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Introduction

This document provides proposed wording for concepts. Readers unfamiliar with concepts are encouraged to read the
complete proposal [3]. This document provides wording for changes to the core language. Changes to the standard
library are discussed in separate documents:

— Concepts for the C++0x Standard Library: Approach [N2036=06-0106]

— Concepts for the C++0x Standard Library: Introduction [N2037=06-0107]

— Concepts for the C++0x Standard Library: Utilities (Revision 1) [N2038=06-0108]

— Concepts for the C++0x Standard Library: Containers [N2085=06-0155]

— Concepts for the C++0x Standard Library: Iterators (Revision 1) [N2083=06-0153]

— Concepts for the C++0x Standard Library: Algorithms (Revision 1) [N2084=06-0154]

— Concepts for the C++0x Standard Library: Numerics [N2041=06-0111]

Changes from N2081

The wording in this document reflects several changes to the formulation of concepts presented in N2081, most of which
were discussed at the ad hoc concepts meeting in February, 2007 at Google. The following changes are reflected in this
wording:

— Keywords: the where keyword has been replaced with requires, due to the prevalence of where as an identifier
in existing C++ code [1]. Thus, the “where clause” is now a “requires clause” or “requirements clause.”

— Terminology: we now collectively refer to the members of concepts as “associated” members, e.g., “associated
types,” “associated functions,” “associated requirements,” etc.
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— Signatures: we now de-emphasize the existence of “forwarding functions” in the implementation of signatures,
because such forwarding functions should not exist in a quality implementation (for performance reasons). We
have renamed “signatures” to “associated functions”.

— Type checking: it is now ill-formed to call an unconstrained template from a constrained template.

— Late checking: the late_check keyword now applies to entire templates, and is part of the declaration.

— Inline requirements: inline requirements are now called the “simple form” of requirements, while requirements
stated in the requires clause are called the “general form” of requirements. The two are now semantically equiva-
lent (including having the same rules for name lookup).

— Requirements: “||” constraints have been moved to a separate proposal [5], due to lack of experience in their
implementation and use [2]. As part of this change, requirements clauses are now comma-separated lists rather
than conjunctions.

— Associated values: This feature has been removed. Instead, one can use the constexpr facility [4] with signa-
tures.

Typographical conventions

Within the proposed wording, text that has been added will be presented in blue and underlined when possible. Text that
has been removed will be presented in red,with strike-through when possible.

Purely editorial comments will be written in a separate, shaded box.

The wording in this document is based on the latest C++0x draft, currently N2135. We have done our best to synchronize
section, paragraph, and table numbers with N2135. However, we have omitted many sections (those that did not require
any changes), leaving some dangling references in the final document. These references will be resolved automatically
when the LATEX source of this proposal is merged with the LATEX source of the working paper.



Chapter 2 Lexical conventions [lex]

2.11 Keywords [key]

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated as keywords
in phase 7):

Table 3: keywords
asm default goto reinterpret_cast true
auto delete if requires try
axiom do inline return typedef
bool double int short typeid
break dynamic_cast late_check signed typename
case else long sizeof union
catch enum mutable static unsigned
char explicit namespace static_assert using
class export new static_cast virtual
concept extern operator struct void
concept_map false private switch volatile
const float protected template wchar_t
const_cast for public this while
continue friend register throw
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Chapter 3 Basic concepts [basic]

6 Some names denote types, classes, concepts, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process that
determines this is called name lookup (3.4).

3.2 One definition rule [basic.def.odr]

1 No translation unit shall contain more than one definition of any variable, function, class type, concept, concept map,
enumeration type or template.

5 There can be more than one definition of a class type (clause 9), concept (clause 7.6), concept map (clause 7.6.2),
enumeration type (??), inline function with external linkage (??), class template (clause 14), non-static function template
(14.5.5), static data member of a class template (??), member function of a class template (??), or template specialization
for which some template parameters are not specified (14.7, 14.5.4) in a program provided that each definition appears in
a different translation unit, and provided the definitions satisfy the following requirements. Given such an entity named
D defined in more than one translation unit, then

3.3 Declarative regions and scopes [basic.scope]

3.3.1 Point of declaration [basic.scope.pdecl]

10 The point of declaration for a concept (clause 7.6) is immediately after the identifier in the concept. The point of
declaration for a concept map (clause ??) is immediately after the template-id in the concept-map.

Add the following new sections to 3.3 [basic.scope]:

3.3.7 Concept scope [basic.scope.concept]

1 The following rules describe the scope of names declared in concepts and concept maps.

1) The potential scope of a name declared in a concept or concept map consists not only of the declarative region
following the name’s point of declaration, but also of all associated function definitions in that concept or concept
map.

2) If reordering declarations in a concept or concept map yields an alternate valid program under (1), the program is
ill-formed, no diagnostic is required.

3) A name declared within an associated function definition hides a declaration of the same name whose scope
extends to or past the end of the associated function’s concept or concept map.

4) The potential scope of a declaration that extends to or past the end of a concept or concept map definition also
extends to the regions defined by its associated function definitions, even if the associated functions are defined



3.4 Name lookup Basic concepts 6

lexically outside the concept or concept map.

2 The name of a concept member shall only be used as follows:

— in the scope of its concept (as described above) or a concept refining (clause 7.6.3) from its concept,

— after the :: scope resolution operator (5.2) applied to the name of a concept map or a template-parameter in a
constrained template (14.9).

3.3.8 Requirements scope [basic.scope.req]

1 In a template that contains a requirements clause (14.9.1), the names of all associated functions inside the concepts
named by the concept-id requirements in the requirements clause (14.9.1) are declared in the scope of the template
declaration. [ Example:

concept Integral<typename T> {

T operator-(T);

}

concept RAIterator<typename Iter> {

Integral difference_type;

difference_type operator-(Iter, Iter);

}

template<RAIterator Iter>

RAIterator<Iter>::difference_type distance(Iter first, Iter last) {

return -(first - last); // okay: name lookup for - finds RAIterator<Iter>::operator-
// and Integral<RAIterator<Iter>::difference_type>::operator-
// overload resolution picks the appropriate operator for both uses of -

}

— end example ]

3.3.9 Name hiding [basic.scope.hiding]

Add the following new paragraph:

6 In an associated function definition, the declaration of a local name hides the declaration of a member of the concept or
concept map with the same name; see 3.3.7.

3.4 Name lookup [basic.lookup]

1 The name lookup rules apply uniformly to all names (including typedef-names (??), namespace-names (??), concept-
names (7.6) and class-names (??)) wherever the grammar allows such names in the context discussed by a particular rule.
Name lookup associates the use of a name with a declaration (??) of that name. Name lookup shall find an unambiguous
declaration for the name (see ??). Name lookup may associate more than one declaration with a name if it finds the
name to be a function name; the declarations are said to form a set of overloaded functions (??). Overload resolution
(??) takes place after name lookup has succeeded. The access rules (clause ??) are considered only once name lookup
and function overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution

6



7 Basic concepts 3.4 Name lookup

(if applicable) and access checking have succeeded are the attributes introduced by the name’s declaration used further
in expression processing (clause 5).

3.4.1 Unqualified name lookup [basic.lookup.unqual]

Add the following new paragraphs:

16 A name used in the definition of a concept or concept map X outside of an associated function body shall be declared in
one of the following ways:

— before its use in the concept or concept map X or be a member of a refined concept of X, or

— if X is a member of namespace N, before the definition of concept or concept map X in namespace N or in one of N
’s enclosing namespaces.

17 A name used in the definition of an associated function (7.6.1.1) of a concept or concept map X following the associated
function’s declarator-id shall be declared in one of the following ways:

— before its use in the block in which it is used or in an enclosing block (??), or

— shall be a member of concept or concept map X or be a member of a refined concept of X, or

— if X is a member of namespace N, before the associated function definition, in namespace N or in one of N ’s
enclosing namespaces.

3.4.3 Qualified name lookup [basic.lookup.qual]

1 The name of a class, concept map or namespace member can be referred to after the :: scope resolution operator (5.2)
applied to a nested-name-specifier that nominates its class, concept map or namespace. During the lookup for a name
preceding the :: scope resolution operator, object, function, and enumerator names are ignored. If the name found is
not a class-name (clause 9), concept-id or namespace-name (??), the program is ill-formed.

Add the following paragraph to Qualified name lookup [basic.lookup.qual]

6 In a constrained template (14.9), the name of an associated type (7.6.1.2) can be referred to after the :: scope resolution
operator (5.2) applied to a typedef-name introduced for a type-parameter (14.1). Qualified name lookup searches for the
associated type within each concept named by a concept-id requirement in the requirements clause (14.9.1). If qualified
name lookup finds more than one such associated type, and the associated types are not equivalent (14.4), the lookup is
ambiguous. [ Example:

concept Callable1<typename F, typename T1> {

typename result_type;

result_type operator()(F&, T1);

}

template<typename F, typename T1>

requires Callable1<F, T1>

F::result_type // okay: refers to Callable<F, T1>::result_type
forward(F& f, const T1& t1) {

return f(t1);

}

7



3.4 Name lookup Basic concepts 8

— end example ]

Add the following subsection to Qualified name lookup [basic.lookup.qual]

3.4.3.3 Concept map members [concept.qual]

1 If the nested-name-specifier of a qualified-id nominates a concept-id, the name specified after the nested-name-specifier
is looked up in the scope of the concept map (??), except for the cases listed below. The name shall represent one or
more members of that concept map. [ Note: a concept map member can be referred to using a qualified-id at any point
in its potential scope (3.3.7). — end note ]

2 A concept map member name hidden by a name in a nested declarative region can still be found if qualified by the name
of its concept map followed by the :: operator.

8



Chapter 5 Expressions [expr]

5.1 Primary expressions [expr.prim]

7 An identifier is an id-expression provided it has been suitably declared (clause 7). [ Note: for operator-function-ids, see
??; for conversion-function-ids, see ??; for template-ids, see ??. A class-name prefixed by ∼ denotes a destructor; see
12.4. Within the definition of a non-static member function, an identifier that names a non-static member is transformed
to a class member access expression (??). — end note ] The type of the expression is the type of the identifier. The
result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable, or data member.

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: template-id
:: concept-id

nested-name-specifier:
type-name ::
namespace-name ::
nested-name-specifier identifier ::
nested-name-specifier templateopt template-id ::

A nested-name-specifier that names a class, optionally followed by the keyword template (??), and then followed by
the name of a member of either that class (9.2) or one of its base classes (clause ??), is a qualified-id; ?? describes name
lookup for class members that appear in qualified-ids. The result is the member. The type of the result is the type of the
member. The result is an lvalue if the member is a static member function or a data member. [ Note: a class member can
be referred to using a qualified-id at any point in its potential scope (??). — end note ] The result of a qualified-id for
which name lookup finds a member of a concept map (3.4.3.3) is an rvalue. Where class-name :: class-name is used,
and the two class-names refer to the same class, this notation names the constructor (12.1). Where class-name ::∼
class-name is used, the two class-names shall refer to the same class; this notation names the destructor (12.4). [ Note:
a typedef-name that names a class is a class-name (??). — end note ]

5.2 Primary expressions [expr.prim]

5.2.2 Function call [expr.call]

Add the following new paragraph to [expr.call]:
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11 In a constrained template (14.9), a function call shall not call an unconstrained template.

5.3 Unary expressions [expr.unary]

5.3.1 Unary operators [expr.unary.op]

2 The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. The
operand shall not refer to a member of a concept or concept map. In the first case, if the type of the expression is “T,” the
type of the result is “pointer to T.” In particular, the address of an object of type “cv T” is “pointer to cv T,” with the same
cv-qualifiers. For a qualified-id, if the member is a static member of type “T”, the type of the result is plain “pointer to
T.” If the member is a non-static member of class C of type T, the type of the result is “pointer to member of class C
of type T.” [ Example:

struct A { int i; };

struct B : A { };

... &B::i ... // has type int A::*

— end example ] [ Note: a pointer to member formed from a mutable non-static data member (??) does not reflect the
mutable specifier associated with the non-static data member. — end note ]

10



Chapter 7 Declarations [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
concept-definition
concept-map-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

static_assert-declaration:
static_assert ( constant-expression , string-literal ) ;

[ Note: asm-definitions are described in ??, and linkage-specifications are described in ??. Function-definitions are de-
scribed in ?? and template-declarations are described in clause 14. Namespace-definitions are described in ??, Concept-
definitions are described in 7.6.1, Concept-map-definitions are described in 7.6.2, using-declarations are described in ??
and using-directives are described in ??. — end note ] The simple-declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in ?? and declarators,
the components of an init-declarator-list, are described in clause 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a function or
defines a class, concept, namespace, template, or function also has one or more scopes nested within it. These nested
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scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances in clause 7 about compo-
nents in, of, or contained by a declaration or subcomponent thereof refer only to those components of the declaration
that are not nested within scopes nested within the declaration.

Add the following new section to 7 [dcl.dcl]:

7.6 Concepts [concept]

1 Concepts describe an abstract interface that can be used to constrain templates 14.9. Concepts state certain syntactic and
semantic requirements (7.6.1) on a set of template type, non-type, and template parameters.

concept-id:
concept-name < template-argument-listopt >

concept-name:
identifier

2 A concept-id refers to a specific concept map (7.6.2) by its concept-name and a specific set of concept arguments.
[ Example: CopyConstructible<int> is a concept-id if name lookup (3.4) determines that the identifier CopyCon-
structible refers to a concept-name. — end example ]

7.6.1 Concept definitions [concept.def]

1 The grammar for a concept-definition is:

concept-definition:
autoopt concept identifier < template-parameter-list > refinement-clauseopt concept-body ;opt

2 Concept-definitions are used to make concept-names. A concept-name is inserted into the scope in which it is declared
immediately after the concept-name is seen. A concept is considered defined after the closing brace of its concept-body
has been seen.

3 Concepts shall only be defined at namespace or global scope.

4 A concept with a preceding auto is an implicit concept (7.6.4). A concept without a preceding auto is an explicit
concept.

5 The template-parameter-list of a concept-definition shall not contain any requirements specified in the simple form
(14.9.1).

6

concept-body:
{ concept-member-specificationopt }

concept-member-specification:
associated-function concept-member-specificationopt
associated-parameter concept-member-specificationopt
associated-requirements concept-member-specificationopt
axiom-definition concept-member-specificationopt

The body of a concept contains associated functions (7.6.1.1), associated parameters (7.6.1.2), associated requirements

12



13 Declarations 7.6 Concepts

(7.6.1.3), and axioms (7.6.1.3) that describe the behavior of the concept parameters in its template-parameter-list.

7.6.1.1 Associated functions [concept.fct]

1 Associated functions describe functions, member functions, or operators that describe the functional behavior of the
concept arguments and associated arguments (7.6.1.2). Concept maps (7.6.2) for a given concept must provide, either
implicitly (7.6.2.3) or explicitly (7.6.2.1, definitions for each associated function in the concept.

associated-function:
simple-declaration
function-definition
template-declaration

2 Associated functions can specify requirements for free functions and operators. [ Example:

concept Monoid<typename T> {

T operator+(T, T);

T identity();

}

— end example ]

3 With the exception of the assignment operator (??), associated functions shall specify requirements for operators as free
functions. [ Note: This restriction applies even to the operators (), [], and ->, which can otherwise only be overloaded
via non-static member functions (??): [ Example:

concept Convertible<typename T, typename U> {

operator U(T); // okay: conversion from T to U
T::operator U*() const; // error: cannot specify requirement for member operator

}

— end example ]

4 Associated functions can specify requirements for non-static member functions, constructors and destructors. [ Example:

concept Container<typename X> {

X::X(int n);

X::~X();

bool X::empty() const;

}

— end example ]

5 Associated functions can specify requirements for function templates and member function templates. [ Example:

concept Sequence<typename X> {

typename value_type;

template<InputIterator Iter>

requires Convertible<InputIterator<Iter>::value_type, Sequence<X>::value_type>

X::X(Iter first, Iter last);

};

13



7.6 Concepts Declarations 14

— end example ]

6 Concepts may contain overloaded associated functions, but the associated functions shall have distinct types. [ Example:

concept C<typename X> {

void f(X);

void f(X, X); // okay
void f(X); // error: redeclaration of function ‘f’
int f(X, X); // error: differs only by return type

};

— end example ]

7 All associated function arguments are passed by reference. The actual type P of a type parameter whose declared type
is T is T, if T is a reference, or T const&, if T is not a reference. [ Example:

concept C<typename X> {

void f(X);

};

struct Y {};

concept_map C<Y> {

void f(const Y&); // okay: matches requirement for f
};

concept_map C<Y&&> {

void f(Y&&); // okay: matches requirement for f
};

— end example ]

8 Associated non-member functions may have a default implementation. This implementation will be instantiated when
implicit definition of an implementation (7.6.4) for the associated function (7.6.2.1) fails. [ Example:

concept EqualityComparable<typename T> {

bool operator==(T, T);

default bool operator!=(T x, T y) { return !(x == y); }

};

class X{};

bool operator==(const X&, const X&);

concept_map EqualityComparable<X> { }; // okay, operator!= uses default

— end example ]

7.6.1.2 Associated parameters [concept.param]

1 Associated parameters are types, values, and templates that are “implicit” parameters defined in the concept body and
used in the description of the concept.

14



15 Declarations 7.6 Concepts

associated-parameter:
type-parameter ;

2 An associated type parameter (or associated type) is an associated parameter that specifies a type in a concept body.
Associated types are typically used to express the parameter and return types of associated functions. [ Example:

concept Callable1<typename F, typename T1> {

typename result_type;

result_type operator()(F, T1);

}

— end example ]

3 Associated parameters may be provided with a default value. The default value will be used to define the associated
parameter when no corresponding definiion is provided in a concept map (7.6.2.2). [ Example:

concept Iterator<typename Iter> {

typename difference_type = int;

}

concept_map Iterator<int*> { } // okay, difference_type is int

— end example ] (??).

4 Associated parameters may use the simple form to specify requirements (14.9.1) on the associated parameters. The
simple form is equivalent to a declaration of the associated parameter followed by an associated requirement (7.6.1.3)
stated using the general form (14.9.1). [ Example:

concept InputIterator<typename Iter> { /∗ ... ∗/ }

concept Container<typename X> {

InputIterator iterator;

// ...
}

— end example ]

7.6.1.3 Associated requirements [concept.req]

1 Associated requirements place additional requirements on concept parameters and associated parameters. Associated
requirements have the same form and behavior as a requirements clause for constrained templates (14.9).

associated-requirements:
requires-clause ;

[ Example:

concept Iterator<typename Iter> {

typename difference_type;

requires SignedIntegral<difference_type>;

}

15
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— end example ]

7.6.1.4 Axioms [concept.axiom]

1 Axioms allow the expression of the semantic properties of concepts.

axiom-definition:
axiom identifier ( parameter-declaration-clause ) axiom-body

axiom-body:
{ axiom-seqopt }

axiom-seq:
axiom axiom-seqopt

axiom:
expression-statement
if ( condition ) expression-statement

An axiom-definition defines a new semantic axiom whose name is specified by its identifier. [ Example:

concept Semigroup<typename Op, typename T> {

T operator()(Op, T, T);

axiom Associativity(Op op, T x, T y, T z) {

op(x, op(y, z)) == op(op(x, y), z);

}

}

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {

T identity_element(Op);

axiom Identity(Op, T x) {

op(x, identity_element(op)) == x;

op(identity_element(op), x) == x;

}

}

— end example ]

2 Within the body of an axiom-definition, equality (==) and inequality (!=) operators are available for each concept type
parameter and associated type T. These implicitly-defined operators have the form:

bool operator==(const T&, const T&);

bool operator!=(const T&, const T&);

[ Example:

concept CopyConstructible<typename T> {

T::T(const T&);

axiom CopyEquivalence(T x) {

T(x) == x; // okay, uses implicit ==

16



17 Declarations 7.6 Concepts

}

}

— end example ]

3 Name lookup within an axiom will only find the implicitly-declared == and != operators if the corresponding operation
is not declared as an associated function (7.6.1.1) in the concept, one of the concepts it refines (7.6.3), or in an associated
requirement (7.6.1.3). [ Example:

concept EqualityComparable<typename T> {

bool operator==(T, T);

bool operator!=(T, T);

axiom Reflexivity(T x) {

x == x; // okay: refers to EqualityComparable<T>::operator==
}

}

— end example ] The != operator is semantically equivalent to the logical negation of the == operator, whether the ==
and != operators are explicitly or implicitly defined.

4 Where axioms state the equality of two expressions, implementations are permitted to replace one expression with the
other. [ Example:

concept Monoid<typename Op, typename T> {

T identity_element(Op);

axiom Identity(Op, T x) {

op(x, identity_element(op)) == x;

op(identity_element(op), x) == x;

}

}

template<typename Op, typename T> requires Monoid<Op, T>

T identity(const Op& op, const T& t) {

return op(t, identity_element(op)); // equivalent to “return t;”
}

— end example ]

5 Axioms can state conditional semantics using if statements. When the condition can be proven true, and the expression-
statement states the equality of two expressions, implementations are permitted to replace one expression with the other.
[ Example:

concept TotalOrder<typename Op, typename T> {

bool operator()(Op, T, T);

axiom Reflexivity(Op op, T x) { op(x, x); }

axiom Antisymmetry(Op op, T x, T y) { if (op(x, y) && op(y, x)) x == y; }

axiom Transitivity(Op op, T x, T y, T z) { if (op(x, y) && op(y, z)) op(x, z) == true; }

}

17
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— end example ]

7.6.2 Concept maps [concept.map]

1 The grammar for a concept-map-definition is:

concept-map-definition:
concept_map concept-id { concept-map-member-specificationopt } ;opt

concept-map-member-specification:
simple-declaration concept-map-member-specificationopt
function-definition concept-map-member-specificationopt
template-declaration concept-map-member-specificationopt

2

Concept maps describe how a set of template arguments meet the requirements stated in the body of a concept definition
(7.6.1). Whenever a constrained template (14.9) is named, there must be a concept map corresponding to each concept-
id requirement in the requirements clause (14.9.1). This concept map may be written explicitly (7.6.2), instantiated from
a concept map template (14.5.6), or generated implicitly (7.6.4). [ Example:

class student_record {

public:

string id;

string name;

string address;

};

concept EqualityComparable<typename T> {

bool operator==(T, T);

}

concept_map EqualityComparable<student_record> {

bool operator==(const student_record& a, const student_record& b) {

return a.id == b.id;

}

};

template<typename T> requires EqualityComparable<T> void f(T);

f(student_record()); // okay, have concept_map EqualityComparable<student_record>

— end example ]

3 Concept maps shall provde, either implicitly (7.6.2.3) or explicitly (7.6.2.1, 7.6.2.2), definitions for every associated
function (7.6.1.1) and associated parameter (7.6.1.2) of the concept named by its concept-id and any of its refined
concepts (7.6.3). [ Example:

concept C<typename T> { T f(T); }

concept_map C<int> {

int f(int); // okay: matches requirement for f in concept C
}

18
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— end example ]

4 Concept maps shall be defined in the same namespace as their corresponding concept.

5 Concept maps shall not contain declarations that do not match any requirement in their corresponding concept or its
refined concepts. [ Example:

concept C<typename T> { }

concept_map C<int> {

int f(int); // error: no requirement for function f
}

— end example ]

6 At the point of definition of a concept map, all associated requirements (7.6.1.3) of the corresponding concept and its
refined concepts (7.6.3) shall be satisfied. [ Example:

concept SignedIntegral<typename T> { /∗ ... ∗/ }

concept ForwardIterator<typename Iter> {

typename difference_type;

requires SignedIntegral<difference_type>;

}

concept_map SignedIntegral<ptrdiff_t> { };

concept_map ForwardIterator<int*> {

typedef ptrdiff_t difference_type;

} // okay: there exists a concept_map SignedIntegral<ptrdiff_t>

concept_map ForwardIterator<file_iterator> {

typedef long difference_type;

} // error: no concept_map SignedIntegral<long>

— end example ]

7 The definition of a concept map asserts that the axioms (7.6.1.4) defined in the corresponding concept and its refined
concepts (7.6.3) are true. The implementation is permitted to assume that these axioms hold without verifying them
[ Note: the intent is to permit axioms to be used for optimization — end note ].

8 If a concept map is provided for a particular concept-id, then that concept map shall be defined before the corresponding
concept-id is required.

7.6.2.1 Associated function definitions [concept.map.fct]

1 Associated non-member function requirements (7.6.1.1) are satisfied by function definitions in the body of a concept
map. These definitions can be used to adapt the syntax of the concept arguments to the syntax expected by the concept.
[ Example:

concept Stack<typename S> {

typename value_type;

bool empty(S);

19
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void push(S&, value_type);

void pop(S&);

value_type& top(S&);

}

// Make a vector behave like a stack
template<Regular T>

concept_map Stack<std::vector<T> > {

typedef T value_type;

bool empty(std::vector<T> vec) { return vec.empty(); }

void push(std::vector<T>& vec, value_type value) { vec.push_back(value); }

void pop(std::vector<T>& vec) { vec.pop_back(); }

value_type& top(std::vector<T>& vec) { return vec.back(); }

}

— end example ]

2 A function declaration in a concept map matches an associated function of the same name when function type is equiva-
lent after substitution of concept arguments and transformation of parameter types to references (7.6.1.1). [ Example:

concept C<typename X> {

void f(const X&);

};

concept_map C<int> {

void f(int) { } // okay, “int” parameter becomes a “const int&” parameter
};

— end example ]

3 Functions declared within a concept map may be defined outside the concept map. [ Example:

// c.h
concept C<typename X> {

void f(X);

};

concept_map C<int> {

void f(int);

};

// c.cpp
void C<int>::f(int) {

// ...
}

— end example ]

4 Function templates declared within a concept map match an associated function template when the associated function
template is at least as specialized (14.5.5.2) as the function template. [ Example:

20
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concept C<typename X> {

typename value_type;

template<ForwardIterator Iter>

requires Convertible<Iter::value_type, value_type>

void X::X(Iter first, Iter last);

}

concept_map C<MyContainer> {

typedef int value_type;

template<InputIterator Iter>

requires Convertible<Iter::value_type, int>

void X::X(Iter first, Iter last) { ... } // okay: associated function is more specialized
}

— end example ]

5 Associated member function requirements (7.6.1.1), including constructors and destructors, are satisfied by member
functions in the corresponding concept map parameter (call it X). Let parm1, parm2, ..., parmN be the parameters of the
associated member function, then

— if the associated member function requirement is a constructor requirement, the requirement is satisfied if X is
initializable with arguments parm1, parm2, ..., parmN, [ Example:

concept IntConstructible<typename T> {

T::T(int);

}

concept_map IntConstructible<float> { } // okay: float can be initialized with an int

struct X { X(long); }

concept_map IntConstructible<X> { } // okay: X has a constructor that can accept an int (converted to a long)

— end example ]

— if the associated member function requirement is a destructor requirement, the requirement is satisfied if X is a
built-in type or has a public destructor, [ Example:

concept Destructible<typename T> {

T::~T();

}

concept_map Destructible<int> { } // okay: int is a built-in type

struct X { };

concept_map Destructible<X> { } // okay: X has implicitly-declared, public destructor

struct Y { private: ~Y(); }

concept_map Destructible<Y> { } // error: Y’s destructor is inaccessible

21
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— end example ]

— otherwise, the associated member function requirement requires a member function f. If x is an lvalue of type cv
X, where cv are the cv-qualifiers on the associated member function requirement, the requirement is satisfied if
the expression x.f(parm1, parm2, ..., parmN) is well-formed and its type is implicitly convertible to the
return type of the associated member function requirement. [ Example:

concept MemberSwap<typename T> {

void T::swap(T&);

}

struct X {

X& swap(X&);

}

concept_map MemberSwap<X> { } // okay: X has a member function swap and its return type is convertible to void

— end example ]

7.6.2.2 Associated parameter definitions [concept.map.associated]

1 Definitions in the concept map provide types, values, and templates that satisfy requirements for associated parameters
(7.6.1.2).

2 Associated type parameter requirements are satisfied by type definitions in teh body of a concept map. [ Example:

concept ForwardIterator<typename Iter> {

typename difference_type;

}

concept_map ForwardIterator<int*> {

typedef ptrdiff_t difference_type;

}

— end example ]

3 Associated template parameter requirements are satisfied by class template definitions in the body of the concept map.
[ Example:

concept Allocator<typename Alloc> {

template<class T> class rebind;

}

template<typename T>

concept_map Allocator<my_allocator<T>> {

template<class U>

class rebind {

public:

typedef my_allocator<U> type;

};

};

22



23 Declarations 7.6 Concepts

— end example ]

7.6.2.3 Implicit definitions [concept.map.implicit]

1 Any of the requirements of a concept and its refined concepts (7.6.3) that are not satisfied by the definitions in the body
of a concept map (7.6.2.1, 7.6.2.2) are unsatisfied requirements.

2 Definitions for unsatisfied requirements in a concept map are implicitly defined from the requirements and their default
values as specified by the matching of implicit concepts (7.6.4). If any unsatisfied requirement is not matched by this
process, the concept map is ill-formed.

7.6.3 Concept refinement [concept.refinement]

1 The grammar for a refinement-clause is:

refinement-clause:
: refinement-specifier-list

refinement-specifier-list:
refinement-specifier , refinement-specifier-list

refinement-specifier:
::opt nested-name-specifieropt concept-id

2 Refinements specify an inheritance relationship among concepts. Concept refinement inherits all requirements in the
body of a concept (7.6.1, such that the requirements of the refining concept are a superset of the requirements of the
refined concept. When a concept B refines a concept A, every set of template arguments that meets the requirements of B
also meets the requirements of A. A is called the refined concept and B is the refining concept. [ Example: In the following
example, EquilateralPolygon refines Polygon. Thus, every EquilateralPolygon is a Polygon, and constrained
templates (14.9) that are well-formed with a Polygon constraint are well-formed when given a EquilateralPolygon.

concept Polygon<typename P> { /∗ ... ∗/ }

concept EquilateralPolygon<typename P> : Polygon<P> { /∗ ... ∗/ }

— end example ]

3 The concept-ids referred to in the refinement clause shall correspond to defined concepts. [ Example:

concept C<typename T> : C<vector<T>> {/∗ ... ∗/ } // error: concept C is not defined

— end example ]

4 A concept-id in the refinement clause shall not refer to associated types.

5 A concept-id in the refinement clause shall refer to at least one of the concept parameters. [ Example:

concept InputIterator<typename Iter>

: Incrementable<int> // error: Incrementable<int> uses no concept parameters
{

// ...
}
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— end example ]

7.6.3.1 Concept member lookup [concept.member.lookup]

1 Concept member lookup determines the meaning of a name (id-expression) in concept scope (3.3.7). The following steps
define the result of name lookup for a member name f in concept scope C. CR is the set of concept scopes corresponding
to the concepts refined by the concept whose scope is C.

2 If the name f is declared in concept scope C, and f refers to an associated parameter (7.6.1.2), then the result of name
lookup is the associated parameter.

3 If the name f is declared in concept scope C, and f refers to one or more associated functions (7.6.1.1), then the result of
name lookup is an overload set containing the associated functions in C in addition to the overload sets in each concept
scope in CR for which name lookup of f results in an overload set. [ Example:

concept C<typename T> {

T f(T); // #1
}

concept D<typename T> {

T f(T, T); // #2
}

template<typename T>

requires D<T>

void f(T x)

{

D<T>::f(x); // name lookup finds #1 and #2, overload resolution selects #1
}

— end example ]

4 If the name f is not declared in C, name lookup searches for f in the scopes of each of the refined concepts (CR). If name
lookup of f is ambiguous in any concept scope CR, name lookup of f in C is ambiguous. Otherwise, the set of concept
scopes CR′ is a subset of CR containing only those concept scopes for which name lookup finds f. The result of name
lookup for f in C is defined by:

— if CR′ is empty, name lookup of f in C returns no result, or

— if CR′ contains only a single concept scope, name lookup for f on C is the result of name lookup for f in CR′ , or

— if f refers to an overload set in all concept scopes in CR′ , then f refers to an overload set containing all associated
functions from each of these overload sets, or

— if f refers to an associated type in all concept scopes in CR′ , and all of the associated types are equivalent (14.9.1),
the result is the associated type f found first by a depth-first traversal of the refinement clause,

— otherwise, name lookup of f in C is ambiguous.

5 When name lookup in a concept scope C results in an overload set, duplicate associated functions are removed from
the overload set. If more than one associated function in the overload set has the same signature (??), the associated
function found first by a depth-first traversal of the refinements of C starting at C will be retained and the other associated
functions will be removed as duplicates. [ Example:
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concept A<typename T> {

T f(T); // #1a
}

concept B<typename T> {

T f(T); // #1b
T g(T); // #2a

}

concept C<typename T> : A<T>, B<T> {

T g(T); // #2b
}

template<typename T>

requires C<T>

void h(T x) {

C<T>::f(x); // overload set contains #1a; #1b was removed as a duplicate
C<T>::g(x); // overload set contains #2b; #2a was removed as a duplicate

}

— end example ]

7.6.3.2 Implicit concept maps for refined concepts [concept.implicit.maps]

1 When a concept map is defined for a concept C that has a refinement clause, concept maps for each of the concepts
refined by C are implicitly defined. [ Example:

concept A<typename T> { }

concept B<typename T> : A<T> { }

concept_map B<int> { } // implicitly defines concept map A<int>

— end example ]

2 When a concept map is implicitly defined for a refined concept, definitions in the concept map can be used to satisfy the
requirements of the refined concept. [ Example:

concept C<typename T> {

T f(T);

}

concept D<typename T> : C<T> { }

concept_map D<int> {

int f(int x); // satisfies requirement for C<int>::f
}

— end example ]
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3 Concept map templates (14.5.6) are implicitly defined only for refinements for which the template parameters of the
original concept map are deducible from the refinement. Concept maps for which the template parameters of the original
concept map are not all deducible shall have been defined either implicitly or explicitly, and associated functions and
parameters for these refined concepts shall not be defined in the original concept map. [ Example:

concept Ring<typename AddOp, typename MulOp, typename T>

: Group<AddOp, T>, Monoid<MulOp, T> { /∗ ... ∗/ }

template<Integral T>

concept_map Ring<std::plus<T>, std::multiplies<T>, T> { }

// okay, implicitly generates:
template<Integral T> concept_map Group<std::plus<T>, T> { }

template<Integral T> concept_map Monoid<std::multiplies<T>, T> { }

template<Integral T, Integral V>

requires MutuallyConvertible<T, V>,

concept_map Group<std::plus<T>, V> { }

// okay, used to instead of implicitly-generated Group refinement in the following concept map

template<Integral T, Integral U, Integral V>

requires MutuallyConvertible<T, U>, MutuallyConvertible<T, V>,

MutuallyConvertible<U, V>

concept_map Ring<std::plus<T>, std::multiplies<U>, V> { }

// ill-formed, cannot implicitly define:
template<Integral T, Integral U, Integral V>

requires MutuallyConvertible<T, U>, MutuallyConvertible<T, V>,

MutuallyConvertible<U, V>

concept_map Monoid<std::multiplies<U>, V> { }

— end example ]

7.6.4 Implicit concepts [concept.implicit]

1 Concept maps for implicit concepts (i.e., those concepts preceded by the auto keyword) are implicitly defined when
they are required to satisfy the requirements of a constrained template (14.9), the associated requirements of a concept
(7.6.1.3), or a concept map of a refined concept that cannot be implicitly defined from the concept map for the refining
concept (7.6.3.2). [ Example:

auto concept Addable<typename T> {

T operator+(T, T);

}

template<typename T>

requires Addable<T>

T add(T x, T y) {

return x + y;

}

int f(int x, int y) {

return add(x, y); // okay: concept map Addable<int> implicitly defined
}
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— end example ]

2 The implicit definition of a concept map involves the implicit definition of concept map members for each associated
non-member function (7.6.1.1) and associated parameter (7.6.1.2) requirement, described below. If the implicit defini-
tion of a concept map member would produce an invalid definition, or if any of the requirements of the concept would be
unsatisfied by the implicitly-defined (7.6.2), the implicit definition of the concept map fails [ Note: failure to implicitly
define a concept map does not imply that the program is ill-formed. — end note ] [ Example:

auto concept F<typename T> {

void f(T);

}

auto concept G<typename T> {

void g(T);

}

template<typename T> requires F<T> void h(T); // #1
template<typename T> requires G<T> void h(T); // #2

struct X { };

void g(X);

void func(X x) {

h(x); // okay: implicit concept map F<X> fails, causing template argument deduction to fail for #1; calls #2
}

— end example ]

3 The implicit concept map member defined for an associated non-member function requirement (7.6.1.1) has the same
type and name as the associated function, after the concept map parameters have been substituted into the associated
function [ Note: the implicitly-defined function matches the associated function requirement (7.6.2.1) — end note ]İf the
return type of the function is void, the body of the function contains a single expression-statement; otherwise, the body
of the function contains a single return statement. The expression in the expression-statement or return statement is
defined as follows:

— if the associated function requirement is a prefix unary operator Op, the expression is Op parm, where parm is the
name of the parameter, or

— if the associated function requirement is a postfix unary operator Op, the expression is parm Op, where parm is
the name of the parameter, or

— if the associated function requirement is a binary operator Op, the expression is parm1 Op parm2, where parm1
and parm2 are the first and second parameters, respectively, or

— if the associated function requirement is the function call operator, the expression is parm1(parm2, parm3,
..., parmN), where parm1 is the first parameter and parm2 through parmN are the remaining parameters,

— otherwise, the associated function requirement is a function (call it f). The expression is an unqualified call
( 5.2.2) to f whose arguments are the parameters parm1, parm2, ..., parmN.

If the expression is ill-formed, and the associated non-member function requirement has a default implementation
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(7.6.1.1), the implicit concept map member is defined by substituting the concept map arguments into the default imple-
mentation.

4 Implicitly-defined associated function definitions cannot have their addresses taken (5.3.1). It is unspecified whether
these functions have linkage. [ Note: Implementations are encouraged to optimize away implicit-defined associated
function definitions, so that the use of constrained templates does not incur any overhead relative to unconstrained
templates. — end note ]

5 The implicit concept map member defined for an associated type parameter type can have its value deduced from the
return type of an associated function requirement defined implicitly (7.6.4) or explicitly (7.6.2.1). If for each of the
associated function requirements whose return type is type, the return type of the corresponding function in the concept
is the same type T, then the implicit concept map member type is defined as T. [ Example:

auto concept Addable<typename T> {

typename result_type;

result_type operator+(T, T);

}

template<typename T> requires Addable<T>

Addable<T>::result_type f(T x, T y);

int g(int x, int y) {

return f(x, y); // okay: Addable<int> implicitly defined
// implicitly-defined Addable<int>::operator+ calls built-in + for integers
// implicitly-defined Addable<int>::result_type is int

}

— end example ]

6 If an associated parameter (7.6.1.2) has a default argument, a concept map member satisfying the associated parameter
requirement shall be implicitly defined by substituting the concept map arguments into the default argument. If this
substitution does not produce a valid type or template (14.8.2), the concept map member is not implicitly defined.
[ Example:

auto concept A<typename T> {

typename result_type = typename T::result_type;

}

auto concept B<typename T> {

T::T(const T&);

}

template<typename T> requires A<T> void f(const T&); // #1
template<typename T> requires B<T> void f(const T&); // #2

struct X {};

void g(X x) {

f(x); // okay: A<X> cannot satisfy result_type requirement, and is not implicitly defined, calls #2
}

— end example ]
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Chapter 8 Declarators [dcl.decl]

8.3 Meaning of declarators [dcl.meaning]

8.3.6 Default arguments [dcl.fct.default]

Add the following new paragraph:

11 An associated function (7.6.1.1) or associated function definition (7.6.2.1) shall not have default arguments.
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Chapter 9 Classes [class]

9.2 Class members [class.mem]
member-specification:

member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;

function-definition ;opt
::opt nested-name-specifier templateopt unqualified-id ;

using-declaration
static_assert-declaration
template-declaration
requires-clause member-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt
declarator constant-initializeropt
identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

Add the following new paragraphs to 14 [temp]
19 A member-declaration that contains a requires-clause (14.9.1) is a constrained template (14.9) and shall only occur in a

class template (14.5.1). A member-declaration with a requires-clause shall not be a friend declaration (??). A member-
declaration shall have no more than one requires-clause.
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Chapter 12 Special member functions [special]

12.1 Constructors [class.ctor]

5 A default constructor for a class X is a constructor of class X that can be called without an argument. If there is no
user-declared constructor for class X, and if all of the non-static data members and base classes of X can be default-
initialized (??). a default constructor is implicitly declared. An implicitly-declared default constructor is an inline
public member of its class. A default constructor is trivial if it is implicitly-declared and if:

— its class has no virtual functions (??) and no virtual base classes (??), and

— all the direct base classes of its class have trivial default constructors, and

— for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivial
default constructor.

12.4 Destructors [class.dtor]

3 If a class has no user-declared destructor, and if every non-static data member of class type and every base class has
an accessible destructor, a destructor is declared implicitly. An implicitly-declared destructor is an inline public
member of its class. A destructor is trivial if it is implicitly-declared and if:

— all of the direct base classes of its class have trivial destructors and

— for all of the non-static data members of its class that are of class type (or array thereof), each such class has a
trivial destructor.

12.8 Copying class objects [class.copy]

5 The implicitly-declared copy constructor for a class X will have the form

X::X(const X&)

if

— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const B& or const
volatile B&, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class type has a
copy constructor whose first parameter is of type const M& or const volatile M&.1)

1) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue; see ??.
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Otherwise, the implicitly declared copy constructor will have the form

X::X(X&)

An implicitly-declared copy constructor is an inline public member of its class. If all of the direct and virtual base
classes of X and all of the non-static members of class type in X have accessible copy constructors; the implicitly-declared
copy constructor is public, otherwise it is inaccessible.

10 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. The implicitly-
declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)

if

— each direct base class B of X has a copy assignment operator whose parameter is of type const B&, const
volatile B& or B, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class type has a
copy assignment operator whose parameter is of type const M&, const volatile M& or M.2)

Otherwise, the implicitly declared copy assignment operator will have the form

X& X::operator=(X&)

The implicitly-declared copy assignment operator for class X has the return type X&; it returns the object for which the
assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy assignment operator is an
inline public member of its class. If all of the direct and virtual base classes of X and all of the non-static members of
class type in X have accessible copy assignment operators; the implicitly-declared copy assignment operator is public,
otherwise it is inaccessible. Because a copy assignment operator is implicitly declared for a class if not declared by the
user, a base class copy assignment operator is always hidden by the copy assignment operator of a derived class (??). A
using-declaration (??) that brings in from a base class an assignment operator with a parameter type that could be that of
a copy-assignment operator for the derived class is not considered an explicit declaration of a copy-assignment operator
and does not suppress the implicit declaration of the derived class copy-assignment operator; the operator introduced by
the using-declaration is hidden by the implicitly-declared copy-assignment operator in the derived class.

2) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile lvalue; see ??.
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Chapter 14 Templates [temp]

1 A template defines a family of classes or functions.

template-declaration:
exportopt late_checkopt template < template-parameter-list > requires-clauseopt declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

The declaration in a template-declaration shall

— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class nested within
a class template, or

— define a member template of a class or class template.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration defines a function,
a class, a concept map, or a static data member.

5 A class template shall not have the same name as any other template, class, concept, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that a function template
can be overloaded either by (non-template) functions with the same name or by other function templates with the same
name (??), a template name declared in namespace scope or in class scope shall be unique in that scope.

Add the following new paragraphs to 9.2 [class.mem]:
11 A template-declaration with a requires-clause that is not preceded by the late_check keyword is a constrained tem-

plate. Constrained templates are described in 14.9.

12 A template-declaration with a requires-clause may be preceded by the late_check keyword. Such a template is said
to be late-checked. Late-checked templates are described in 14.9.4.

14.1 Template parameters [temp.param]

1 The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration
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type-parameter:
class identifieropt
class identifieropt = type-id
typename identifieropt
typename identifieropt = type-id
template < template-parameter-list > class identifieropt
template < template-parameter-list > class identifieropt = id-expression
::opt nested-name-specifieropt concept-name identifier
::opt nested-name-specifieropt concept-name identifier = type-id
::opt nested-name-specifieropt concept-id identifier
::opt nested-name-specifieropt concept-id identifier = type-id

Add the following new paragraphs to 14.1 [temp.param]
17 A type-parameter declared with a concept-name or concept-id is a template type parameter that specifies a template

requirement (14.9.1) using the simple form of template requirements. A template type parameter written ::opt nested-
name-specifieropt C T, where C is a concept-name, is equivalent to a template type parameter written as typename T
with the template requirement ::opt nested-name-specifieropt C<T> added to the requirements clause (14.9.1). A template
type parameter written ::opt nested-name-specifieropt C<T2, T3, ..., TN> T, where C<T2, T3, ..., TN> is a concept-id,
is equivalent to a a template type prameter written as typename T with the template requirement ::opt nested-name-
specifieropt C<T, T2, T3, ..., TN> added to the requirements clause (14.9.1). The first concept parameter of concept C shall
be a type parameter, and all other concept parameters of C shall have default values. [ Example:

concept C<typename T> { }

concept D<typename T, typename U> { }

template<C T1, D<T1> T2> void f(T1, T2);

// equivalent to
template<typename T1, typename T2> requires C<T1>, D<T2, T1> void f(T1, T2);

— end example ]

14.4 Type equivalence [temp.type]

Add the following new paragraphs to 14.4 [temp.type]
2 In constrained template (14.9), two types are the same type if some same-type requirement makes them equivalent

(14.9.1).

14.5 Template declarations [temp.decls]

14.5.1 Class templates [temp.class]

Add the following new paragraphs to 14.5.1 [temp.class]
5 A member-declaration (9.2) in a class template that is preceded by a requires-clause (14.9.1) is only available in instan-

tiations in which the requires-clause is satisfied. [ Example:

auto concept LessThanComparable<typename T> {

bool operator<(T, T);

}

template<typename T>

class list {
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requires LessThanComparable<T> void sort();

}

struct X { };

void f(list<int> li, list<X> lX)

{

li.sort(); // okay: LessThanComparable<int> implicitly defined
lX.sort(); // error: no ’sort’ member in list<X>

}

— end example ]

14.5.4 Class template partial specializations [temp.class.spec]

9 Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the partial special-
ization except when the argument expression is a simple identifier. [ Example:

template <int I, int J> struct A {};

template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};

template <int I> struct B<I, I> {}; // OK

— end example ]

— The type of a template parameter corresponding to a specialized non-type argument shall not be dependent on a
parameter of the specialization. [ Example:

template <class T, T t> struct C {};

template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};

int array[5];

template< int X > class A<X,&array> { }; // error

— end example ]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary template,
unless the specialization contains a requirements clause (14.9.1) that is more specific than the primary template’s
requirements clause. [ Example:

concept Hashable<typename T> { int hash(T); }

template<typename T> class X { /∗ ... ∗/ }; // #6
template<typename T> requires Hashable<T> class X<T> { /∗ ... ∗/ }; //#7, okay

— end example ]

The template parameter list of a specialization shall not contain default template argument values.3)

3) There is no way in which they could be used.
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14.5.4.1 Matching of class template partial specializations [temp.class.spec.match]

2 A partial specialization matches a given actual template argument list if the template arguments of the partial special-
ization can be deduced from the actual template argument list (14.8.2) and the deduced template arguments meet the
requirements in the partial specialization’s requirements clause (14.9.1), if it has one. [ Example:

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

int hash(int);

struct Y { };

X<int> x1; // uses #6
X<Y> x2; // uses #5

— end example ]

4 In a type name that refers to a class template specialization, (e.g., A<int, int, 1>) the argument list must match the
template parameter list of the primary template. If the the primary template has a requirements clause (14.9.1), the ar-
guments must satisfy the requirements of the primary template. The template arguments of a specialization are deduced
from the arguments of the primary template. The template arguments of a specialization must meet the requirements in
the requirements clause (reftemp.req), if it has one [ Note: in practice, this means that the requirements clause on a partial
specialization must at least as specialized (14.5.5.2) as the requirements clause on the primary template. — end note ]

14.5.4.2 Partial ordering of class template specializations [temp.class.order]

2 [ Example:

concept C<typename T> { }

concept D<typename T> : C<T> { }

template<int I, int J, class T> class X { };

template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2
template<int I, int J, class T> requires C<T> class X<I, J, T>; // #3

template<int I, int J, class T> requires D<T> class X<I, J, T>; // #4

template<int I, int J> void f(X<I, J, int>); // #A
template<int I> void f(X<I, I, int>); // #B
template<int I, int J, class T> requires C<T> void f(X<I, J, T>); // #C

template<int I, int J, class T> requires D<T> void f(X<I, J, T>); // #D

The partial specialization #2 is more specialized than the partial specialization #1 because the function template #B is
more specialized than the function template #A according to the ordering rules for function templates. The partial spe-
cialization #4 is more specialized than the partial specialization #3 because the function template #D is more specialized
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than the function template #C according to the ordering rules for function templates. — end example ]

14.5.5 Function templates [temp.fct]

14.5.5.1 Function template overloading [temp.over.link]

4 The signature of a function template consists of its function signature, its return type, its requirements clause (14.9.1) and
its template parameter list. The names of the template parameters are significant only for establishing the relationship
between the template parameters and the rest of the signature. [ Note: two distinct function templates may have identical
function return types and function parameter lists, even if overload resolution alone cannot distinguish them.

7 Two function templates are equivalent if they are declared in the same scope, have the same name, have identical
template parameter lists, have identical requirements clauses (14.9.1.1) and have return types and parameter lists that
are equivalent using the rules described above to compare expressions involving template parameters. Two function
templates are functionally equivalent if they are equivalent except that one or more expressions that involve template
parameters in the return types and parameter lists are functionally equivalent using the rules described above to compare
expressions involving template parameters. If a program contains declarations of function templates that are functionally
equivalent but not equivalent, the program is ill-formed; no diagnostic is required.

14.5.5.2 Partial ordering of function templates [temp.func.order]

2 Partial ordering selects which of two function templates is more specialized than the other by transforming each template
in turn (see next paragraph) and performing template argument deduction using the function parameter types, or in the
case of a conversion function the return type. If template argument deduction succeeds, the deduced arguments are
used to determine if the requirements of the template (14.9.1) are satisfied. The deduction process and verification of
template requirements (14.9.1) determines whether one of the templates is more specialized than the other. If so, the
more specialized template is the one chosen by the partial ordering process.

3 To produce the transformed template, for each type, non-type, or template template parameter synthesize a unique type
(subject to the same-type requirements (14.9.1) of the template), value, or class template respectively and substitute it
for each occurrence of that parameter in the function type of the template. For each requirement in the requirements
clause (14.9.1), synthesize a concept map (7.6.2) for the synthesized types, values, and class templates.

4 Using the transformed function template’s function parameter list, or in the case of a conversion function its transformed
return type, perform type deduction against the function parameter list (or return type) of the other function. The
mechanism for performing these deductions is given in ??.

[ Example:

template<class T> struct A { A(); };

template<class T> void f(T);

template<class T> void f(T*);

template<class T> void f(const T*);

template<class T> void g(T);

template<class T> void g(T&);

template<class T> void h(const T&);

template<class T> void h(A<T>&);

void m() {
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const int *p;

f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;

g(x); // Ambiguous: g(T) or g(T&)
A<int> z;

h(z); // overload resolution selects h(A<T>&)
const A<int> z2;

h(z2); // h(const T&) is called because h(A<T>&) is not callable
}

— end example ]

If the signatures of two function templates are identical modulo the requirements clause (14.9.1), partial ordering of
function templates compares the requirements clauses. If one of the function templates has a requirements clause
and the other does not, the function template with a requirements clause is more specialized. If both templates have
requirements clauses, partial ordering determines whether the transformed function type (with its synthesized concept
maps) meets the requirements in the other template’s requirements clause. [ Example:

template<class T> struct A { A(); };

concept C<typename T> { }

concept D<typename T> : C<T> { }

concept_map C<const int*> { }

concept_map D<float> { }

template<typename T> concept_map D<A<T>> { }

template<class T> requires C<T> void f(const T&) { } // #1
template<class T> requires D<T> void f(const T&) { } // #2
template<class T> requires C<A<T>> void f(const A<T>&) { } // #3

void m() {

const int *p;

f(p); // #1 is called because #2 and #3 are not callable
float x;

f(x); // #2 is called because #3 is not callable and #2 is more specialized than #1
A<int> z;

f(z); // #3 is called because partial ordering based on requirements clauses does not come into effect

}

— end example ]

Add the following new subsection to Template declarations [temp.decls]

14.5.6 Concept map templates [temp.concept.map]

1 A concept map template defines an unbounded set of concept maps (7.6.2) with a common set of associated function
(7.6.2.1) and associated parameter (??) definitons. [ Example:

concept Iterator<typename Iter> {
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typename value_type;

Iter operator*(Iter);

}

template<typename T>

concept_map Iterator<T*> {

typedef T value_type;

T* operator*(T*); // can be implicitly or explicitly declared
}

— end example ]

2 A concept map template not preceded by the late_check keyword is a constrained template (14.9) [ Note: a concept
map template can be a constrained template even if it does not have a requirements clause (14.9.1). — end note ]

3 When a particular concept map is required (as specified with a concept-id), concept map matching determines whether a
particular concept map template can be used. Concept map matching matches the concept arguments in the concept-id to
the concept arguments in the concept map template, using matching of class template partial specializations (14.5.4.1).

4 If more than one concept map template matches a specific concept-id, partial ordering of concept map templates proceeds
as partial ordering of class template specializations (14.5.4.2).

5 A concept map template that is not a late-checked template (14.9.4) shall meet the requirements of its corresponding
concept (7.6.2) at the time of definition of the concept map template. [ Example:

concept F<typename T> {

void f(T);

}

template<F T> struct X;

template<typename T>

concept_map F<X<T>> { } // error: requirement for f(X<T>) not satisfied

template<F T> void f(X<T>); // #1

template<typename T>

concept_map F<X<T>> { } // okay: uses #1 to satisfy requirement for f(X<T>)

— end example ]

6 If the definition of a concept map template depends on a primary class template or class template partial specialization
(14.5.4), and instantiation of the concept map template results in a different (partial or full) specialization of that class
template with an incompatible definition, the program is ill-formed. [ Example:

concept Stack<typename X> {

typename value_type;

value_type& top(X&);

// ...
}

template<typename T> struct dynarray {
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T& top();

}

template<> struct dynarray<bool> {

bool top();

}

template<typename T>

concept_map Stack<dynarray<T>> {

typedef T value_type;

T& top(dynarray<T>& x) { return x.top(); }

}

template<Stack X>

void f(X& x) {

X::value_type& t = top(x);

}

void g(dynarray<int>& x1, dynarray<bool>& x2) {

f(x1); // okay
f(x2); // error: Stack<dynarray<bool» uses the dynarray<bool> class specialization

// rather than the dynarray primary class template, and the two
// have incompatible signatures for top()

}

— end example ]

14.6 Name resolution [temp.res]

No changes in this section; it is here only to allow cross-references

14.6.2 Dependent names [temp.dep]

14.6.2.1 Dependent types [temp.dep.type]

14.6.2.2 Type-dependent expressions [temp.dep.expr]

14.6.2.3 Value-dependent expressions [temp.dep.constexpr]

14.6.2.4 Dependent template arguments [temp.dep.temp]

14.6.3 Non-dependent names [temp.nondep]

1 Non-dependent names used in a template definition are found using the usual name lookup and bound at the point they
are used. [ Example:

void g(double);

void h();

template<class T> class Z {

public:

42



43 Templates 14.7 Template instantiation and specialization

void f() {

g(1); // calls g(double)
h++; // ill-formed: cannot increment function;

// this could be diagnosed either here or
// at the point of instantiation

}

};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

— end example ]

Add the following new paragraph to Non-dependent names [temp.nondep]
2 If a template contains a requirements clause (14.9.1), name lookup of non-dependent names in the template definition

can find the names of associated functions in the requirements scope (3.3.8).

14.7 Template instantiation and specialization [temp.spec]

1 The act of instantiating a function, a class, a concept map, a member of a class template or a member template is referred
to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from a class
template is called an instantiated class. A concept map instantiated from a concept map template is called an instanti-
ated concept map. A member function, a member class, or a static data member of a class template instantiated from
the member definition of the class template is called, respectively, an instantiated member function, member class or
static data member. A member function instantiated from a member function template is called an instantiated member
function. A member class instantiated from a member class template is called an instantiated member class.

14.7.1 Implicit instantiation [temp.inst]

5 If the overload resolution process can determine the correct function to call without instantiating a class template defi-
nition or concept map template definition, it is unspecified whether that instantiation actually takes place. [ Example:

template <class T> struct S {

operator int();

};

void f(int);

void f(S<int>&);

void f(S<float>);

void g(S<int>& sr) {

f(sr); // instantiation of S<int> allowed but not required
// instantiation of S<float> allowed but not required

};

— end example ]

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual member func-
tion, a member class or a static data member of a class template that does not require instantiation. [ Note: An imple-
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mentation is permitted to instantiate concept map templates that do not require instantiation, so long as instantiation of
an ill-formed concept map template does not make a well-formed program ill-formed. — end note ] It is unspecified
whether or not an implementation implicitly instantiates a virtual member function of a class template if the virtual
member function would not otherwise be instantiated. The use of a template specialization in a default argument shall
not cause the template to be implicitly instantiated except that a class template may be instantiated where its complete
type is needed to determine the correctness of the default argument. The use of a default argument in a function call
causes specializations in the default argument to be implicitly instantiated.

10 Implicitly instantiated class, concept map and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in the namespace
where the enclosing class template is defined. Implicitly instantiated member templates are placed in the namespace
where the enclosing class or class template is defined. [ Example:

namespace N {

template<class T> class List {

public:

T* get();

// ...
};

}

template<class K, class V> class Map {

N::List<V> lt;

V get(K);

// ...
};

void g(Map<char*,int>& m)

{

int i = m.get("Nicholas");

// ...
}

a call of lt.get() from Map<char*,int>::get() would place List<int>::get() in the namespace N rather than
in the global namespace. — end example ]

Add the following new paragraph to [temp.inst]
15 Unless a concept map has been explicitly defined, the concept map is implicitly instantiated when the concept map is

referenced in a context that requires the concept map definition, either to satisfy a concept requirement (14.9.1) or when
it is used in a qualified-id.

14.7.2 Explicit instantiation [temp.explicit]

1 A class, a concept map, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated from the member
definition associated with its class template.

14.7.3 Explicit specialization [temp.expl.spec]

Add the following new paragraph to [temp.expl.spec]:
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23 The template arguments provided for an explicit specialization shall meet the requirements (14.9.1) of the primary
template. [ Example:

concept C<typename T> { }

concept_map C<float> { }

template<typename T> requires C<T> void f(T);

template<> void f<float>(float); // okay: concept_map C<float> satisfies requirement
template<> void f<int>(int); // ill-formed: no concept map C<int>

— end example ]

14.8 Function template specializations [temp.fct.spec]

14.8.2 Template argument deduction [temp.deduct]

2 When an explicit template argument list is specified, the template arguments must be compatible with the template
parameter list and must result in a valid function type as described below; otherwise type deduction fails. Specifically,
the following steps are performed when evaluating an explicitly specified template argument list with respect to a given
function template:

— The specified template arguments must match the template parameters in kind (i.e., type, non-type, template), and
there must not be more arguments than there are parameters; otherwise type deduction fails.

— Non-type arguments must match the types of the corresponding non-type template parameters, or must be con-
vertible to the types of the corresponding non-type parameters as specified in ??, otherwise type deduction fails.

— All references in the function type of the function template to the corresponding template parameters are replaced
by the specified template argument values. If a substitution in a template parameter or in the function type
of the function template results in an invalid type, type deduction fails. [Note: The equivalent substitution in
exception specifications is done only when the function is instantiated, at which point a program is ill-formed if
the substitution results in an invalid type.] Type deduction may fail for the following reasons:

— Attempting to create an array with an element type that is void, a function type, a reference type, or an
abstract class type, or attempting to create an array with a size that is zero or negative. [ Example:

template <class T> int f(T[5]);

int I = f<int>(0);

int j = f<void>(0); // invalid array

— end example ]

— Attempting to use a type that is not a class type in a qualified name. [ Example:

template <class T> int f(typename T::B*);

int i = f<int>(0);

— end example ]

— Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain the
specified member, or
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— the specified member is not a type where a type is required, or

— the specified member is not a template where a template is required, or

— the specified member is not a non-type where a non-type is required., or

— the member is an associated type but no concept map has been defined, either implicitly (7.6.4) or
explicitly (7.6.2).

[ Example:

template <int I> struct X { };

template <template <class T> class> struct Z { };

template <class T> void f(typename T::Y*){}

template <class T> void g(X<T::N>*){}

template <class T> void h(Z<T::template TT>*){}

struct A {};

struct B { int Y; };

struct C {

typedef int N;

};

struct D {

typedef int TT;

};

int main()

{

// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y
f<B>(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

}

— end example ]

— Attempting to create a pointer to reference type.

— Attempting to create a reference to void.

— Attempting to create “pointer to member of T” when T is not a class type. [ Example:

template <class T> int f(int T::*);

int i = f<int>(0);

— end example ]

— Attempting to give an invalid type to a non-type template parameter. [ Example:

template <class T, T> struct S {};

template <class T> int f(S<T, T()>*);

struct X {};

int i0 = f<X>(0);
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— end example ]

— Attempting to perform an invalid conversion in either a template argument expression, or an expression used
in the function declaration. [ Example:

template <class T, T*> int f(int);

int i2 = f<int,1>(0); // can’t conv 1 to int*

— end example ]

— Attempting to create a function type in which a parameter has a type of void.

— The specified template arguments must meet the requirements of the template (14.9.1).

Add the following new section to 14 [temp]:

14.9 Constrained templates [temp.constrained]

1 A template that has a requires-clause (or declares any template type parameters using the simple form of requirements
(14.1)) but is not preceded by the late_check keyword is a constrained template. Constrained templates can only
be used with template arguments that satisfy the requirements of the constrained template. The template definitions
of constrained templates are similarly constrained, requiring all names (including dependent names (14.6.2)) to be
declared in either the requirements clause or is found through normal name lookup ( ??). [ Note: The practical effect
of constrained templates is that they provide improved diagnostics at template definition time, such that any use of the
constrained template that satisfies the template’s requirements is likely to result in a well-formed instantiation. — end
note ]

2 A template that is not a constrained template is an unconstrained template.

3 The template parameters of a constrained template are not dependent (14.6.2.1). A constrained template contains no de-
pendent types (14.6.2.1), and therefore no type-dependent expressions (14.6.2.2) or dependent names (14.6.2). [ Note:
Instantiation of constrained templates still substitutes types, templates and values for template parameters, but the sub-
stitution does not require additional name lookup (3.4).

14.9.1 Template requirements [temp.req]

1 A template has a requirements clause if it contains a requires-clause or any of its template parameters were specified
using the simple form of requirements (14.1). A requirements clause states the conditions under which the template can
be used.

requires-clause:
requires requirement-seq
requires ( requirement-seq )

requirement-seq:
requirement , requirement-seq
requirement

requirement:
::opt nested-name-specifieropt concept-id
! ::opt nested-name-specifieropt concept-id
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2 A requires-clause contains a list of requirements, all of which must be satisfied by the template arguments for the
template. A requirement not preceded by a ! is a concept-id requirement. A requirement preceded by a ! is a negative
requirement.

3 A concept-id requirement requires that a concept map corresponding to its concept-id be fully defined. [ Example:

concept A<typename T> { }

auto concept B<typename T> { T operator+(T, T); }

concept_map A<float> { }

concept_map B<float> { }

template<typename T> requires A<T> void f(T);

template<typename T> requires A<T> void g(T);

struct X { };

void h(float x, int y, int X::* p) {

f(x); // okay: uses concept map A<float>
f(y); // error: no concept map A<int>; requirement not satisfied
g(x); // okay: uses concept map B<float>
g(y); // okay: implicitly defines and uses concept map B<int>
g(p); // error: no implicit definition of concept map B<int X::*>; requirement not satisfied

}

— end example ]

4 A negative requirement requires that no concept map corresponding to its concept-id be defined, implicitly or explicitly.
[ Example:

concept A<typename T> { }

auto concept B<typename T> { T operator+(T, T); }

concept_map A<float> { }

concept_map B<float> { }

template<typename T> requires !A<T> void f(T);

template<typename T> requires !A<T> void g(T);

struct X { };

void h(float x, int y, int X::* p) {

f(x); // error: concept map A<float> has been defined
f(y); // okay: no concept map A<int>
g(x); // error: concept map B<float> has been defined
g(y); // error: implicitly defines concept map B<int>, requirement not satisfied
g(p); // okay: concept map B<int X::*> cannot be implicitly defined

}

— end example ]

5 A concept-id requirement that refers to the SameType concept (??) is a same-type requirement. A same-type requirement
is satisfied when its two concept arguments refer to the same type. In a constrained template (14.9), a same-type
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requirement SameType<T1, T2> makes the types T1 and T2 equivalent (14.4). [ Note: type equivalence is a congruence
relation, thus

— SameType<T1, T2> implies SameType<T2, T1>,

— SameType<T1, T2> and SameType<T2, T3> implies SameType<T1, T3,

— SameType<T1, T1> is trivially true,

— SameType<T1*, T2*> implies SameType<T1, T2> and SameType<T1**, T2**>, etc.

— end note ] [ Example:

concept C<typename T> {

typename assoc;

assoc a(T);

}

concept D<typename T> {

T::T(const T&);

T operator+(T, T);

}

template<typename T, typename U>

requires C<T>, C<U>, SameType<C<T>::assoc, C<U>::assoc>, D<C<T>::assoc>

C<T>::assoc f(T t, U u) {

return a(t) + a(u); // okay: C<T>::assoc and D<T>::assoc are the same type
}

— end example ]

14.9.1.1 Requirement propagation [temp.req.prop]

1 In a template with a requirements clause (14.9.1), additional requirements implied by the declaration of the template are
implicitly added to the requirement clause. The requirements are implied by the type of a function template (14.5.5),
the template arguments of a class template partial specialization (14.5.4), and the concept arguments of a concept map
template (14.5.6).

2 For every type T that appears as an argument or return type in a function declarator, the requirement std::MoveConstructible<T>
is implicitly added to the requirements clause. [ Example:

template<EqualityComparable T>

bool eq(T x, T y); // implicitly adds requirement MoveConstructible<T>

— end example ]

3 For every template-id X<A1, A2, ..., AN>, where X is a constrained template, the requirements of X are implicitly
added to the requirements clause after substituting the arguments A1, A2, ..., AN into the requirements. [ Example:

template<LessThanComparable T> class set { /∗ ... ∗/ };

template<CopyConstructible T>
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void maybe_add_to_set(std::set<T>& s, const T& value);

// use of std::set<T> implicitly adds requirement LessThanComparable<T>

— end example ]

4 For every associated type concept-id::name, the requirement concept-id is implicitly added to the requirements clause.
[ Example:

concept Addable<typename T, typename U> {

typename result_type;

result_type operator+(T, U);

}

template<CopyConstructible T, CopyConstructible U>

Addable<T, U>::result_type // implicitly adds Addable<T, U> to the requirements clause
add(T t, U u) {

return t + u;

}

— end example ]

5 For every concept-id requirement in the requirements clause (either explicitly, or added implicitly), requirements for the
refinements of the associated concept (7.6.3) and associated requirements of the concept (7.6.1.3) are implicitly added
to the requirements clause.

6 Two requirements clauses are identical if, after the introduction of implicit requirements, they contain the same concept-
id and negative requirements (14.9.1), and their same-type requirements (14.9.1) produce the same equivalence classes
of types.

14.9.2 Opaque types [temp.opaque]

1 An opaque type is a type in a constrained template (14.9) that would be dependent (14.6.2.1) in the equivalent uncon-
strained template. A type in a constrained template is an opaque type if it is:

— a template type parameter (14.1),

— an associated type (7.6.1.2), or

— a template-id whose template-name is a template template parameter (14.1) or an associated template parameter
(7.6.1.2).

2 An opaque type is a class type (9) whose members are defined by the template requirements (14.9.1) of its constrained
template. The opaque type T contains a member function corresponding to each associated member function requirement
(7.6.1.1) of each concept names by a concept-id requirement (14.9.1). [ Example:

concept CopyConstructible<typename T> {

T::T(const T&);

}

concept MemSwappable<typename T> {

T::swap(T&);

}
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template<typename T>

requires CopyConstructible<T>, MemSwappable<T>

void foo(T& x) {

// opaque type T contains a copy constructor T::T(const T&) from CopyConstructible<T>
// and a member function swap(T&) from MemSwappable<T>
T y(x);

y.swap(x);

}

— end example ]

3 If no requirement specifies a default constructor for an opaque type T, a default constructor is not implicitly declared
(12.1).

4 If no requirement specifies a copy constructor for an opaque type T, an inaccessible copy constructor is implicitly
declared (12.8). [ Example:

concept DefaultConstructible<typename T> {

T::T();

}

concept MoveConstructible<typename T> {

T::T(T&&);

}

template<typename T>

requires DefaultConstructible<T>, MoveConstructible<T>

void f(T x) {

T y = T(); // okay: move-constructs y from default-constructed T
T z(x); // error: overload resolution selects implicitly-declared

// copy constructor, which is inaccessible
}

— end example ]

5 If no requirement specifies a copy assignment operator for an opaque type T, an inaccessible copy assignment operator
is implicitly declared (12.8).

6 If no requirement specifies a destructor for an opaque type T, a destructor is not implicitly declared (12.4).

7 If two associated member function requirements for an opaque type T have the same signature, and the return types are
equivalent (14.4), the duplicate signature is ignored. If the return types are not equivalent, the program is ill-formed.

14.9.3 Instantiation of constrained templates [temp.constrained.inst]

1 Instantiation of a constrained template replaces each template parameter within the definition of the template with its
corresponding template argument, using the same process as for unconstrained templates (14.7).

2 In the instantiation of a constrained template, a call to a function template will undergo a second partial ordering of
function templates. The function template selected at the time of the constrained template’s definition is called the seed
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function. At instantiation time, the candidate set of functions for the instantiation will contain all functions in the same
scope as the seed function that:

— succeed at template argument deduction (14.8.2), and

— have the same name as the seed function, and

— have the same signature as the seed function, modulo the requirements claus (14.9.1), and

— are more specialized (14.5.5.2) than the seed function

Partial ordering of function templates (14.5.5.2) determines which of the function templates in the candidate set will be
called in the instantiation of the constrained template. [ Example:

concept InputIterator<typename Iter> { }

concept BidirectionalIterator<typename Iter> : InputIterator<Iter> { }

concept RandomAccessIterator<typename Iter> : BidirectionalIterator<Iter> { }

template<InputIterator Iter> void advance(Iter& i, Iter::difference_type n); // #1
template<BidirectionalIterator Iter> void advance(Iter& i, Iter::difference_type n); // #2
template<RandomAccessIterator Iter> void advance(Iter& i, Iter::difference_type n); // #3

template<BidirectionalIterator Iter> void f(Iter i) {

advance(i, 1); // seed function is #2
}

concept_map RandomAccessIterator<int*> { }

void g(int* i) {

f(i); // in call to advance(), #2 and #3 are in the candidate set
// partial ordering of function templates selects #3

}

— end example ]

3 In the instantiation of a constrained template, the use of a member of an opaque type (14.9.2) instantiates to a use of the
corresponding member in the type that results from substituting the template arguments from the instantiation for the
template parameters used in the opaque type. [ Example:

auto concept MemSwappable<typename T> {

void T::swap(T&);

}

template<MemSwappable T>

void swap(T& x, T& y) {

x.swap(y); // when instantiated, calls X::swap(X&)
}

struct X {

void swap(X&);

};
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void f(X& x1, X& x2) {

swap(x1, x2); // okay
}

— end example ]

14.9.4 Late-checked templates [temp.late]

1 A late-checked template is a template with a requirements clause (??) that is preceded by the late_check keyword,
or a concept map template (14.5.6) that is preceded by the late_check keyword. A late-checked template is an un-
constrained template (14.9) [ Note: it therefore follows the normal rules for computing dependent types (14.6.2.1),
type-dependent expressions (14.6.2.2), and dependent names (14.6.2), and therefore does not provide the instantiation
guarantees provided by constrained templates. — end note ]

2 A late-checked template may only be used when the requirements in its requirements clause are satisfied by the tem-
plate arguments (14.9.1). [ Note: The definition of a late-checked template may still use dependent names that will be
looked up at instantiation time, bypassing the declarations in concept maps that would be found if the template were a
constrained template. — end note ] [ Example:

concept Semigroup<typename T> {

T operator+(T, T);

}

concept_map Semigroup<int> {

int operator+(int x, int y) { return x * y; }

}

template<Semigroup T>

T add(T x, T y) {

return x + y;

}

late_check template<Semigroup T>

T late_add(T x, T y) {

return x + y;

}

void f() {

add(1, 2); // returns 2, because Semigroup<int>::operator+ is implemented with operator*
late_add(1, 2); // returns 3, because late-checked template finds built-in operator+ as instantiation time

}

— end example ]
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Chapter 18 Language support library
[lib.language.support]

1 This clause describes the function signatures that are called implicitly, and the types of objects generated implicitly,
during the execution of some C++ programs. It also describes the headers that declare these function signatures and
define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of the predefined
types, support for concepts, functions supporting start and termination of a C++ program, support for dynamic memory
management, support for dynamic type identification, support for exception processing, and other runtime support, as
summarized in Table 4.

Table 4: Language support library summary
Subclause Header(s)

?? Types <cstddef>
<limits>

?? Implementation properties <climits>
<cfloat>
<cstdint>
<cinttypes>

?? Start and termination <cstdlib>
?? Dynamic memory management <new>
?? Type identification <typeinfo>
?? Exception handling <exception>

<cstdarg>
<csetjmp>

?? Other runtime support <ctime>
<csignal>
<cstdlib>
<cstbool>

18.9 Concepts <concepts>

Add the following new section to [lib.language.support]:
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18.9 Concepts [support.concepts]

1 The header <concepts> defines several concepts that support certain kinds of template requirements (14.9.1).

Header <concepts> synopsis

namespace std {

concept SameType<typename T, typename U> { /∗ see below ∗/ }

concept MoveConstructible<typename T> { /∗ see below ∗/ }

}

18.9.1 Concept SameType [concept.sametype]

namespace std {

concept SameType<typename T, typename U> {

// unspecified
}

}

1 The SameType concept indicates that its two concept arguments have the same type. A template requirement using the
SameType concept is a same-type requirement (14.9.1).

18.9.2 Concept MoveConstructible [concept.moveconstruct]

namespace std {

concept MoveConstructible<typename T> {

T::T(T&&);

}

}

1 The MoveConstructible concept indicates that one can move (or copy) an rvalue of type T into a new object of type
T. The MoveConstructible concept is implicitly introduced by requirement propagation (14.9.1.1) for types that are
argument or return types in a function declarator.
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Appendix A
(informative)
Grammar summary [gram]

A.4 Expressions [gram.expr]

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: template-id
:: concept-id

A.6 Declarations [gram.dcl]

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
concept-definition
concept-map-definition

A.7 Declarators [gram.decl]

concept-id:
concept-name < template-argument-listopt >

concept-name:
identifier

concept-definition:
autoopt concept identifier < template-parameter-list > refinement-clauseopt concept-body ;opt

concept-body:
{ concept-member-specificationopt }



A.8 Classes Grammar summary 58

concept-member-specification:
associated-function concept-member-specificationopt
associated-parameter concept-member-specificationopt
associated-requirements concept-member-specificationopt
axiom-definition concept-member-specificationopt

associated-function:
simple-declaration
function-definition
template-declaration

associated-parameter:
type-parameter ;

associated-requirements:
requires-clause ;

axiom-definition:
axiom identifier ( parameter-declaration-clause ) axiom-body

axiom-body:
{ axiom-seqopt }

axiom-seq:
axiom axiom-seqopt

axiom:
expression-statement
if ( condition ) expression-statement

concept-map-definition:
concept_map concept-id { concept-map-member-specificationopt } ;opt

concept-map-member-specification:
simple-declaration concept-map-member-specificationopt
function-definition concept-map-member-specificationopt
template-declaration concept-map-member-specificationopt

A.8 Classes [gram.class]

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;

function-definition ;opt
::opt nested-name-specifier templateopt unqualified-id ;

using-declaration
static_assert-declaration
template-declaration
requires-clause member-declaration
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A.12 Templates [gram.temp]

template-declaration:
exportopt late_checkopt template < template-parameter-list > requires-clauseopt declaration

type-parameter:
class identifieropt
class identifieropt = type-id
typename identifieropt
typename identifieropt = type-id
template < template-parameter-list > class identifieropt
template < template-parameter-list > class identifieropt = id-expression
::opt nested-name-specifieropt concept-name identifier
::opt nested-name-specifieropt concept-name identifier = type-id
::opt nested-name-specifieropt concept-id identifier
::opt nested-name-specifieropt concept-id identifier = type-id

requires-clause:
requires requirement-seq
requires ( requirement-seq )

requirement-seq:
requirement , requirement-seq
requirement

requirement:
::opt nested-name-specifieropt concept-id
! ::opt nested-name-specifieropt concept-id
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