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1 Introduction
This document proposes lambda expressions to be adopted to C++. The proposal is a major revision of the document
N1968 [WJG+06], and draws also from the document N1958 [Sam06] by Samko. The differences to N1968 are:

• Most of the discussion of background and motivation for lambda expressions is omitted.

• There are some changes in the proposed syntax.

• Lambda functions can be defined generically: their parameter types need not be explicitly specified.

• Behavior with constrained templates (concepts) is explained in detail.

• The proposed semantics have changed to not allow referring to variables defined in outer scopes in the body of
a lambda expression. Instead, the programmer explicitly declares the variables to be stored, and how they are
stored, in the closure.

The proposed standard wording is not yet included.
We use the following terminology in this document:

• Lambda expression or lambda function: an expression that specifies an anonymous function object

• Closure: An anonymous function object that is created automatically by the compiler as the result of evaluating
a lambda expression. Closures consists of the code of the body of the lambda function and the environment in
which the lambda function is defined. In practice this means that variables referred to in the body of the lambda
function are stored as member variables of the anonymous function object, or that a pointer to the frame where
the lambda function was created is stored in the function object.

The proposal relies on several future additions to C++, some of which are already in the working draft of the
standard, others likely candidates to be included into the standard. These include rvalue references [Hin06], the
decltype [JSR06a] operator, and the ability to deduce the type of a variable from its initializer expression using
auto [JSR06b].

2 In a nutshell
The use of function objects as higher-order functions is commonplace in calls to standard algorithms. In the following
example, we find the first employee within a given salary range:
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class between {
double low, high;

public:
between(double l, double u) : low(l), high(u) { }
bool operator()(const employee& e) {

return e.salary() >= low && e.salary() < high;
}

}
...
double min salary;
...
std::find if(employees.begin(), employees.end(),

between(min salary, 1.1∗min salary));

The constructor call between(min salary, 1.1∗min salary) creates a function object, which is comparable to a closure,
a term commonly used in the context of functional programming languages. A closure stores the environment, that is
the values of the local variables, in which a function is defined. Here, the environment stored in the between function
object are the values low and high, which are computed from the value of the local variable min salary. Thus, we store
the information necessary to evaluate the body of the operator()() in the closure.

The syntactic requirement of defining a class with its member variables, function call operator, and constructor,
and then constructing an object of that type is very verbose, and not well-suited for creating function objects “on the
fly” to be used only once. The essence of this proposal is a concise syntax for defining such function objects—indeed,
we define the semantics of lambda expressions via translation to function objects. With the proposed features, the
above example becomes:

double min salary = ...
...
std::find if(employees.begin(), employees.end(),

<>(e : auto l = min salary, auto h = 1.1∗min salary) { e.salary() >= l && e.salary() < h });

We propose syntactic shortcuts, described later, that considerably shorten the lambda function above.

3 Proposal
Lambda expressions are primary-expressions. Lambda functions are defined with the following syntax:

lambda-expression:
lambda-head exception-specificationopt lambda-body

lambda-head:
<>( lambda-parameter-clauseopt lambda-local-var-clauseopt )
<&>( lambda-parameter-clauseopt )

lambda-body:
{ expression }
->type-id { expression }
->type-id compound-statement

lambda-parameter-clause:
lambda-parameter
lambda-parameter , lambda-parameter-clause

lambda-parameter:
identifier
identifier = assignment-expression
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decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression

lambda-local-var-clause:
: lambda-local-var-listopt

lambda-local-var-list:
lambda-local-var
lambda-local-var , lambda-local-var-list

lambda-local-var:
decl-specifier-seq declarator = assignment-expression
&opt identifier
this

In the following, we introduce the proposed feature informally using examples of increasing complexity. We will need
the helper function make, below, that can be used to write an expression of an arbitrary type T, as make<T>():

template <class T> T make();

3.1 Lambda functions with no external references
We first discuss lambda functions that have no references to variables defined outside of its parameter list. We demon-
strate with a binary lambda function that invokes operator+ on its arguments. The most concise way to define that
lambda function is as follows:

<>(x, y) { x + y }

No types for the parameters need to be defined. This kind of a lambda function is generic. The types for the arguments
will be deduced similarly to template argument deduction. This is discussed in Section 6.

It is also possible to define parameter types explicitly:

<>(int x, int y) { x + y }

This lambda function can only be called with arguments that are of type int, or convertible to type int. We refer to a
lambda function that specifies all of its argument types as non-generic.

In both of the above examples, the body of the lambda function is a single expression. The return type does not
have to be specified; it is deduced to be the type of the expression comprising the body. Return type deduction is
defined with the help of the decltype operator. Above, the return type is defined as decltype(x + y).

Explicitly stating the return type is allowed as well, for which the syntax is as follows:

<>(int x, int y) ->int { x + y }

It is possible to define lambda functions where the body is a block of statements, rather than a single expression.
In that case, the return type must be specified explicitly:

<>(int x, int y) ->int { int z; z = x + y; return z; }

The rationale for requiring the return type to be specified explicitly is two-fold. First, the body of a lambda function
could contain more than one return statement, and the types of the expressions in those return statements could differ.
Such definitions would likely have to be flagged out as ambiguous. Second, implementing return type deduction from
a statement block may be complicated. That is, the return type is no longer dependent on a single expression, but
rather requires analyzing a series of statements, possibly including variable declarations etc.

The semantics of lambda functions are defined by translation to function objects. For example, the last lambda
function above is defined to be behaviorally equivalent with the function object below. The proposed translation is
somewhat more involved; we describe the full translation in Section 5.
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class F {
public:

F() {}
int operator()(int x, int y) const {

int z; z = x + y; return z;
}

};

F() // create the closure

We summarize the rules this far:

• Each parameter slot in the parameter list of a lambda function must either consist of an identifier, or of an
identifier followed by a default argument, or of an “ordinary” function parameter declaration with a non-abstract
declarator. A single identifier is thus interpreted as the name of the parameter, not a type. If no type is given
for a particular parameter, that parameter is generic and its type is deduced from the use of the lambda (see
Section 6).

• The body of the lambda function can either be a single expression (enclosed in braces) or a block.

• If the body of the lambda function is a block, the return type of the lambda function must be explicitly specified.

• If the body of the lambda function is a single expression, the return type of the lambda function may be explicitly
specified. If it is not specified, it is defined as decltype(e), where e is the body of the lambda expression.

3.2 External references in lambda function bodies
References to local variables declared outside of the lambda function bodies have been the topic of much debate. Any
local variable referenced in a lambda function body must somehow be stored in the resulting closure. The earlier
proposal [WJG+06] called for storing such local variables by copy and required an explicit declaration to instruct
that a variable should be stored by reference instead. Another proposal by Samko [Sam06] suggested the opposite.
However, neither alternative gained wide support as both approaches have notable safety problems. By-reference can
lead to dangling references, by-copy to unintentional slicing of objects, expensive copying, invalidating iterators, and
other surprises.

We propose that neither approach is the default and require the programmer to explicitly declare whether by-
reference or by-copy is desired. There are two mechanisms for this. Either specifying “by-reference” for the entire
lambda, or by specifying one of the two modes for each variable stored into the closure We discuss the latter mechanism
first.

All local variables referred to in the body of the lambda function must be declared and initialized alongside the
parameters of the lambda function. These declared local variables are what are stored in the closure. The following
example defines a lambda function, where the closure stores a reference to the local variable sum, and stores a copy of
a local variable factor:

double array[] = { 1.0, 2.1, 3.3, 4.4 };
double sum = 0; int factor = 2;
for each(array, array + 4, <>(int n : double& s = sum, int f = factor) { s += f ∗ n });

We refer to the part of the function signature that declares and initializes the member variables of the closure as the
lambda function’s local variable clause.

To clarify how local variables are handled, the above lambda function is behaviorally equivalent to the following
function object:

class F {
double& sum;
mutable int factor;

public:
F(int& sum, int factor) : sum(sum), factor(factor) {}
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auto operator()(int n) const ->decltype(make<double&>() += make<int&>() ∗ n) {
return sum += factor ∗ n;

}
};

F(sum, factor); // create the closure

The use of decltype operator is a bit complex, as the member variable names sum and factor are not in scope in the
signature of operator(); instead of sum and factor, we use the expressions make<double&>() and make<int&>() that
have, respectively, the same types as expressions sum and factor in the body of operator().

The syntax for declaring the variables to be stored into closures is the standard syntax for declaring and initializing
variables. It follows that the auto mechanism [JSR06b] can be used, avoiding the need to specify the types of the local
variables explicitly. For example, the above lambda function could alternatively be written as:

<>(n : auto& s=sum, auto f=factor) { s += f∗n }

We propose an additional shortcut: a single unqualified identifier, optionally preceded with &, that names a variable
with a non-static storage duration can be used as an element the local variable clause. A single identifier, say x, is
interpreted as the declaration auto x = x; preceding an identifier with & as in &x, is interpreted as auto& x = x. Here,
x on the right refers to a variable in scope of the lambda definition, x on the left is the newly declared variable to be
stored in the closure. With the shortcut, the above lambda can be written as:

<>(n : &sum, factor) { sum += factor∗n }

The variable this requires special handling. If a lambda function is defined in a member function, the body of the
lambda function may contain references to this. To allow these references, this must be explicitly declared in the local
variable clause. In the translation, references to this in the body of the lambda function are retained to refer to the
object in whose member function the lambda was defined, not the just generated closure object. We can interpret this
in the local variable clause as auto this = this, where this is some unique name. All references to this will be then
translated to references to this . The type of this will be appropriately qualified depending on the cv-qualifiers of the
member function the lambda is defined in. Also, the newly generated closure should be a friend of the enclosing class
to allow access to its private members. The following example demonstrates the handling of this, and the necessity of
making the lambda function a friend of the enclosing class:

class A {
vector<int> v;
...

public:
void zero all(const vector<int>& indices) {

for each(indices.begin(), indices.end(), <>(i : this) { this->v[i] = 0 });
}

};

Requiring explicit declaration of the variables that are to be stored into closure has the benefit, over the previous
proposals, that the programmer is forced to express his or her intention on what storage mechanism should be used for
each local variable. The disadvantage is verbosity. The full variable declaration syntax allows storing values computed
from one or more local variables into closures. For example:

<>(n : auto &s = sum, auto f = factor∗2) { s += f∗n } // f is a computed value

We suspect a common use of lambda functions is as function objects to standard algorithms and other similar
functions, where the lifetime of the lambda function does not extend beyond the lifetime of its definition context. In
such cases, it is safe to store the environment into a closure by reference. For this purpose, we suggest syntax that
allows the “by-reference” declaration to be made for the entire lambda at once, and not requiring explicitly listing
variable names in a local variable clause. Rewriting our previous example some, the two calls to for each below are
equivalent:

double array[] = { 1.0, 2.1, 3.3, 4.4 };
double sum = 0; int factor = 2;
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for each(array, array + 4, <>(n : &sum, &factor) { sum += factor ∗ n });
for each(array, array + 4, <&>(n) { sum += factor ∗ n });

Note that when the closure stores no copies of variables in the context of the lambda definitions, a different
translation is possible. The resulting function object could only store a single pointer to the stack frame where the
lambda is defined, and access individual variables via that pointer. We continue, however, to describe the semantics
of lambda functions via a translation to function objects with one member variable for each distinct variable that is
referred to in the body of the lambda function. Nevertheless, any implementation resulting in the same behavior should
be allowed. Section 7.1 discusses the <&> form further, and argues for requiring the “single pointer to environment”
closures described above in order to have a fixed size binary representation of lambda functions.

We summarize the rules regarding references to variables defined outside of the lambda function:

• The body of the lambda function can contain references to the parameters of the lambda function, to variables
declared in the local variable clause, and to any variable with static storage duration.

• If the lambda function is declared with the <&> form, additionally references to all local variables in scope at
the definition of the lambda function are allowed.

4 Type checking lambda functions
The bodies of non-generic lambda functions can be type checked immediately at the point of their definition. Generic
lambda functions, however, cannot be type checked just by seeing the definition of the lambda function, as its parameter
types are not known. The following two functions demonstrate:

<>(int i){ i + 1 }
<>(i) { i + 1 }

The body of the first function can be type checked, knowing that i is of type int. The second function provides no
information on what is the type of i, and thus the expression i + 1 in its body cannot be type checked.

To be able to type check a generic lambda function, we must first know what will be its argument types. This
information can be obtained if the lambda function is called:

<>(i) { i + 1 } (5)

We can now deduce that i will be of type int, and type-check i + 1 using that information. This is comparable to C++’s
unconstrained templates: a template function is type checked only after it is instantiated. In the above example, the
late type checking is not a modularity problem, because the use follows immediately after the definition. Lambda-
functions, however, are seldom called where they are defined. More often than not, they will be bound to a variable
or a function parameter, and invoked later in a different scope. We thus want to effect type checking when a lambda
is bound to variable that can be used to pass the lambda to a different scope. From the type of this variable the type
checker must extract the types of the arguments that the lambda function may be called with.

The type of a lambda function is some unique class type, known only to the compiler. This means that it is not
possible to declare a variable, or a function parameter, with the exact type of a lambda function. Lambda functions
can, however, be bound to function parameters whose types are template parameters, or to variables declared with
auto in order to have their type deduced from their initializer expression. We focus on the former case; the latter is
discussed in Section 4.1. Also, we only discuss constrained templates—unconstrained templates provide no useful
information for type checking prior to instantiation time.

Consider the following code where a lambda function is bound to a parameter of a function template:

template <typename F, typename T>
requires R
void foo(F f, T t) { f(t); }
foo(<>(i) { i + 1 }, 5);

First, for the function foo to type check, some constraint in R must state that an object of type F must be callable with
an argument of type T. An example of such a constraint is std::Callable1<F, T>, which brings with it the requirement
result type operator()(F, T). When type checking the above call to foo, after deducing F and T with template argument
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deduction, the constraints of R contain the information with which argument types the lambda function may be called
in the body of foo. In the call above, T is deduced to int, leading to the requirement result type operator()(F, int).
This essentially fixes the argument types of the lambda function, turning it from a generic to a non-generic function.
Section 5 describes in details how this kind of type checking can be attained.

4.1 Type checking and auto variables
Lambda functions can be used as initializer expressions of variables declared with auto. For example:

auto f = <>(i) { i + 1 };

This kind of binding a lambda function to a name reveals no new type information, and does not allow type-checking
of the body. With auto variables, the definition of a lambda function can be separated from the site where enough
information is obtained to be able to type check the function’s body. For example:

auto f = <>(i) { i + 1 };
// many lines of code here
f(5);

This is unavoidable. However, the location where type-checking becomes possible must necessarily be in the lexical
scope of the definition. In particular, without resorting to unconstrained templates, it is not possible to return a lambda
function as the result of the function defining it or passing it out of the function via a reference parameter without
coercing the lambda function into a type that allows the lambda function’s body to be type-checked. For example, in
the following function, the constructor of std::function<int(int)> provides the information that the lambda function’s
parameter type is int.

std::function<int(int)> counter() {
return <>(x: int c = 0) ->int { c += x };

}

5 Full translation semantics
We define the semantics of lambda functions via a translation to function objects. Implementations should not, how-
ever, be required to literally carry out the translations. We first explain the translation in a case where the body of the
lambda function is a single expression, the return type is not specified, the definition resides in a generic context, and
the parameter and closure member types are explicitly specified. Variations are discussed later.

The left-hand side of Figure 1 shows a lambda function in the context of two nested templates. The right-hand
side shows the translation. For concreteness of presentation, we fix the example to use two parameters and two local
variables. The lambda function is on lines a8–a12. We have included a generic context, the two template parameter
lists (with their requirements) on lines a1 and a5. The translation of a lambda function consists of the generic context
created with nested template classes in namespace scope (see lines b3 and b6); the closure class unique (line b9),
generated into the translated generic context; and a call to the constructor of unique to replace the lambda function
definition (starting from line b34). The following list describes the specific points of the translation:

1. It may not be possible to generate the closure class in the point of its definition. In particular, the closure
class must be usable as a template argument, and cannot thus be a local class. Therefore, the closure class is
to be generated into the innermost non-function scope immediately preceding the site of the definition of the
lambda function. All template context, possibly consisting of several nested templates, “lost” in moving up the
definition must be replicated in the translation. The replication of the entire context of template parameters and
their constraints is necessary to avoid the so called “concept map dropping” problem, described in Section 9. In
our example, the template parameter list of the source templates (lines a1 and a5) along with their constraints
are copied as such to the target templates (lines b3 and b6); there is no need to rename template parameters.

2. The formal template parameters of the context of the lambda function’s definition site are used as template
arguments to instantiate, respecting the nesting structure, the template context around the generated closure (see
line 34). Again, no change in parameter names is necessary.
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a1 template <C1 A, typename B>
a2 requires C2<B>
a3 void outer(...) {
a4 ...
a5 template <D1 X, D2 Y>
a6 class inner {
a7 ...
a8 <>(ptype1 param1,
a9 ptype2 param2)

a10 : vtype1 var1 = init1,
a11 vtype2 var2 = init2)
a12 { body }

b1 // generated to the innermost non-function scope from
b2 // the definition site of the lambda function
b3 template <C1 A, typename B> requires C2<B>
b4 struct unique outer {
b5

b6 template <D1 X, D2 Y>
b7 struct unique inner {
b8

b9 class unique {
b10 vtype1-t var1;
b11 vtype2-t var2;
b12 ...
b13 public: // But hidden from user
b14 unique(vtype1-t-param var1, vtype2-t-param var2)
b15 : var1(var1), var2(var2) {}
b16

b17 public: // Accessible to user
b18 unique(const unique& o) : var1(o.var1), var2(o.var2) {}
b19 unique(unique&& o) : var1(move(o.var1)), var2(move(o.var2)) {}
b20

b21 auto operator()(ptype1 param1, ptype2 param2) const
b22 ->decltype( body-t-ret )
b23 { return body-t; }
b24 };
b25

b26 template <C1 A, typename B>
b27 requires C2<B>
b28 void outer(...) {
b29 ...
b30 template <D1 X, D2 Y>
b31 class inner {
b32 ...
b33 // generated to exactly where the lambda function is defined
b34 unique outer<A, B>::template
b35 unique inner<X, Y>::
b36 unique(init1, init2))

Figure 1: Example translation of lambda functions. The ellipses are not part of the syntax but stand for omitted code.
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3. The function object (here named unique) implementing the lambda function is generated inside the templates
that create the template context.

The data of the closure is stored in the member variables of unique. In the example, two variables are stored in
the closure: var1 and var2. The type vtype1−t is the type obtained for var1 in interpreting vtype1 var1 = init1 as
a variable declaration. Unless auto is used, vtype1−t is equal to vtype1; vtype2−t is obtained analogously. Note
that vtype1 and vtype2 may not be usable directly in the signature of the function call operator unique, because
they may contain locally defined typedefs, or names of local classes. Expressing types in a way that avoids
references to local classes or typedefs should pose no major problem to compilers. Non-reference non-const
members are to be declared mutable—this is to allow updating member variables stored in the closure even
though the function call operator of the closure is declared const. For an example, see the counter function in
Section 4.1.

4. The closure’s constructor has one parameter for each member variable. The parameter types vtypeN−t−param
are obtained from vtypeN−t types by adding const and reference, leaving however non-const reference types
intact. This constructor need not be exposed to the user.

The closure also has copy and move constructors with their canonical implementations.

Closure classes do not have a default constructor or an assignment operator.

5. The parameter types of the function call operator are those defined in the lambda function’s parameter list. The
return type is obtained as decltype( body−t−ret ) where body−t−ret is obtained from the lambda function’s
body with a minor translation. The original body may contain references to the member variables var1 and var2,
which are not in scope in signatures of member functions. Each reference to varN must thus be replaced with
a valid expression with the type that varN has in the function body, such as make<vtypeN−t&>(). Reference is
added because member access operators via, possibly implicit, this return an lvalue.

6. A lambda function’s body may only contain references to its parameters, variables defined in the local variable
clause, and any variable with static storage duration. A minor translation for the body is necessary if the lambda
function is defined in a member function and contains references to this. The translation was described in
Section 3.2.

7. The names of all the classes generated in the translation should be unique, different from all other identifiers in
the entire program, and not exposed to the user.

The above example translation was a case where the body of the lambda function is a single expression, the return
type is not specified, the definition resides in a generic context, and the parameter types are explicitly specified. If the
return type is specified explicitly, that return type is used as the return type of the function call operator of the closure.
Note that textually the type expression may not be directly usable as the return type, as it may contain references to
local classes or typedefs, but a translation avoiding these pitfalls should pose no problems. The case where the body of
the lambda function is a compound statement, instead of a single expression, is only trivially different to the translation
described above. Implicit parameter types, however, require more complex handling, discussed in Section 6.

6 Generic lambda functions
This section describes how polymorphic, or generic, lambda functions can be type-checked at the scope of their
definition. The following outlines the process:

1. When the compiler encounters a lambda definition, a closure class is generated, according to the translation
described in Section 5; the function call operator is, however, not yet generated. Consequently, an isolated
definition of a polymorphic lambda function does not trigger type checking of the lambda function’s body. For
example, the definition of the lambda function below does not cause a type error:

int∗ ptr;
<>(i){ i + ptr + ptr };

Similarly, binding a lambda function to an auto variable does not trigger type-checking:
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auto still no error = <>(i){ i + ptr + ptr };

2. There are three different operations that a lambda function can be subjected to after its definition: it can be
called, its type can be bound to a constrained template parameter, or its type can be bound to an unconstrained
template parameter. We discuss each of those in turn:

(a) Calling a lambda function. When compiling an invocation to a lambda function, argument types to it
become known. Consider the following call:

int prod = 1;
auto cumul product = <>(x : auto p& = prod) { p ∗= x }

...
cumul product(5);

The type of the argument 5 is int, which we use as the type of the lambda function’s parameter x. We must
also select the parameter passing mode. If the type of an argument is T, the parameter type is T&&. For
example, above, the parameter type is int&&. In the call below, the parameter type is const int&&:

const int fact = 10;
cumul product(val);

Hence, when encountering a call to a lambda function, the type checker’s tasks are to

i. deduce the argument types;
ii. generate a function call operator with the deduced argument types and with the body of the lambda

function, and inject that to the closure class; and
iii. to type check the body of the function call operator.

For example, the code below shows the generated function call operators for the cases of the argument
type being deduced to int&& and const int&&:

auto operator()(int&& x) const ->decltype(make<int&>() ∗= x) { return p ∗= x; }
auto operator()(const int&& x) const ->decltype(make<int&>() ∗= x) { return p ∗= x; }

As the above example demonstrates, a single lambda function can be invoked at more than one call sites,
with different argument types. Thus a closure class can end up containing more than one function call
operator, all with equivalent bodies.

(b) Binding a lambda function to a constrained template argument. In the common case, a lambda func-
tion is passed to another scope prior to invoking the lambda function. Consider the following example:

std::vector<T> v; // T is some type parameter
T factor = ...;
std::transfrom(v.begin(), v.end(), v.begin(), <>(x : auto p = factor) { x ∗= p });

In this case, the type checker proceeds to do overload resolution in the normal manner. A possible decla-
ration of the transform function in the standard library is as follows:

template<InputIterator I1, typename O1, typename F>
requires OutputIterator<O1, Callable1<F, I1::value type>::result type>
O1 transform(I1 first, I1 last, O1 result, F f) {

for ( ; first != last; ++first, ++result)
∗result = f(∗first);

return result;
}

After template argument deduction, the constraints need to be checked. This takes place as defined in
the concepts proposal [GS06], except for function call operator requirements, which need to be handled
specially. Denote the type of the lambda function in the call as L. One of the constraints is thus
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Callable1<L, InputIterator<vector<T>::iterator>::value type>

where InputIterator<vector<T>::iterator>::value type can be resolved to T. The definition of Callable1 is
as follows:

auto concept Callable1<typename F, typename T1> {
typename result type;
result type operator()(F&, T1);

}

The requirement of a function call operator then becomes: result type operator()(L&, T). This information
can be used to generate the new function call operator into the closure class (make<T&>() comes from the
type of the member variable p):

auto operator()(T x) const ->decltype(x ∗= make<T&>()) { return x ∗= p; }

After injecting this function call operator, the operator’s body can be type checked. Also, due to now
knowing the argument types, the return type of the function call operator is known as well. The callability
requirement may place constraints on the return type of the function object type, so the closure should
be now also type checked against the function call operator constraint; in the above example this means
checking that L with the newly generated function call operator and T are a model of Callable1<L, T>.
Note that there can be more than one function call operator requirement on a single template parameter.
One way to deal with this is to inject a function call operator into the closure class for each call with
different argument types.

(c) Binding a lambda function to an unconstrained template argument. No checking takes place, therefore
the function call operator is not generated either. Generation and checking only takes place when the
template is instantiated with concrete non-generic types. For example:

template <typename F, typename T>
void forwarder(const F& f, const T& t) { return f(t); }
void forward to forwarder(int k) {

forwarder(<>(i){ i + ptr + ptr }, k);
}

The error message is obtained only when instantiating the body of the forwarder function, when the types
of the arguments to the lambda function become known.

7 Binary interface
A closure is of some compiler generated class type. To pass lambda functions to non-template functions, one can
use the std::function, or other similar library facilities. For example, the doit function below accepts any function or
function object F, including a closure, that satisfies the requirement Callable<F, int, int>:

void doit(std::function<int (int, int)>);

The doit function is non-generic, and could be placed, e.g., in a dynamically linked library. The following shows a call
to doit, passing a lambda function to it:

int i;
...

doit(<>(x, y : i) { x + i∗y });

The std::function template has a fixed size, and it can be constructed from any MoveConstructible function object
which satisfies the callability requirement of the std::function instance. A typical implementation of function uses so
called “small buffer optimization” to store small function objects in a buffer in the function itself, and allocate space
for larger ones dynamically, storing a pointer in the buffer.
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7.1 The <&> form
Access to variables declared in the lexical scope of a lambda function can be implemented by storing a single pointer
to the stack frame of the function enclosing the lambda. This lends to representing closures using two pointers: one
to the code of the lambda function, one to the enclosing stack frame (known as the “static link”). As discussed above,
this representation is only safe for lambda functions that do not outlive the functions they are defined in.

If the “two-pointer” representation is mandatory, lambda functions can be given a light-weight binary interface,
even more so than using std::function: lambda functions can be passed in registers, and they can be copied bitwise. We
put forward the suggestion that lambda functions defined using the <&> syntax are required to use this representation,
and that their types are instances of a “magic” template “std::nested function”. To extend the C++ type system with a
full-fledged new “lambda-function” type would be rather drastic, which is why we suggest std::nested function.

The definition of std::nested function would be similar to that of std::function:

template<class MoveConstructible R, class MoveConstructible... ArgTypes>
class function<R(ArgTypes...)>
struct nested function {

R operator()(ArgTypes...) const;
// copy and move constructors

};

A function expecting an std::function parameter accepts any function pointer or function object type, assuming
the function or function object is callable with the required signature; a function expecting a std::nested function only
matches lambda functions defined using the <&> form. A binary library interface can provide overloads for both types.
For example:

void doit(std::function<int(int, int)> f);
void doit(std::nested function<int(int, int)> f);

This overload sets allows calls with a function, function object, or lambda function, and takes advantage of the latter
overload when called with a <&> form lambda function; in a call to doit where the parameter is a lambda defined with
the <&> form, the match to the first requires a user-defined conversion via the templated constructor of std::function,
whereas the latter is a direct match.

The code generation for the closures implemented as instances of nested function must occur in the template
context of the definition of the lambda function (cf. the replicating of the template context in the translation) to avoid
the concept map dropping problem discussed in Section 9.

8 About particular design choices
This section discusses some design choices that may not get sufficient attention in the main body of the proposal.

8.1 Statements vs. expressions as the lambda body
In what is being proposed, the body of the lambda is either of the form: { primary-expression} or compound-statement.
This is a bit subtle—a semicolon makes the difference. For example, the following lambda expression would be OK:

<>(x, y) { x + y }

whereas the one below an error:

<>(x, y) { x + y; }

The correct writing of the latter, using a compound statement, is:

<>(x, y) ->decltype(x + y) { return x + y; }

As rationale for allowing both forms, we feel that restricting lambda function bodies to only compound statements
is unnecessary verbose in simple cases. On the other hand, disallowing statements in the function bodies is too
restrictive; consider the following example:
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for each(a.begin(), a.end(),
<>(x) ->void { if (cond(x)) then cout << x; else dosomethingelse; })

8.2 Direct initialization in local variable clause
Direct initialization syntax is not allowed in the local variable clause. For example, the following is an error.

<>(x : vector<int> v(it1, it2) ) { ... }
Direct initialization would complicate the translation semantics some. In the above example, it1 and it2 each would

need a parameter slot in the constructor of the closure object. Their types need to be deduced either by performing
overload resolution to the constructor of vector<int> and copying the parameter types from the best matching over-
load, or by leaving them as template parameters (T&&). Neither of this is necessary if direct initialization syntax is not
supported.

8.3 Alternative syntaxes
Other syntaxes are possible. Instead of “<>” and “<&>”, “/” and “/&” have been suggested. Also, whether the paren-
theses around the lambda parameter list and local variable clause are necessary is worth considering. The following
example demonstrates:

/x, y { x + y }
/x, y : &a, b { x + y + a + b }
/& x, y { x + y + a + b }

Another suggestion has been to use “;” instead of “:” as the separator between parameter list and local variable
clause—this would be similar to the use of semicolon in for statements. For example:

<>(x, y ; &a, b) { x + y + a + b }

8.4 No “per-variable” switch for by-copy and by-reference
The <&> is a default for “store all references to local variables by reference”. We do not propose a similar default for
“store all reference to local variables by copy.” When declaring closures that stores copies of data, we find it desirable
that the programmer is forced to be explicit of what is being copied into the closure. Assume that <c> declares a
lambda where the local environment is copied into the closure by default. Compare then the two lambda functions
below:

vector<int> v; // assume this is a very large vector
int index;
...
<c>(x) { v[index] + x }
<>(x : auto vi = v[index] ) { vi + x }
The former draws in the entire vector into the closure, whether or not this was what the programmer desires. The latter
lambda function only stores the one value that is necessary.

9 Concept map dropping
The concept system provides an “escape hatch” from constrained templates to unconstrained templates. With the cur-
rent specification of concepts [GS06] the escape hatch exhibits somewhat brittle and surprising behavior. Using the
escape hatch obviously nullifies all guarantees about separate type checking, leading to instantiation time errors if a
template’s implicit requirements, induced by what operations are used in the body of the template, are not met. How-
ever, even if all the implicit constraints are met in the instantiation context of an unconstrained template, a compiler
error can still occur. Even worse, the code can compile and manifest surprising behavior at run-time. This can occur
if so called syntax remapping is used in concept maps. The minimal example below explains the issue: concept maps
being dropped.
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concept C<typename T> { void op(T); };

concept map C<int> { void op(int) {} };

template <typename T> void f(const T& t) { op(t); } // unconstrained template
template <C U> void g(const U& u) {

op(u); // OK
f(u); // error

}
...
g(1);

Here, a constrained function template g calls an unconstrained function template f. This is allowed, and all checking
is to be delayed until instantiation time. As the call to f is the sole contents of g’s body, g type-checks. Furthermore,
one should expect no instantiation time errors as f seems to only use functionality that g’s constraints guarantee. The
call g(1), however, produces the error:

test-simple.cpp: In function ’void f(const T&) [with T = int]’:
test-simple.cpp:8: instantiated from ’void g(const U&) [with U = int]’
test-simple.cpp:11: instantiated from here
test-simple.cpp:7: error: ’op’ was not declared in this scope

The reason is that when instantiating unconstrained templates, concept map declarations have no effect. Thus, even
though op(u) works, resolving to C<int>::op(int), the same invocation fails when placed from the unconstrained
template f<int>—the concept map for C<int> was dropped. Thus, generating lambda functions as unconstrained
templates would result in lambdas exhibiting the problems of concept map dropping.
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