be at least

WG21/N2301 = J16/07-0161 Alignment page 9

Core WG Proposal Wording of 10

Len.

The static member
alignment_value shall be an

integral constant of type
std::size_t whose value is

the strictest alignment of all types
listed in Types.

1 [Note: A typical implementation would define aligned_storage as:

 template <std::size_t Len, std::size_t Alignment>

struct aligned_storage {

 typedef struct {

 alignas(Alignment) unsigned char __data[Len];

 } type;

};

 – end note]

2 It is implementation defined whether any extended alignment is supported (3.11).

Extend 20.6 Memory §1 synopsis [memory]

// 20.6.8 Pointer aligner function

void *align(std::size_t alignment, std::size_t size, void *&ptr, std::size_t&

space);

Update 20.6.1.1 Allocator members §4 [allocator.members]
4 Returns: a pointer to the initial element of an array of storage of size n * sizeof(T),

aligned appropriately for objects of type T. It is implementation defined whether over-aligned
types are supported (3.11).

Update 20.6.3 Temporary buffers §1 [temporary.buffer]
1 Effects: Obtains a pointer to storage sufficient to store up to n adjacent T objects. It is
implementation defined whether over-aligned types are supported (3.11).

Add subclause 20.6.8 Align [ptr.align]

 namespace std {

 void *align(

 std::size_t alignment,

 std::size_t size,

 void *&ptr,

 std::size_t &space

);

}

WG21/N2301 = J16/07-0161 Alignment page 10

Core WG Proposal Wording of 10

1 Effects: If it would be possible to fit size bytes of storage aligned by alignment into the buffer

starting at ptr with length space, the function updates ptr to point to the first possible address
of such storage and decreases space by the number of bytes used for alignment. Otherwise
the function has no effect.

2 Requires:

- alignment to be a fundamental alignment value or an extended alignment value
supported by the implementation in this context

- ptr is pointing to at least space bytes of contiguous storage

3 Returns: A null pointer if an aligned buffer could not be accommodated; otherwise the
resulting value of ptr.

4 [Note: The function updates its ptr and space arguments so that it can be repeatedly called
with possibly different alignment and size arguments for the same buffer. – end note]

