Memory Model Overview

Hans-J. Boehm
HP Labs

Hans.Boehm@hp.com

WG21/N2010=J16/06-0080
2006-04-21

Slides presented to concurrency sub-subgroup (slightly revised)



Talk Overview

-Status

‘Very quick overview

‘Discussion of consequences
*This will impact compiler back-ends.
*This will constrain future hardware.
|l believe this is unavoidable if we want a
tolerable programming model.



Current Status

*We currently have an informal proposal.

*The evolving version is at
* http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

*N1942 is close.
*Builds on Clark Nelson's sequence point
proposal (N1944).

*Fundamental assumption:
*Usability is more important than 5% performance.

*‘Now is the time to discuss the approach.
It will take time to draft a formal proposal.
‘Web site has companion atomics interface.



Proposal definitions

*Two operations conflict if they affect the same
location, and at least one is a write.

A memory location is a scalar object or a
contiguous sequence of bit-fields.

‘(Oversimplified) A memory access
happens-before one in another thread if the
second acquires a lock after the first released it.

‘There is an (inter-thread) data race if there are
two conflicting memory accesses by different
threads, and neither happens-before the other.



Proposal Overview

We define a consistent execution.
‘Inter-thread visibility is defined using
happens-before.
*If there is a consistent execution which
-Sees the right input, and
-Contains a data race
then the semantics are undefined.
*Otherwise the program behaves according to one

of its executions.

*We handle atomic operations fairly generally with a more

complicated, and somewhat nonstandard definition of
happbens-before.



Library Issues

*Haven't looked at this in detail yet.
‘Plan is to follow SGI STL:
-Containers behave like scalars:
*Two operations on a container conflict if one
of them logically updates the container.
*Allocation doesn't count as update.
*User-invisible updates require internal locking.
*Other locking is the clients reponsibility.
*This seems to be the de facto standard.
-except for 1/0?
-Basic_string and reference counting?
-ABI change?



Positive Attributes

-Complexity of the proposal seems manageable.
‘In the absence of atomics, it seems as simple

as anyone might have expected.

*We're known to be mathematically sloppy in only
one place: The "depends-on™ relation. And that's
‘probably fixable, if we really wanted.

‘not critical for mainstream optimization.

*Gives a sound foundation to thread in C++.
-Simples, teachable rules for common case.

‘Probably as easy to use as threads and locks
can be.



Other impact on standard

‘Everything, needs review.

‘We need clean single-thread ordering semantics.
*We need to know what "program order" is.

*Part of current discussion uses "'sequence
points", part doesn't.

-"Sequence points" define an order, and are not
points.

‘We don’'t agree on what it means.

*This needs to be fixed.



Implementation consequences

*Most optimizations are unaffected. Loads and
stores can be eliminated, replicated, and moved
between atomic/synchronization calls.

*But
-Some fairly fundamental ones are affected.
-And (like Java & CLI) we impose hardware

constraints:

*Required for multiprocessors.

*May need restartable critical sections on
uniprocessors.



Optimization Restrictions

No speculative or unnecessary stores.

*Stores to struct/class members may not
unnecessarily overwrite adjacent members.
‘Intel Example:
struct {char a; int b:9; int c¢:7; char d;}

* A store to b must be implemented as 2 byte
stores.

*Speculative register promotion often illegal:
for (T *p = q; p !'= 0; p = p —> next)

if (p —> data > 0) ++count;
- Standard register promotion of count becomes illegal.



Optimization Restrictions 2

-Some kinds of code hoisting are problematic.
-Stores may not be advanced across potentially
nonterminating loops.

*Example:
for (T*p = qgq; p != 0; p = p —> next) ++count;
x = 42;

‘Uncommon? But analysis is commonly wrong.



Architectural Implications

*Byte stores must be well-supported.
*Required for Java/CLlI.
‘Very old DEC Alpha machines won't work.
*And compilers should limit support.
*Others?
*Atomic operations may be optional, but require
more:
*Atomic loads/stores for most scalars.
-Compare-and-swap (ll/sc) highly desirable.
-Cheap way to enforce "causal ordering":
-happens-before is transitive.



Questions:

*Any concerns?

-Single thread performance will take a small hit.
‘Low single-digit SPECcpu performance?
*Except for "no threads™ compiler option.

‘Is this OK? Other options?

*Are the architectural constraints OK?

We do have (bad?) options for location defn.

‘Is the library approach OK?

- Atomic operations issues?



