
Doc No: N2144=07-0004
Date: 2007-1-11
Reply to: M.J. Kronenburg

M.Kronenburg@inter.nl.net

Proposal for exact specification of is modulo



Contents

Contents ii

1 Introduction 1
1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Impact on the Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Proposed Text 2
2.1 3.9.1 [basic.fundamental] item 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 18.2.1.2 [lib.numeric.limits.members] item 57 . . . . . . . . . . . . . . . . . . . . 2

ii



Chapter 1

Introduction

1.1 Motivation and Scope

With the introduction of the numeric limits template in C++, the programmer can determine
if an integer base type overflow is wrapped around using modulo arithemetic (is modulo flag)
or is trapped (traps flag). The exact meaning of modulo arithmetic however should also be
defined, so that programmers know how the base type (whether signed or unsigned) exactly
behaves at overflow when the numeric limits template specialization is modulo flag is true.
An important application of a modulo wrapped around signed integer base type is when not
only wrap around is required, but also a signed subtraction result for determining whether one
value is relatively smaller or larger than another. An example is using a system clock where the
time difference between the current time and some preset time goes from negative to positive.
Then the integer base type representing the time must be both signed and modulo wrapped
around.

1.2 Impact on the Standard

In section 3.9.1 [basic.fundamental] item 4 it is stated that unsigned integer base types obey
modulo arithmetic. This should be extended to signed integer base types, and refer to the
is modulo and traps flags of the numeric limits template (section 18.2.1).
In section 18.2.1.2 [lib.numeric.limits.members] item 57 the description of the is modulo flag of
the numeric limits template is extended with an exact definition of modulo arithmetic.

1



Chapter 2

Proposed Text

2.1 3.9.1 [basic.fundamental] item 4

In section 3.9.1 [basic.fundamental] item 4, the following is added:

Signed integers obey the laws of arithmetic modulo 2n when its numeric limits template spe-
cialization is modulo flag is true, or traps overflow when its traps flag is true, see 18.2.1. The
laws of arithmetic modulo 2n are defined there.

2.2 18.2.1.2 [lib.numeric.limits.members] item 57

In section 18.2.1.2 [lib.numeric.limits.members] item 57 the line ”A type is modulo if...” is
deleted, and the following is added:

A type is modulo if an arithmetic result x that is not within its range between xmin and xmax

inclusive (see min() and max() above), is wrapped around this range with
x = xmin + ((x− xmin) mod (xmax − xmin + 1)),
where x mod y = x− y ∗ floor(x/y), and where floor truncates downward (that is toward minus
infinity). This means that the resulting x is within its range and differs from the original x by a
multiple of xmax − xmin + 1. For unsigned integer base types, and for signed integer base types
on twos complement machines, xmax − xmin + 1 = 2n, where n is the number of bits.

2


	Contents
	Introduction
	Motivation and Scope
	Impact on the Standard

	Proposed Text
	3.9.1 [basic.fundamental] item 4
	18.2.1.2 [lib.numeric.limits.members] item 57


