
Symantec Research Labs

Transparent Garbage Collection for C++
(Revised)
Document Number: N2129=06-0199
Hans Boehm, HP Labs
Mike Spertus, Symantec Research Labs



Research and Advanced Development 2

Agenda—Goals

• Garbage collection must be available
• Garbage collection must be optional
• Garbage collection should be transparent, generally requiring no code 

changes
• Optional garbage collection granularity
• The programmer must be able to indicate type-safety
• The programmer must not be required to indicate type-safety
• Garbage collection requires standardization



Research and Advanced Development 3

Agenda—Proposal

• Reachability
• Syntax
• Impact on operator new()
• Finalization split off into separate proposal
• Implementation status
• Open questions



Research and Advanced Development 4

Garbage collection must be available

• The availability of garbage collections makes most programs 
much easier and attractive to implement with no negatives.

Vanilla C++ programs should be able to ignore memory management 
when not critical

• C++ is now increasingly ruled out as an implementation language 
for the many programs and developers that do not require manual 
memory management.

• Even for manually managed programs, legitimizes leak detectors
• Reference counting not sufficient

Too many data structures are not DAGs
Extensive programmer-support required for smart pointers



Research and Advanced Development 5

Garbage Collection must be optional

• The availability of manual memory management makes many 
large and specialized programs possible to implement. 

Low-level systems programming
Programs that make heavy use of virtual memory
Programs with specialized performance requirements,

• Backwards compatibility. Although it might be technically 
conforming to turn “operator delete” into a “no-op,” the 
performance profile of some existing programs would experience 
unacceptable changes



Research and Advanced Development 6

Transparent garbage collection

• While smart-pointers are useful in the context of manually 
managed programs, they are not suitable for programs that wish 
to ignore memory management entirely.

• It should be possible to garbage collect most existing programs 
with no source changes at all, except for perhaps a single line per 
program (not per-module) to request automatic memory 
management.



Research and Advanced Development 7

Granularity 

• Garbage collection vs. manual memory management should be 
specifiable at any level of granularity

Program level
Module level
Specific data types
Specific objects



Research and Advanced Development 8

Must be able to specify type-safety information

• Fully conservative (i.e., does not assume type safety) collection 
not suitable for very large programs

Large programs may consume a high-percentage of (32-bit) address 
space, causing unused objects to be retained.
Programs manipulating large pointer-sparse data structures (e.g., 
mpeg files) are common.
• Scanning these for pointers is time consuming
• Scanning these for pointers can cause disk thrashing
• Scanning these for pointers can cause unused objects to be 

retained



Research and Advanced Development 9

Must not be required to specify type-safety

• Some programs are not type-safe
Should still work all right by default
Typical programmers should not need to worry about annotations

• The vast majority of vanilla programs do not require asserting 
type-safety for good results

• If libraries (e.g., standard libraries) are annotated, even very large 
programs should automatically get the benefit of type-aware 
garbage collection without any programmer input required



Research and Advanced Development 10

Standardization is required

• GC libraries have been used for many years, but…
Can’t access type information
Library vendors (including standard libraries) can’t use
Many users waiting for stamp of approval
Most people believe that C++ is not an option if they don’t want to 
manually manage memory



Research and Advanced Development 11

Reachability

• An object is reachable if it is accessible via a pointer chain from 
the “roots”. Interior pointers are allowed (e.g., to support multiple 
inheritance).

• Strict reachability
Only consider pointer types.
Don’t consider type of pointer to avoid problems with void *, 
inheritance, etc.
Unions are based on last store

• Relaxed reachability
Pointers may be stored in any datatype large enough to hold them
• E.g., Windows programmers frequently store pointers in DWORDs

• Compilers must not break reachability
See Boehm, “Simple Garbage-Collector Safety”



Research and Advanced Development 12

Syntax

• gc_forbidden
This code cannot be used in garbage collected programs

• gc_required
This code assumes the presence of a garbage collector
A diagnostic is required if this is combined with gc(forbidden)
code (possibly at link time).

• In the absence of gc_forbidden or gc_required, the code is 
compatible with either the presence or absence of garbage 
collection



Research and Advanced Development 13

Type information syntax

• gc_strict
All occurrences of primitive non-pointer types are assumed not to 
contain pointers.
Collectors may make use of this information but are not required to.

• gc_relaxed
Primitive non-pointer types here may contain pointers
The default

• If alignment added to the standard, will add an additional one
Current proposal assumes natural alignment for pointers



Research and Advanced Development 14

Some examples

• Program that assumes garbage collection
gc_required

main()
…
Nothing else necessary. No need to free memory

• Modularity is good
gc_strict class A {

A *next;
B b;
int data[1000000];

};
Scan next and b for pointers, but no need to scan data.
This is even true for A objects created in non-strict code (because 
such code would explicitly refer to class A, not int[1000000]).



Research and Advanced Development 15

Some examples—Continued

• class mpeg {
gc_strict mpeg(size_t s) {

mpegData = new char[s];
}
...
char *mpegData;

};
• mpeg class can be used anywhere without unnecessarily 

scanning mpegData for pointers.
• gc_strict {

typedef int binop;
...

}
• binop cannot contain a pointer.



Research and Advanced Development 16

Impact on operator new

• Allocation of garbage collected objects will not go through 
operator new

Many garbage collector are inextricably linked to allocation
operator new signature not sufficient for effective communication 
of type information

• Programs that redefine ::operator new will work but will not 
benefit from garbage collection

• Classes with class-specific allocators will work but will not 
garbage collected

Their memory will still be scanned for pointers (respecting strictness 
annotations)
The underlying pools may be garbage collected as a whole
STL containers will only be collected if they use the default allocator



Research and Advanced Development 17

Finalization proposal split off

• Finalization split into separate proposal
With or without finalization, GC remains very valuable

• Enough to talk about to merit separate discussion
Compiler optimizations commonly cause an object to become 
unreachable while resources released by the finalizers are still in the 
use, leading to premature finalization.
Requires annotation by the programmer on when it is safe to call
finalizers.
Java has been bitten badly by this
Treating destructors as finalizers is not an option
• e.g., Deadlocks/data corruption can result from synchronization 

context



Research and Advanced Development 18

Implementation status

• On track
• Conservative collectors are stable and mature and will probably 

be the choice for most early implementations.
Implementation risks are well-mitigated
However, we do not restrict the choice of algorithm
• Moving collectors must maintain std::less<T *>, e.g., to avoid 

breaking Set<T *>.

• Expect to have a modified g++ to support front-end syntax by next 
meeting



Research and Advanced Development 19

Discussion


