
J16/06 0120 = SC22/WG21/N2050 ‐

Doc No: SC22/WG21/N2050

J16/06-0120

Date: 2006-06-26

Project: JTC1.22.32

Reply to: Jamie Allsop <ja11sop@yahoo.co.uk>

Alisdair Meredith <Alisdair.Meredith@uk.renaultf1.com>

Gennaro Prota <gennaro_prota@yahoo.com>

Proposal to Add a Dynamically Sizeable Bitset to
the Standard Library Technical Report

Revision 1

I Motivation and Introduction
Manipulating a set of bits is an often desired task in C++. Typically the set of bits is representative of a set of
flags or is used as a mask where each bit represents a domain specific entity, such as a day of a year.
Typically a more complex mask will be composed by concatenating smaller masks, such as a masks
representing valid days in a given month being concatenated into a mask representing a whole year. A set of
bits is also (not surprisingly) useful for performing set operations.

A container of bools can be utilised to represent such sets of bits or masks but often there is a desire to
manipulate a set of bits rather than a container of bools, typically for efficiency or space reasons. Efficiency
is gained through the use of the bitwise and shift operators, and space can be minimised if only one bit is
used to store each value in the set. By providing such bitwise and shift operators and using a packed
representation it is possible to provide an efficient represention of arbitrary length binary numbers. This is
also one of the features of this proposal.

The standard library currently provides two libraries which can be used to represent a set of bits,
std::vector<bool> and std:bitset.

The problems of std::vector<bool> are well documented in [N1185 – Sutter, 1999], [N1847 – Sutter,
1999] and [Meyers, 2001]. Notably, std::vector<bool> is not a container and
std::vector<bool>::iterator does not meet the requirements of a Random access iterator, though
[N1640 – Abrahams, Siek, Witt, 2004] may see a solution to this problem. While the interface of
std::vector<bool> does support a packed representation it does not provide the bitwise and shift
operators. Further the LWG has expressed a desire to deprecate this specialization, and provide a new class
specifically designed for these optimizations.

On the other hand std::bitset does provide bitwise and shift operators and uses a packed bit
representation though the size of std::bitset is fixed at compile time. Obviously then the possibility of
resizing a std::bitset or composing a new std::bitset by concatenating two or more std::bitsets
does not exist.

Of course it is entirely possible to implement a dynamically sized set of bits as and when one is required but
this is a non-trivial exercise, as noted in [Sutter, 2005]. Therefore this paper proposes a dynamically sizeable

1 of 27

mailto:ja11sop@yahoo.co.uk
mailto:gennaro_prota@yahoo.com
mailto:Alisdair.Meredith@uk.renaultf1.com

J16/06 0120 = SC22/WG21/N2050 ‐

bitset library similar in intention to std::bitset. Previously [N0220 – Allison, 1993] proposed a
bitstring class which was dynamically sizeable and provided bitwise and shift operations. More recently
such a library was accepted into Boost [Boost Libraries] on the 18th of June 2002, called
boost::dynamic_bitset [Boost – dynamic_bitset], previously known as dyn_bitset. Searching for
'bitset' in the subject title in the Boost developer's mailing list [Gmane – boost.devel] using a newsreader will
reveal most of the discussions that have occurred in relation to this library. The proposal here is based on the
boost::dynamic_bitset library, with differences noted in the paper.

II Impact On the Standard
This proposal is a pure library extension. It does not require changes to any standard classes or functions and
it does not require changes to any of the standard requirement tables. It does not require any changes in the
core language, and it has been implemented in standard C++. The proposal does not depend on any other
library extensions.

III Design Decisions

1 Introduction
The dynamic_bitset class outlined in this paper represents a sequence of bits. It provides access to the
value of individual bits via operator[] and provides all of the bitwise operators, such as operator& and
the shift operators, such as operator<<. The number of bits in the set is specified at runtime via a
parameter to the constructor of the dynamic_bitset. The proposal here closely follows the
boost::dynamic_bitset library with some deviations, for example the addition of an append()
member function to allow one dynamic_bitset to be appended to another dynamic_bitset.

The dynamic_bitset class interface is closely modelled on the std::bitset interface and the name is
chosen deliberately to imply this relationship. Alternative names might have been bitvector or
bitstring but dynamic_bitset was chosen as it best captures the intention of the class. The primary
difference between std::bitset and dynamic_bitset is the ability to modify the bitset size at runtime.
As the interface of dynamic_bitset has been modelled closely on std::bitset choice of member
function names have followed the existing practice of std::bitset such as using 'flip' instead of 'toggle'.

The dynamic_bitset class is designed to solve two key problems. First it can be used to represent a subset
of a finite set, where each bit represents whether an element of the finite set is in the subset or not. Second, it
can used to represent an arbitrary sized binary number. As such the bitwise operations of dynamic_bitset,
such as operator& and operator|, are provided and correspond to the set operations, intersection and
union respectively. In addition, set difference is also supported using operator-. Similarly
dynamic_bitset also provides the shift operators.

Finally here are some definitions for terms that are used in the remainder of this document. Each bit
represents either the Boolean value true or false (1 or 0). To set a bit is to assign it 1. To clear or reset a
bit is to assign it 0. To flip (or toggle) a bit is to change the value to 1 if it was 0 and to 0 if it was 1. Each bit
has a non-negative position. A dynamic_bitset x contains x.size() bits, with each bit assigned a unique
position in the range [0,x.size()). The bit at position 0 is called the least significant bit and the bit at
position size() - 1 is the most significant bit. When converting an instance of dynamic_bitset to, or
from, an unsigned long long u, the bit at position i of the dynamic_bitset has the same value as (u
>> i) & 1.

2 Constructing dynamic_bitsets using strings
By default when constructing a dynamic_bitset using a string it is considered that the first character in

2 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

the string is the most significant bit, in other words the string is considered to be representative of a binary
number. This bit ordering assumption is controlled by the bit_order argument to the constructor, which
by default is msb_first, but can be changed to lsb_first. Therefore
dynamic_bitset(std::string("10001110")) == dynamic_bitset(4, 142ull). Also given
dynamic_bitset<> dbs1(std::string("10001110")); we have dbs1[0] == 0 and dbs1[7] ==
1. Given dynamic_bitset<> dbs2(std::string("10001110"),lsb_first); we have dbs2[0]
== 1 and dbs2[7] == 0.

The ability to specify bit ordering of the string allows for compatibility with existing code, no matter which
bit-order representation was chosen.

3 Conversion to string and streaming
Like std::bitset a to_string() function is provided, but unlike std::bitset this is not in the form
of overloaded member functions returning std::basic_string<CharT, traits, Allocator>, rather
as a void non-member function which modifies a StringT passed by reference. This simplifies the use of
the function by not requiring the user to explicitly specify the string's template parameters, for example if
given std::bitset x we might call to_string() as,

x.template to_string<charT,traits,allocator<charT> >().

Another feature of to_string() is the ability to specify the required bit order of the result. Again this is
specified through the use of the bit_order enum. By default this is msb_first. Similarly the default bit
order used when writing the dynamic_bitset to a stream is also to write the most significant bit first. It is
possible to specify the bit order by using the set_bit_order() manipulator passing the required
bit_order as an argument.

4 Confusion between streaming and shifting operators
Both streaming and shift operators are provided. It may at first appear that this would lead to confusion.
However in practice this is unlikely to occur. For example, given,
dynamic_bitset<> dbs(std::string("11111111"));

we have,
std::cout << dbs << std::endl; // == 11111111
std::cout << dbs << 3 << std::endl; // == 111111113
std::cout << (dbs << 3) << std::endl; // == 11111000
std::cout << (dbs >> 3) << std::endl; // == 00011111

This is quite straightforward and what would be expected.

5 Concatenating dynamic_bitsets
The append() member function supports appending dynamic_bitsets together. It would seem to make
sense to extend the interface of dynamic_bitset to allow the concatenation of dynamic_bitsets using
operator+= and operator+, however this may be confusing as operator-= is already in use to calculate
the set difference. Therefore these operators have not been provided for this proposal, though if there was
consensus that this would be a good thing then there is no reason not to look at this again.

6 Using replace(size_type pos, bool val) instead of set(size_type pos, bool val
= true)

This proposal suggests using replace(size_type pos, bool val) and set(size_type pos) instead of
set(size_type pos, bool val = true) as std::bitset does. The reason for this is to reinforce the
notion that to 'set' a bit in the bitset is to set it to 1. If there is a consensus that it is important to maintain the

3 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

same interface as std::bitset then the std::bitset interface could be used instead.

One advantage of the proposed interface here is that the find_*_set() and find_*_reset() functions
are not ambiguous.

7 Bitwise operators do not require dynamic_bitsets of the same size
Operators work as expected up to the largest valid index in both dynamic_bitsets and then treats non-
invalid indexes in the smaller of the two dynamic_bitsets as 0s.

8 Lookup using find_*_set() and find_*_reset()
Although iterators are not provided the following lookup functions allow traversal of the bitset,

size_type find_first_set() const;
size_type find_next_set(size_type pos) const;
size_type find_last_set() const;
size_type find_prev_set(size_type pos) const;
size_type find_first_reset() const;
size_type find_next_reset(size_type pos) const;
size_type find_last_reset() const;
size_type find_prev_reset(size_type pos) const;

A possible alternative naming convention would be to use the word clear instead of reset, though this
would cause a disparity with, the set() and reset() functions.

Another alternative would to use a style similar to that used in std::basic_string, either this,

size_type find_first() const;
size_type find_next(size_type pos) const;
size_type find_last() const;
size_type find_prev(size_type pos) const;
size_type find_first_not() const;
size_type find_next_not(size_type pos) const;
size_type find_last_not() const;
size_type find_prev_not(size_type pos) const;

or,

size_type find_first_of(bool bit) const;
size_type find_next_of(bool bit , size_type pos) const;
size_type find_last_of(bool bit) const;
size_type find_prev_of(bool bit , size_type pos) const;

If set(size_type pos, bool val = true) is favoured over replace(size_type pos, bool val)
then this naming convention may be more appropriate.

IV Proposed Text

4 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

1 Header <dynamic_bitset> synopsis
namespace std {
enum bit_order { lsb_first, msb_first };

template <typename Block = unsigned long long,
 typename Allocator = std::allocator<Block> >
class dynamic_bitset;

// swap:
template <typename Block,
 typename Allocator>
void swap(dynamic_bitset<Block, Allocator>& lhs,
 dynamic_bitset<Block, Allocator>& rhs);

// dynamic_bitset operations:
template <typename Block,
 typename Allocator>
bool operator==(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
bool operator!=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block, typename Allocator>
bool operator<(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
bool operator<=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
bool operator>(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
bool operator>=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator&(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

5 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator|(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator^(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator-(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

template <typename Block,
 typename Allocator>
bool intersect(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs,
 int offset = 0);

template <typename Block,
 typename Allocator>
bool disjoint(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs,
 int offset = 0);

template <typename Block,
 typename Allocator,
 typename StringT>
void to_string(const dynamic_bitset<Block, Allocator>& x,
 StringT& str,
 bit_order order = msb_first);

template <typename Block,
 typename Allocator,
 typename BlockOutputIterator>
void to_block_range(const dynamic_bitset<Block, Allocator>& x,
 BlockOutputIterator result);

template <typename CharT,
 typename Traits,
 typename Block,
 typename Allocator>
std::basic_ostream<CharT, Traits>&

6 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

operator<<(std::basic_ostream<CharT, Traits>& os,
 const dynamic_bitset<Block, Allocator>& x);

template <typename CharT,
 typename Traits,
 typename Block,
 typename Allocator>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,
 dynamic_bitset<Block, Allocator>& x);

// dynamic_bitset bit_order stream manipulators:
class set_bit_order {
public:
 explicit
 set_bit_order(bit_order o);
};

template<class CharT, class Traits>
std::basic_ostream<CharT, Traits>& operator<<
 (std::basic_ostream<CharT, Traits>& os, const set_bit_order& sbo);

} // namespace std

The header <dynamic_bitset> defines a class template and several related functions for representing and
manipulating a dynamically sized sequences of bits.
namespace std {

 template <typename Block,
 typename Allocator>
 class dynamic_bitset {
 public:
 typedef Block block_type;
 typedef Allocator allocator_type;
 typedef implementation-defined size_type;
 typedef implementation-defined block_width_type;

 static const block_width_type bits_per_block = implementation-defined;
 static const size_type npos = implementation-defined;

 // bit reference:
 class reference
 {
 friend class dynamic_bitset<Block, Allocator>;

 reference(block_type& x, int pos);

 void operator&(); // not defined

 public:

7 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

 reference& operator=(bool x); // for b[i] = x;
 reference& operator=(const reference&); // for b[i] = b[j];

 reference& operator|=(bool x); // for b[i] = b[i] | x;
 reference& operator&=(bool x); // for b[i] = b[i] & x;
 reference& operator^=(bool x); // for b[i] = b[i] ^ x;
 reference& operator-=(bool x); // for b[i] = b[i] & !x;

 bool operator~() const; // flips the bits
 operator bool() const; // for x = b[i]
 reference& flip(); // for b[i].flip();
 };

 typedef bool const_reference;

 // constructors:
 explicit
 dynamic_bitset(const Allocator& alloc = Allocator());

 explicit
 dynamic_bitset(size_type num_bits,
 unsigned long long value = 0,
 const Allocator& alloc = Allocator());

 template <typename BlockInputIterator>
 dynamic_bitset(BlockInputIterator first,
 BlockInputIterator last,
 const Allocator& alloc = Allocator());

 template <typename CharT,
 typename Traits,
 typename Alloc>
 explicit
 dynamic_bitset(
 const std::basic_string<CharT, Traits, Alloc>& str,
 bit_order order = msb_first,
 typename std::basic_string<CharT, Traits, Alloc>::size_type pos = 0,
 typename std::basic_string<CharT, Traits, Alloc>::size_type n =
 std::basic_string<CharT, Traits, Alloc>::npos,
 size_type num_bits = npos,
 const Allocator& alloc = Allocator());

 dynamic_bitset(const dynamic_bitset& x);

 dynamic_bitset(const dynamic_bitset& x,
 size_type pos,
 size_type n = npos,
 size_type num_bits = npos,

8 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

 const Allocator& alloc = Allocator());

 // destructor:
 ~dynamic_bitset();

 // swap:
 void swap(dynamic_bitset& x);

 // assignment:
 dynamic_bitset& operator=(const dynamic_bitset& x);

 // allocator:
 allocator_type get_allocator() const;

 // modifiers:
 void resize(size_type num_bits, bool value = false);
 void clear();
 void push_back(bool bit);
 void append(Block block);
 template <typename BlockInputIterator>
 void append(BlockInputIterator first, BlockInputIterator last);
 void append(const dynamic_bitset& x);
 void assign(const dynamic_bitset& x,
 size_type pos,
 size_type n = npos,
 size_type num_bits = npos);

 // bitwise operations:
 dynamic_bitset& operator&=(const dynamic_bitset& rhs);
 dynamic_bitset& operator|=(const dynamic_bitset& rhs);
 dynamic_bitset& operator^=(const dynamic_bitset& rhs);
 dynamic_bitset& operator-=(const dynamic_bitset& rhs);

 // bit shift operations:
 dynamic_bitset& operator<<=(size_type n);
 dynamic_bitset& operator>>=(size_type n);
 dynamic_bitset operator<<(size_type n) const;
 dynamic_bitset operator>>(size_type n) const;

 // basic bit operations:
 dynamic_bitset& replace(size_type pos, bool val);
 dynamic_bitset& set(size_type pos);
 dynamic_bitset& set();
 dynamic_bitset& reset(size_type pos);
 dynamic_bitset& reset();
 dynamic_bitset& flip(size_type pos);
 dynamic_bitset& flip();

9 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

 dynamic_bitset operator~() const;
 bool test(size_type pos) const;
 bool any() const;
 bool none() const;
 bool all() const;
 size_type count() const;

 // element access:
 reference operator[](size_type pos);
 bool operator[](size_type pos) const;

 // conversion:
 unsigned long long to_ulonglong() const;

 // capacity:
 size_type size() const;
 size_type num_blocks() const;
 size_type max_size() const;
 bool empty() const;

 // set queries:
 bool is_subset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;
 bool is_proper_subset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;
 bool is_superset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;
 bool is_proper_superset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;

 // lookup:
 size_type find_first_set() const;
 size_type find_next_set(size_type pos) const;
 size_type find_last_set() const;
 size_type find_prev_set(size_type pos) const;
 size_type find_first_reset() const;
 size_type find_next_reset(size_type pos) const;
 size_type find_last_reset() const;
 size_type find_prev_reset(size_type pos) const;

};

} // namespace std

2 dynamic_bitset constructors

10 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

explicit
dynamic_bitset(const Allocator& alloc = Allocator());

Effects: Constructs a dynamic_bitset of size zero. A copy of the alloc object will be used in
subsequent dynamic_bitset operations such as resize to allocate memory.

Postconditions: this->size() == 0.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

explicit
dynamic_bitset(size_type num_bits,
 unsigned long long value = 0,
 const Allocator& alloc = Allocator());

Effects: Constructs a dynamic_bitset from an unsigned long long. The first M bits are
initialized to the corresponding bits in value and all other bits, if any, to zero (where M =
min(num_bits, std::numeric_limits<unsigned long long>::digits)). A copy of the
alloc object will be used in subsequent dynamic_bitset operations such as resize to allocate
memory.

Postconditions:

• this->size() == num_bits.

• For all i in the range [0,M), (*this)[i] == (value >> i) & 1.

• For all i in the range [M,num_bits), (*this)[i] == false.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename CharT,
 typename Traits,
 typename Alloc>
explicit
dynamic_bitset(
 const std::basic_string<CharT, Traits, Alloc>& str,
 bit_order order = msb_first,
 typename std::basic_string<CharT, Traits, Alloc>::size_type pos = 0,
 typename std::basic_string<CharT, Traits, Alloc>::size_type n =
 std::basic_string<CharT, Traits, Alloc>::npos,
 size_type num_bits = npos,
 const Allocator& alloc = Allocator());

Requires: pos <= str.size() and the characters used to initialize the bits must be 0 or 1.

Effects: Constructs a dynamic_bitset from a string of 0's and 1's. The first M bits are initialized to
the corresponding characters in str, where M = min(min(str.size() - pos, n), num_bits), if n
!= std::basic_string<CharT, Traits, Alloc>::npos and num_bits != npos.
If n == std::basic_string<CharT, Traits, Alloc>::npos then n is ignored. Similarly, if
num_bits == npos it is also ignored.

If order is msb_first then the highest character position in str (the rightmost character), not the

11 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

lowest (leftmost character), corresponds to the least significant bit. That is, character position pos +
M - 1 - i corresponds to bit i. Otherwise, if order is lsb_first then character position pos
corresponds to bit i.

[Example: dynamic_bitset(string("11011100")) is the same as dynamic_bitset(220ul).
—end example].

Throws: an allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename BlockInputIterator>
dynamic_bitset(BlockInputIterator first,
 BlockInputIterator last,
 const Allocator& alloc = Allocator());

Requires: The type BlockInputIterator must be a model of Input Iterator and its value_type
must be the same type as Block.

Effects: Constructs a dynamic_bitset based on a range of blocks. Let *first be block number 0,
*++first block number 1, etc. Block number b is used to initialize the bits of the dynamic_bitset in
the position range [b*bits_per_block, (b+1)*bits_per_block). For each block number b
with value blockvalue, the bit (blockvalue >> i) & 1 corresponds to the bit at position (b *
bits_per_block + i) in the dynamic_bitset (where i goes through the range [0,
bits_per_block)).

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

dynamic_bitset(const dynamic_bitset& x,
 size_type pos,
 size_type n = npos,
 size_type num_bits = npos,
 const Allocator& alloc = Allocator());

Requires: pos is a valid index in x.

Effects: Constructs a dynamic_bitset that is a subset of the dynamic_bitset x. The first M bits
are initialized to bits [pos,pos+M) in x, where M = min(n, x.size()-pos, num_bits). If n is
npos then n is considered to be x.size()-pos. If num_bits is npos then num_bits is considered to be
min(n, x.size()-pos). The remaining bits, up to num_bits-1 are initialized to 0.

Postconditions:

• this->size() == num_bits.

• For all i in the range [0,M), (*this)[i] == x[i+pos].

• For all i in the range [M,num_bits), (*this)[i] == false.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

dynamic_bitset(const dynamic_bitset& x);
Effects: Constructs a dynamic_bitset that is a copy of the dynamic_bitset x. The allocator for
this dynamic_bitset is a copy of the allocator in x.

12 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Postconditions: For all i in the range [0,x.size()), (*this)[i] == x[i].

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

3 dynamic_bitset swap
void swap(dynamic_bitset& x);

Effects: The contents of this dynamic_bitset and dynamic_bitset x are exchanged.

Postconditions: This dynamic_bitset is equal to the original x, and x is equal to the previous version
of this dynamic_bitset.

Throws: nothing.

4 dynamic_bitset assignment
dynamic_bitset& operator=(const dynamic_bitset& x);

Effects: This dynamic_bitset becomes a copy of the dynamic_bitset x.

Postconditions: For all i in the range [0,x.size()), (*this)[i] == x[i].

Returns: *this.

Throws: nothing.

5 dynamic_bitset allocator
allocator_type get_allocator() const;

Returns: A copy of the allocator object used to construct *this.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

6 dynamic_bitset resizing
void resize(size_type num_bits, bool value = false);

Effects: Changes the number of bits of the dynamic_bitset to num_bits. If num_bits > size() then
the bits in the range [0,size()) remain the same, and the bits in [size(),num_bits) are all set to
value. If num_bits < size() then the bits in the range [0,num_bits) stay the same and the
remaining bits are discarded.

Postconditions: this->size() == num_bits.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

void clear();
Effects: The size of the dynamic_bitset becomes zero.

Throws: nothing.

13 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

void push_back(bool bit);
Effects: Increases the size of the dynamic_bitset by one, and sets the value of the new most-
significant bit to bit.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

void append(Block block);

Effects: Appends the bits in value to the dynamic_bitset (appends to the most-significant end). This
increases the size of the dynamic_bitset by bits_per_block. Let s be the old size of the
dynamic_bitset, then for i in the range [0,bits_per_block), the bit at position (s + i) is set
to ((block >> i) & 1).

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename BlockInputIterator>
void append(BlockInputIterator first, BlockInputIterator last);

Requires: The BlockInputIterator type must be a model of Input Iterator and the value_type
must be the same type as Block.

Effects: The result is equivalent to:

for(; first != last; ++first)
 this->append(*first);

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

void append(const dynamic_bitset& x);
Effects: The result is equivalent to:

for(size_type i=0; i<x.size(); ++i)
 this->push_back(x[i]);

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

void assign(const dynamic_bitset& x,
 size_type pos,
 size_type n = npos,
 size_type num_bits = npos);

Requires: pos is a valid index in x.

Effects: Equivalent to the assignment of a newly constructed dynamic_bitset that is a subset of the
dynamic_bitset x, where the first M bits are initialized to bits [pos,pos+M) in x, where M =
min(n, x.size()-pos, num_bits) and the remaining bits, up to num_bits-1 are initialized to 0. If
n is npos then n is considered to be x.size()-pos. If num_bits is npos then num_bits is considered
to be min(n, x.size()-pos).

Postconditions:

14 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

• this->size() == num_bits.

• For all i in the range [0,M), (*this)[i] == x[i+pos].

• For all i in the range [M,num_bits), (*this)[i] == false.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

7 dynamic_bitset bitwise operations
dynamic_bitset& operator&=(const dynamic_bitset& rhs);

Effects: Bitwise-AND M bits in rhs with the corresponding bits in this dynamic_bitset, where M =
min(this->size(), rhs.size()). If this->size() is greater than rhs.size(), then the
remaining this->size() - M bits are bitwise-ANDed with 0. This computes the set intersection of
this dynamic_bitset and the rhs dynamic_bitset. The effect is to clear each bit in *this for
which the corresponding bit in the rhs is clear, leaving all other bits unchanged. This is equivalent to:

for (size_type i = 0; i != M; ++i)
 (*this)[i] = (*this)[i] & rhs[i];
for (size_type i = M; i != this->size(); ++i)
 (*this)[i] = (*this)[i] & 0;

Returns: *this.

Throws: nothing.

dynamic_bitset& operator|=(const dynamic_bitset& rhs);
Effects: Bitwise-OR M bits in rhs with the corresponding bits in this dynamic_bitset, where M =
min(this->size(), rhs.size()). If this->size() is greater than rhs.size(), then the
remaining this->size() - M bits are bitwise-ORed with 0. This computes the set intersection of
this dynamic_bitset and the rhs dynamic_bitset. The effect is to clear each bit in *this for
which the corresponding bit in the rhs is clear, leaving all other bits unchanged. This is equivalent to:

for (size_type i = 0; i != M; ++i)
 (*this)[i] = (*this)[i] | rhs[i];
for (size_type i = M; i != this->size(); ++i)
 (*this)[i] = (*this)[i] | 0;

Returns: *this.

Throws: nothing.

dynamic_bitset& operator^=(const dynamic_bitset& x);

Effects: Bitwise-XOR's M bits in rhs with the bits in this dynamic_bitset, where M = min(this-
>size(), rhs.size()). If this->size() is greater than rhs.size(), then the remaining this-
>size() - M bits are bitwise-XORed with 0. The effect is to toggle each bit in *this for which the
corresponding bit in the rhs is set, leaving all other bits unchanged. This is equivalent to:

for (size_type i = 0; i != M; ++i)
 (*this)[i] = (*this)[i] ^ rhs[i];

15 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

for (size_type i = M; i != this->size(); ++i)
 (*this)[i] = (*this)[i] ^ 0;

Returns: *this.

Throws: nothing.

dynamic_bitset& operator-=(const dynamic_bitset& x);
Effects: Bitwise-AND the complement of M bits in rhs with the corresponding bits in this
dynamic_bitset, where M = min(this->size(), rhs.size()). If this->size() is greater
than rhs.size(), then the remaining this->size() - M bits are bitwise-ANDed with 1. This
computes the set difference of this dynamic_bitset and the rhs dynamic_bitset. This is
equivalent to:

for (size_type i = 0; i != M; ++i)
 (*this)[i] = (*this)[i] & ~rhs[i];
for (size_type i = M; i != this->size(); ++i)
 (*this)[i] = (*this)[i] & 1;

Returns: *this.

Throws: nothing.

8 dynamic_bitset bit shift operations
dynamic_bitset& operator<<=(size_type n);

Effects: Replaces each bit position pos in *this with a value determined as follows:

— If pos < n, the new value is zero;

— If pos >= n, the new value is the previous value of the bit at position pos – n.

Returns: *this.

Throws: nothing.

dynamic_bitset& operator>>=(size_type n);
Effects: Replaces each bit position pos in *this with a value determined as follows:

— If n >= size() - pos, the new value is zero;

— If n < size() - pos, the new value is the previous value of the bit at position pos + n.

Returns: *this.

Throws: nothing.

dynamic_bitset operator<<(size_type n) const;
Effects: Constructs an object x of dynamic_bitset and initialises it with *this.

Returns: x <<= n.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

16 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

dynamic_bitset operator>>(size_type n) const;
Effects: Constructs an object x of dynamic_bitset and initialises it with *this.

Returns: x >>= n.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

9 dynamic_bitset basic bit operations
dynamic_bitset& replace(size_type pos, bool val);

Requires: pos < this->size().

Effects: Sets bit pos in *this to 1 if val is true, and clears bit pos in *this to 0 if val is false.

Returns: *this.

Throws: nothing.

dynamic_bitset& set(size_type pos);
Requires: pos < this->size().

Effects: Sets bit pos in *this to 1.

Returns: *this.

Throws: nothing.

dynamic_bitset& set();
Effects: Sets all bits in *this to 1.

Returns: *this.

Throws: nothing.

dynamic_bitset& reset(size_type pos);
Requires: pos < this->size().

Effects: Sets bit pos in *this to 0.

Returns: *this.

Throws: nothing.

dynamic_bitset& reset();
Effects: Clears all bits in *this to 0.

Returns: *this.

Throws: nothing.

dynamic_bitset& flip(size_type pos);
Requires: pos < this->size().

17 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Effects: Toggles the bit at pos in *this.

Returns: *this.

Throws: nothing.

dynamic_bitset& flip();
Effects: Toggles all bits in *this.

Returns: *this.

Throws: nothing.

dynamic_bitset operator~() const;
Effects: Constructs an object x of dynamic_bitset and initialises it with *this.

Returns: x.flip().

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

bool test(size_type pos) const;
Requires: pos < this->size().

Returns: true if the bit at pos in *this has the value 1, false otherwise.

Throws: nothing.

bool any() const;
Returns: true if any bit in *this is 1, false otherwise.

Throws: nothing.

bool none() const;
Returns: true if no bit in *this is 1, false otherwise.

Throws: nothing.

bool all() const;
Returns: true if all bits in *this are 1, false otherwise.

Throws: nothing.

size_type count() const;
Returns: A count of the number of bits set to 1 in *this.

Throws: nothing.

10 dynamic_bitset element access
reference operator[](size_type pos);

18 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Requires: pos < this->size().

Returns: A reference to bit pos. Note that reference is a proxy class with an assignment operator
and a conversion to bool, which allows you to use operator[] for assignment. That is, if x is a
variable convertible to bool, you can write both x = b[pos] and b[pos] = x. However, in many
other respects the proxy is not the same as the true reference type bool&.

Throws: nothing.

bool operator[](size_type pos) const;
Requires: pos < this->size().

Returns: test(pos).

Throws: nothing.

11 dynamic_bitset conversion

unsigned long to_ulonglong() const;
Returns: The numeric value corresponding to the bits in *this.

Throws: std::overflow_error if that value is too large to be represented in an unsigned long
long, i.e. if *this has any non-zero bit at a position >= std::numeric_limits<unsigned
long long>::digits.

12 dynamic_bitset capacity
size_type size() const;

Returns: the number of bits in this dynamic_bitset.

Throws: nothing.

size_type num_blocks() const;
Returns: the number of blocks in this dynamic_bitset.

Throws: nothing.

size_type max_size() const;
Returns: size() of the largest possible dynamic_bitset.

Throws: nothing.

bool empty() const;
Returns: size() == 0.

Throws: nothing.

13 dynamic_bitset set queries
bool is_subset_of(const dynamic_bitset& x,

19 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

 int offset = 0,
 size_type n = npos) const;

Returns: true if this dynamic_bitset is a subset of n bits of dynamic_bitset x offset by offset.
That is, it returns true if, for every bit pos that is set to 1 in this dynamic_bitset, the
corresponding bit pos+offset in dynamic_bitset x is also set to 1. Otherwise this function returns
false. Positions in dynamic_bitset x less than 0 or greater than pos+offset+n are considered to be
0.

[Example: If *this == dynamic_bitset(string("11101101"),false)and x ==
dynamic_bitset(string("101111011010"),false) then, this->is_subset_of(x, -2,
4) == true but this->is_subset_of(x, 3) == false.
—end example]

Throws: nothing.

bool is_proper_subset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;

Returns: true if this dynamic_bitset is a proper subset of n bits of dynamic_bitset x offset by
offset. That is, it returns true if, for every bit that is set to 1 in this dynamic_bitset, the
corresponding bit in dynamic_bitset x is also set to 1 and this->count() < x.count.
Otherwise this function returns false.

[Example: If *this == dynamic_bitset(string("010010101101")), this->count() == 6;
and x == dynamic_bitset(string("011011101101")), x.count() == 8; then, this-
>is_proper_subset_of(x) == true.
—end example]

Throws: nothing.

bool is_superset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;

Returns: x.is_subset_of(*this,offset ,n);
Throws: nothing.

bool is_proper_superset_of(const dynamic_bitset& x,
 int offset = 0,
 size_type n = npos) const;

Returns: x.is_proper_subset_of(*this,offset ,n);
Throws: nothing.

14 dynamic_bitset lookup
size_type find_first_set() const;

Returns: the lowest index i such as bit i is set to 1, or npos if *this has no one bits.

Throws: nothing.

20 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

size_type find_next_set(size_type pos) const;
Requires: pos < this->size().

Returns: the lowest index i greater than pos such as bit i is set to 1, or npos if no such index exists.

Throws: nothing.

size_type find_last_set() const;
Returns: the highest index i such as bit i is set to 1, or npos if *this has no one bits.

Throws: nothing.

size_type find_prev_set(size_type pos) const;
Requires: pos < this->size().

Returns: the highest index i less than pos such as bit i is set to 1, or npos if no such index exists.

Throws: nothing.

size_type find_first_reset() const;
Returns: the lowest index i such that bit i is clear (0), or npos if *this has no zero bits.

Throws: nothing.

size_type find_next_reset(size_type pos) const;
Requires: pos < this->size().

Returns: the lowest index i greater than pos such that bit i is clear (0), or npos if no such index exists.

Throws: nothing.

size_type find_last_reset() const;
Returns: the highest index i such that bit i is clear (0), or npos if *this has no zero bits.

Throws: nothing.

size_type find_prev_reset(size_type pos) const;
Requires: pos < this->size().

Returns: the highest index i less than pos such as bit i is clear (0), or npos if no such index exists.

Throws: nothing.

15 dynamic_bitset non-member operations
template <typename Block,
 typename Allocator>
void swap(dynamic_bitset<Block, Allocator>& lhs,
 dynamic_bitset<Block, Allocator>& rhs);

Returns: lhs.swap(rhs);

21 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Throws: nothing.

template <typename Block,
 typename Allocator>
bool operator==(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: true if lhs.size() == rhs.size() and if for all i in the range [0,rhs.size()),
(*this)[i] == rhs[i]. Otherwise returns false.

Throws: nothing.

template <typename Block,
 typename Allocator>
bool operator!=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: !(lhs == rhs);
Throws: nothing.

template <typename Block, typename Allocator>
bool operator<(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: true if lhs is lexicographically less than rhs, false otherwise.

Throws: nothing.

template <typename Block,
 typename Allocator>
bool operator<=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: !(lhs > rhs);
Throws: nothing.

template <typename Block,
 typename Allocator>
bool operator>(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: !(lhs < rhs || lhs == rhs);
Throws: nothing.

template <typename Block,
 typename Allocator>
bool operator>=(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: !(lhs < rhs);

22 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Throws: nothing.

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator&(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: dynamic_bitset<Block,Allocator>(lhs) &= rhs.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator|(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: dynamic_bitset<Block,Allocator>(lhs) |= rhs.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator^(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: dynamic_bitset<Block,Allocator>(lhs) ^= rhs.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename Block,
 typename Allocator>
dynamic_bitset<Block, Allocator>
operator-(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs);

Returns: dynamic_bitset<Block,Allocator>(lhs) -= rhs.

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator).

template <typename Block,
 typename Allocator>
bool intersect(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs,
 int offset = 0);

Effect: true if there exists any valid position pos in lhs and any valid position pos+offset in rhs for

23 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

which lhs[pos] & rhs[pos+offset] is true. No new dynamic_bitset is created.

Returns: dynamic_bitset<Block, Allocator>(lhs & dynamic_bitset<Block,
Allocator>(rhs, offset)).any();
Throws: nothing.

template <typename Block,
 typename Allocator>
bool disjoint(const dynamic_bitset<Block, Allocator>& lhs,
 const dynamic_bitset<Block, Allocator>& rhs,
 int offset = 0);

Effect: true if there exists no valid position pos in both lhs and valid position pos+offset in rhs for
which lhs[pos] & rhs[pos+offset] is true.

Returns: !intersect(lhs, rhs, offset);
Throws: nothing.

template <typename Block,
 typename Allocator,
 typename StringT>
void to_string(const dynamic_bitset<Block, Allocator>& x,
 StringT& str,
 bit_order order = msb_first);

Effects: Copies a representation of x into the string str. A character in the string is '1' if the
corresponding bit is set to 1, and '0' if it is not. If order is msb_first the character position pos in the
string corresponds to bit position x.size() - 1 – pos, otherwise it corresponds to pos.

Throws: An allocation error if memory is exhausted in str.

template <typename Block,
 typename Allocator,
 typename BlockOutputIterator>
void to_block_range(const dynamic_bitset<Block, Allocator>& x,
 BlockOutputIterator result);

Requires: The type BlockOutputIterator must be a model of Output Iterator and its value_type
must be the same type as Block. Further, the size of the output range must be greater or equal
x.num_blocks().

Effects: Writes the bits of the dynamic_bitset into the iterator result a block at a time. The first
block written represents the bits in the position range [0,bits_per_block) in the
dynamic_bitset, the second block written the bits in the range
[bits_per_block,2*bits_per_block), and so on. For each block blockvalue written, the bit
(blockvalue >> i) & 1 corresponds to the bit at position (blockvalue * bits_per_block + i)
in the dynamic_bitset.

template <typename CharT,
 typename Traits,
 typename Block,
 typename Allocator>

24 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,
 const dynamic_bitset<Block, Allocator>& x);

Effects: Inserts a textual representation of x into the stream os (highest bit first). Informally, the output
is the same as doing,

std::basic_string<CharT, Traits> str;
to_string(x, str);
os << str;

except that the stream inserter takes into account the locale imbued into os, which to_string()
cannot. More precisely, assume we have character_of(x[pos]) for each valid pos in x where
character_of(bit) = bit ? os.widen('1') : os.widen('0'). Then assume we have str of
type std::basic_string<CharT, Traits> and length x.size(), such that for each pos in [0,
x.size()), str[pos] is character_of(x[pos]). Then, the output, the effects on os and the
exception behaviour, is the same as outputting the object str to os (same width, same exception mask,
same padding, same setstate() logic).

Returns: os

Throws: std::ios_base::failure if there is a problem writing to the stream.

template <typename CharT,
 typename Traits,
 typename Block,
 typename Allocator>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,
 dynamic_bitset<Block, Allocator>& x);

Effects: Extracts a dynamic_bitset from an input stream. Let tt be the traits_type of is. Then:

1. A (non-eof) character c extracted from is is a bitset_digit if, and only if, either tt::eq(c,
is.widen('0')) or tt::eq(c, is.widen('1')) return true.

2. If c is a bitset_digit, its corresponding_bit_value is 0 if tt::eq(c, is.widen('0')) is true, 1
otherwise.

The function begins by constructing a sentry object k as if k were constructed by typename
std::basic_istream<CharT, Traits>::sentry k(is). If bool(k) is true, it calls
x.clear() then attempts to extract characters from is. For each character c that is a bitset_digit the
corresponding_bit_value is appended to the less significant end of x. If is.width() is greater than zero
and smaller than x.max_size() then the maximum number, n, of bits appended is is.width()
otherwise n = x.max_size(). Unless the extractor is exited via an exception, characters are extracted
(and corresponding_bit_values appended) until any of the following occurs:

— n bits are stored into the dynamic_bitset;

— end-of-file, or an error, occurs on the input sequence;

— the next available input character isn't a bitset_digit

If no exception caused the function to exit then is.width(0) is called, regardless of how many
characters were actually extracted. The sentry object k is destroyed.

If the function extracts no characters, it calls is.setstate(std::ios::failbit), which may
throw std::ios_base::failure.

25 of 27

J16/06 0120 = SC22/WG21/N2050 ‐

Returns: is

Throws: An allocation error if memory is exhausted (std::bad_alloc if Allocator is
std::allocator). A std::ios_base::failure if there is a problem reading from the stream.

16 set_bit_order constructor
explicit
set_bit_order(bit_order o);

Effects: Constructs a set_bit_order object with bit_order o.

Throws: Nothing.

17 dynamic_bitset bit order stream manipulators
template<class CharT, class Traits>
std::basic_ostream<CharT, Traits>& operator<<
 (std::basic_ostream<CharT, Traits>& os, const set_bit_order& sbo);

Effects: Ensures that subsequent output streaming of dynamic_bitsets will be bit ordered according
the value of the bit_order used to construct sbo.

Returns: os

Throws: Nothing.

V Future Issues and Discussion

1 Iterators
dynamic_bitset is not designed to be a container and does not provide iterators. Primarily this is because
the current iterator requirements for a Random Access Iterator does not allow the use of proxies. However if
the possible changes outlined in [N1640 – Abrahams, Siek, Witt, 2004] are adopted, then it is conceivable
that iterators might be provided for dynamic_bitset in a fashion similar to that posited for
std::vector<bool>, namely iterators that meet the requirements of Random Access Traversal Iterator,
Readable Iterator and Writeable Iterator would be feasible.

VI Acknowledgments
Many thanks go to the original creators and maintainers of the boost::dynamic_bitset library on which
this proposal is based, namely, Jeremy Siek and Chuck Allison..

VII References
[Boost – dynamic_bitset] Boost Library documentation for the boost::dynamic_bitset library.

http://www.boost.org/libs/dynamic_bitset/dynamic_bitset.html

[Boost Libraries] Boost provides free peer-reviewed portable C++ source libraries.
http://www.boost.org/

[Gmane – boost.devel] The Boost Developers mailing list at gmane.comp.lib.boost.devel.
nntp://news.gmane.org/gmane.comp.lib.boost.devel
http://news.gmane.org/gmane.comp.lib.boost.devel

26 of 27

http://www.boost.org/
http://www.boost.org/libs/dynamic_bitset/dynamic_bitset.html

J16/06 0120 = SC22/WG21/N2050 ‐

[Meyers, 2001] “Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template
Library”, Scott Meyers, 2001, Addison-Wesley. pp79 – 82.

[N0220 – Allison, 1993] “A Proposal for Two Bitset Classes”, Chuck Allison, 8th Dec. 1993.
Library.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1993/N0220R2.asc

[N1185 – Sutter, 1999] N1185: 99-0008, “vector<bool> Is Nonconforming, and Forces
Optimization Choice”, Herb Sutter, 22nd Feb. 1999. Library.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1999/n1185.pdf

[N1640 – Abrahams, Siek, Witt, 2004] N1640: 04-0080, “New Iterator Concepts”, David
Abrahams, Jeremy Siek, Thomas Witt, 10th Apr. 2004. Library.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1640.html

[N1847 – Sutter, 1999] N1847: 05-0107, “vector<bool>: More Problems, Better Solutions”, Herb
Sutter, 20th Oct. 1999. Library.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1847.pdf

[N2009 – Becker, 2006] N2009: 06-0079, “Working Draft, Standard for Programming Language
C++”, Pete Becker, 21st Apr. 2006.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2009.pdf

[Sutter, 2005] “Exception C++ Style: 40 New Engineering Puzzles, Programming Problems, and
Solutions”, Herb Sutter, 2005, Addison-Wesley. pp.204 – 211.

27 of 27

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1905.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1847.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1999/n1185.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1999/n1185.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1999/n1185.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1993/N0220R2.asc

	Proposal to Add a Dynamically Sizeable Bitset to the Standard Library Technical Report
	Revision 1
	IMotivation and Introduction
	IIImpact On the Standard
	IIIDesign Decisions
	1Introduction
	2Constructing dynamic_bitsets using strings
	3Conversion to string and streaming
	4Confusion between streaming and shifting operators
	5Concatenating dynamic_bitsets
	6Using replace(size_type pos, bool val) instead of set(size_type pos, bool val = true)
	7Bitwise operators do not require dynamic_bitsets of the same size
	8Lookup using find_*_set() and find_*_reset()

	IVProposed Text
	1Header <dynamic_bitset> synopsis
	2dynamic_bitset constructors
	3dynamic_bitset swap
	4dynamic_bitset assignment
	5dynamic_bitset allocator
	6dynamic_bitset resizing
	7dynamic_bitset bitwise operations
	8dynamic_bitset bit shift operations
	9dynamic_bitset basic bit operations
	10dynamic_bitset element access
	11dynamic_bitset conversion
	12dynamic_bitset capacity
	13dynamic_bitset set queries
	14dynamic_bitset lookup
	15dynamic_bitset non-member operations
	16set_bit_order constructor
	17dynamic_bitset bit order stream manipulators

	VFuture Issues and Discussion
	1Iterators

	VIAcknowledgments
	VIIReferences

