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1. Introduction
A number of languages provide a way of passing code as arguments without having to define a separate named 
function [5]. For example, Algol 68 has downward funargs, Lisp has closures, in Smalltalk this is called “code 
blocks” which can be returned, passed as a parameter and executed later. Similar functionality is present in C# 2.0 
(closures)  and Java (anonymous classes).  This  concept  is  also not  foreign to  C++ as it  extends  the  existing 
mechanisms and there are well known attempts (Boost.Lambda [9], Boost.Bind [8]) to introduce this functionality 
in C++ as a library solution.

Closures typically appear in languages that allow functions to be first-class values, in other words, such languages allow  
functions to be passed as arguments, returned from function calls, bound to variable names, etc., just like simpler types  
such as strings and integers.

Wikipedia

C++ has a concept of function objects which are the first class values, can be passed as arguments and returned, 
bound to variable names. Also, the well known Boost.Bind [8] library which was approved for TR1 was designed 
to bind parameters to function objects, creating new function objects. With the recent addition of normalised 
function pointers (tr1::function) this makes closures a missing logical extension of the C++ language, and in 
fact lambda functions ES017, ES062 [6] are in the list of active proposals of the C++ evolution group.

Many algorithms in the C++ Standard Library require the user to pass a predicate or any other functional object, 
and yet there is usually no simple way to construct such a predicate in place. Instead one is required to leave the 
current scope and declare a class outside of the function, breaking an important rule of declaring names as close as 
possible to the first use. This shows that lambda functions would add a great to the expressive power and ease of 
use of the C++ Standard Library.

We will refer to function objects which represent closures as lambda function objects, or lambda functions.

1.1. Motivation
• C++ Standard Library algorithms would be much more pleasant to use if  C++ had support for lambdas. 

Lambda functions would let people use C++ Standard Library algorithms in many cases where currently it is 
easier  to write a for loop.  Many developers  do not use function objects  simply because of the syntactic 
overhead.

• A small set of trivial lambda functions can also be created with tr1::bind, but this proposal introduces a 
much better syntax which one can easily use (tr1::bind syntax is too complicated in many cases). For 
example, having

struct A { int foo(int y = 1, bool b = false); };
A a;
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compare

tr1::function<int(int, int)> f = boost::bind(
 &A::foo,
 &a,
 tr1::bind(&A::foo, &a, 1, false),
 tr1::bind(&A::foo, &a, _1, false) <
 tr1::bind(&A::foo, &a, _2, false)
 );

with

tr1::function<int(int, int)> f = int(int x, int y) {
 return a.foo(a.foo(), a.foo(x) < a.foo(y));
};

  
• There is also a general understanding that closures are one of the most important missing C++ features, and 

there  were  many  well  known  attempts  to  solve  this  problem  on  the  library  level  (Boost.Bind  [8], 
Boost.Lambda [9],  Standard C++ library binders),  but they introduce a very complicated and unreadable 
syntax, also leading to code which is very hard to debug and or analyse crash dumps. For example, in many 
environments developers are advised not to use these libraries as it takes significantly more time to analyse 
production problems one you have non trivial Boost.Bind or Boost.Lambda expressions in your call stack. 
Although the authors of these libraries did the best one can do in the current C++, and one can learn numerous 
highly non trivial programming techniques from these libraries, they introduce a new syntax for existing C++ 
constructs, making them very hard to read and understand. Another problem is that when one compiles source 
code which uses these libraries having inlining disabled, the performance is often severely affected. This 
again shows that lambda expressions are one of the most important missing features in C++ which can not be 
emulated in a reasonable way in a library.

• If one defines a function in a header file and needs to create a predicate for use in that function, that predicate 
class currently has to be defined outside of that function and so it is visible in every translation that includes 
that header file, although that predicate is supposed to be internal to that function.

• tr1::bind like  solutions  can  not  be  used  with  many  overloaded  functions.  For  example, 
tr1::bind(&std::abs,  _1)  does  not  compile,  and  one  has  to  write  tr1::bind( 
(Type(*)(Type))&std::abs, _1)  where Type is the corresponding type name. Also, tr1::bind( 
&std::set<int>::find, _1, _2) does not compile for the same reason. This makes it very hard to 
use tr1::bind with the standard containers.

• Another problem with tr1::bind (although this can be considered to be an implementation detail, but the 
most popular implementation  Boost.Bind has this problem) is that all the parameters are passed to the 
created function object by reference and thus  void foo(int) {} boost::bind(&foo, _1) (1); 
fails to compile, since 1 is not a const object of type int, and you can not pass it as a non const int reference 
either.

• Most users will not use algorithms which require functional objects as long as one has to write more code to 
construct  such  function  objects  than  one  would  write  to  “embed”  that  algorithm  into  their  code.  This 
effectively means that many generic programming patterns will not enter the mainstream until C++ supports a 
simple  and  efficient  way  to  construct  such  function  objects  inline,  just  like  one  can  construct  other 
expressions. For example, having

typedef std::set<int> myset;
typedef std::vector<int> myvec;

the following four examples implement the same functionality in the function  foo using lambda functions 
proposed  in  this  document,  using  C++ algorithm with  a  custom predicate,  using  C++ algorithm with  a 
predicate composed with tr1::bind, and with the algorithm code embedded in the function. Note, the last 
one  is  less  optimal  than  any  reasonable  standard  library  implementation,  and  an  implementation  with 
tr1::bind is non portable as it assumes that myset::find does not have any additional parameters with 
default values.
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(1) lambda function (3) custom code instead of the standard algorithm
void foo(
 myvec& v, const myset& s, int a) {
 // ...
 v.erase(
  std::remove_if(v.begin(), v.end(),
   bool(int x) {
     return std::abs(x) < a
       && s.find(x) != s.end(); }),
  v.end()
  );
}

void foo(
 myvec& v, const myset& s, int a) {
 // ...
 myvec::iterator new_end = v.begin();
 for (myvec::iterator i = v.begin();
  i != v.end();
  ++i) {
  if ( ! (std::abs(*i) < a
    && s.find(*i) != s.end()) )
   *(new_end++) = *i;
  }
 v.erase(new_end, v.end());
}

(2) custom predicate (4) tr1::bind
struct MyPredicate {
 MyPredicate(const myset& s, int a)
  : s_(s), a_(a) {}
 bool operator()(int x) const {
  return std::abs(x) < a_
    && s_.find(x) != s_.end();
 }
private:
 const myset& s_;
 int a_;
};
void foo(
 myvec& v, const myset& s, int a) {
 // ...
 v.erase(
  std::remove_if(v.begin(), v.end(),
   MyPredicate(s, a)),
  v.end()
  );
}

void foo(
 myvec& v, const myset& s, int a) {
 // ...
 v.erase(
  std::remove_if(
   v.begin(),
   v.end(),
   tr1::bind(
    std::logical_and<bool>(),
    (tr1::bind(
     (int(*)(int))&std::abs, _1) < a),
    (tr1::bind(
      (myset::const_iterator(myset::*)
(const int&)const)&myset::find,
       &s, _1) != s.end())
    )
   ),
  v.end()
  );
}

In addition to much more readable code (which example do you prefer to read to understand what foo does?), 
this example shows that with the current C++ standard the only sensible options are (2) and (3), and many 
developers pick (3) because it is shorter, and one does not need to define a separate structure which is visible 
to everyone else. Still, option (2) is generally faster than (3) as mentioned above. We note that if lambda 
functions are supported natively by the language, option (1) would be the most simple and brief as seen from 
this example. The size of the predicate functional object is also likely to be smaller with lambda functions as 
compiler may optimise away the extra reference and only store one pointer to the relevant stack frame in the 
predicate class.

• With lambda functionality described in this proposal we do not need a set of existing proposals, such as 
enhanced bindings [7], mem_fn adaptor [10],  callable pointers to members [11].

• C++ algorithms are usually more optimal than a user implementation of the same functionality embedded into 
other functions, as the standard implementation of these algorithms may contain non trivial optimisations and 
be tailored for specific C++ standard library data structures. Because of the absence of a simple way to 
construct necessary predicates inline, many users miss these optimisations.

• One can not use tr1::bind in a portable manner with functions in the std namespace and member functions 
of standard C++ library containers as the implementation is allowed to add extra parameters with default 
arguments to these functions.  There would be no such problem if  C++ had a native support  for lambda 
functions. The same problem exists with any 3rd party library when vendor adds a new argument with a 
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default value to a function which is used in tr1::bind expressions by a client.

• Recently Scott Meyers raised a question at comp.lang.c++.moderated (see the thread “Manual Loops vs STL 
Algorithms in the Real World”) asking whether it's really reasonable to expect C++ programmers to use STL 
algorithms instead of writing their own loops. It was stated that the real life code is usually less trivial than the 
common examples of using standard library binders,  and function objects  overcomplicate the code.  This 
problem would be solved by lambda functions proposed in this document as lambda functions introduce a 
very short and convenient notation to define function objects inline and pass them to any algorithms.

• A short  but  a  very important  note  in  favour of  native support  for  lambda functions is  that  with lambda 
functions the overall quality of C++ code would improve with the new code containing less bugs which very 
often occur when programmers “embed” algorithms into their code. I.e. lambda functions would give a much 
needed boost to the reuse of generic algorithms.

1.2. Required functionality
• Lambda functions must be the first class C++ citizens, i.e. objects. These objects must have class types, and 

these classes must have the "result_type, arg1_type, ..." typedefs and the corresponding operator().

• Lambda objects must be copyable. When a lambda object is copied, all the objects and references bound to 
that lambda object must be copied.

• A lambda must have the same access to the names and entities outside of the lambda definition as the scope 
enclosing that lambda definition. There is already a similar case for local classes (9.8/1) where declarations in 
a local class can use type names, enum values, extern variables and static and global variables from the 
enclosing scope.

• Lambdas must be significantly easier to read, write and debug than any possible library solutions.

• Lambdas must be compatible with the proposed tr1::bind and tr1::function libraries, i.e. one should 
be able to create tr1::function objects from lambda objects and bind parameters to lambda objects with 
tr1::bind.

1.3. Definitions
Lambda object –  A function object  of  an implementation dependent class  type with operator()  and 

result_type, etc. typedefs which can be created by a primary expression.

Declaration of a lambda object – A primary expression which creates a temporary lambda function 
object.

Definition of a lambda object – A declaration of a primary object is also a definition.

Lambda body – A code block which can be executed, given a set of parameters and context.

Local lambda – Lambda definition in a function, or in a lambda body.

Lambda – An expression which contains code and refers to certain variables, which is not evaluated 
immediately, and can be passed to functions which will evaluate it when needed, or stored to be evaluated in the 
future.

Lambda bound values initialiser  – Declaration and definition of variables which are contained in a 
lambda object, copy constructed when the lambda object is constructed or copy constructed. They can be used to 
bind any values to the lambda function by value.

1.4. Lambda objects and normalised function pointer type
1. We define normalised function pointers as normalised types for any expressions which can be called with a 

function call syntax. A main requirement for such normalised function pointers is that  all the  normalised 
function pointers which return objects of the same type and accept parameters of the same type do have the 
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same type and can be copied and assigned and it does not matter whether they refer to plain function pointers, 
or to complicated function objects. tr1::function is an example of a library solution for such normalised 
function pointers. Some languages support normalised function pointers directly.

2. Lambda functions are not required to be normalised function pointers. Lambda objects created by different 
code are not required to be assignable or to have the same layout, even if they return values of the same type 
and their arguments have same types. One can always normalise any lambda object using the library solutions 
like  tr1::function. Even if normalised function pointers are added to the C++ standard, they will not 
affect lambda functions in any way since lambda functions are orthogonal to normalised function pointers (in 
the same way as the result of a tr1::bind expression is orthogonal to tr1::function).

3. The fact that lambda objects are function objects and not function pointers is consistent with existing C++ 
practices as we already have a notion of function objects, which are objects classes with operator(). Also, 
normalised  function  pointers  would  have  the  same  limitation  that  any  other  function  pointers  have,  for 
example function calls through such pointers can rarely be inlined.

4. Unlike function pointers, lambda objects are not comparable with 0 and do not have operator ! as they are 
always valid, one can not have an uninitialised lambda object.

1.5. Proposed syntax
  ret_type(type1 value1, type2 value2, ...) { statements }

All the names and entities visible and accessible in the scope where lambda is declared must be also visible and 
accessible in the body of the lambda object. For example

void f(int x) {
 std::vector<int> v;
 // ...
 std::remove_if(v.begin(), v.end(), void (int& n) { n < x; });
}

Optionally, one can bind values to lambda objects which will have the same life time as the lambda object by 
using the lambda bound values initialiser, such as (typea boundvalue1(x), typeb boundvalue2(y), 
...). This initialiser can be used to pass variables to the lambda by value, as by default nothing is passed to the 
lambda, all the variables in the enclosing scope are automatically visible in the lambda function body and it is 
undefined  behaviour  if  lambda  refers  to  variables  whose  storage  has  been  released.  The  complete  lambda 
definition with bound values initialiser is

ret_type (type1 value1, type2 value2, ...)
 : (typea boundvalue1(x), typeb boundvalue2(y), ...) 
{ statements }

For example

void set_callback(tr1::function<bool(int)>);
void foo(int t) {
 set_callback(bool(int i) : (int number(t)) { std::cout<<(i + number); });
}

A lambda definition is a primary expression and so it can be used anywhere where any other primary expression 
can be used. For example,

int x = 0;
struct A {
 tr1::function<void()> f;
 A() : f(void(){ ++x; }) {}
 void foo(tr1::function<bool()> p = bool(){return x<0;}) { p(); }
 static tr1::function<int(bool)> f2;
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 void bar() { throw void() { --x; }; } // can only be caught in (...)
};
tr1::function<int(bool)> A::f2 = int(bool b) { return b ? 1 : 2; };

2. Specification

2.1. Lambda definition
A lambda definition defines an implementation dependant lambda class with external linkage and a temporary 
object of that class (12.2). Lambda definitions are primary expressions and have the following grammar
  lambda-definition:

    type-specifier lambda-declarator lambda-bound-values-declaratoropt { lambda-body }

  lambda-declarator:
    ( parameter-declaration-clause )

  lambda-bound-values-declarator:
    : ( lambda-bound-values-list )

  lambda-body:
    compound-statement

  lambda-bound-values-list:
    lambda-bound-value
    lambda-bound-values-list, lambda-bound-value

  lambda-bound-value:
    decl-specifier-seq declarator(assignment-expression)
    decl-specifier-seq abstract-declarator(assignment-expression)

where parameters in the parameter-declaration-clause are not visible in assignment-
expression elements in the lambda-bound-values-declarator.

2.2. Lambda classes
1. Lambda objects have class types, and expressions

• ret_type (type1 param1, type2 param2, ...) { statements }
• ret_type (type1 param1, type2 param2, ...) : (type3 boundvalue1(v1), type4 

boundvalue2(v2), ...) { statements }
create  temporary  lambda  objects  of   classes  with  implementation  dependent  names,  where  each  such 
expression can possibly result in a different class. The fact that the type of lambda classes is unspecified is 
consistent with the proposal for an enhanced binder [7] which was approved for TR1, where the type of the 
returned function objects is also unspecified.

2. If a lambda is defined within a function template, or a member function of a class template, it is essential that 
every unique instantiation of the template yields a unique type for the lambda class, just as every unique 
instantiation of the template yields a unique address for the function in which the local class is defined. If a 
local  class  is  defined  within  a  function  which  is  itself  a  template,  or  is  a  member  of  a  template,  then 
instantiations of the template with the same set of template parameters must yield the same instance of the 
local class, even if the instantiations are performed in different translation units.

3. Lambda classes may have any implementation dependent names, and classes representing different lambda 
objects are allowed to have different names even if they return values of the same type and have the same set 
of parameters. Implementation must guarantee that lambda class names do not clash with any user defined 
names and the observable behaviour does not depend on names of lambda classes.

4. Lambda classes must have the public "result_type, arg1_type, ..." typedefs and public operator() const without 
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exception specification. When operator() is called, it must invoke the lambda body. Also, no “this” pointer is 
declared in the lambda body, but if another “this” is visible in the scope where the lambda is declared, that 
“this”  is  visible  in  the  lambda  body,  the  same  stands  for  the  operator(),  i.e.  the  lambda  body  can  not 
recursively call itself directly.

5. The implementation is required to define a public copy constructor, and not to define operator =.

6. The  implementation  is  required  to  define  a  public  default  constructor  if  and  only  if  the  body  of  the 
corresponding lambda definition does not refer to anything except global, static and extern variables and 
enums and does not contain any bound values.

7. sizeof(lambda_type) is implementation dependent and is allowed to be different for lambda classes 
defined by different lambda definitions.

8. Implementation is allowed to add any member variables to the lambda class.

9. Declarations in the lambda body can use any type names, variables,  functions and enumerators from the 
enclosing scope.

10. Types of all the lambda parameters and bound values must have external linkage.

2.3. Lambda behaviour
We follow the approach used to introduce unnamed namespaces (7.3.1.1) and define lambda behaviour in terms of 
the behaviour of existing language constructs in the current standard.

Lambda definition behaves as if

1. Lambda definition is replaced by a simple type specifier of a class followed by a parenthesized expression list 
(5.2.3) where that class has a globally unique name is defined prior to the declaration of the function the 
lambda definition is defined in.

2. All the enclosing scope variables visible at the point of lambda definition which names are used in the lambda 
body are passed to the constructor of that class, as well as all the bound values.

3. Constructor of that class accepts the local scope variables by reference, and bound values by types specified 
in the lambda bound values initialiser.

4. That class has members variables with types and names specified in the lambda bound values initialiser, and 
they all are initialised in the member initialiser of the class constructor.

5. For every local scope variable accessed from the lambda body, that class has a member variable which has the 
type of a reference to the original variable, or of a reference to the type that variable refers to if that variable is 
a reference itself. All these references are initialised in the initializer list of the class constructor.

For example, having

std::string s = “test”;
the observable behaviour of

tr1::function<int(std::string, bool)> f =
 int(std::string x, bool b) { std::cout << s << x ; } ;

the same as of

class unique_class_name {
public:
 typedef result_type int;
 typedef arg1_type std::string;
 typedef arg2_type bool;
 unique_class_name(std::string& s_) : s(s_) {}
 int operator()(std::string x, bool b) const { std::cout << s << x; }
private:
 std::string& s;
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};
tr1::function<int(std::string, bool)> f = unique_class_name(s);

and having

bool b = false;
std::string t = “test”;

the observable behaviour of

tr1::function<double(int, const std::string&)> f =
 double(int i, const std::string& s)
  : (bool f(b), std::string p(“test”))
 { std::cout << s << p << f << i << t; }

is the same as of

class unique_class_name {
public:
 unique_class_name(std::string t_)
  : t(t_), f(b), p(“test”) {}
 typedef result_type int;
 typedef arg1_type std::string;
 typedef arg2_type bool;
 double operator()(int i, const std::string& s) const
 { std::cout << s << p << f << i << t; }
private:
 bool f;
 std::string p;
 std::string& t;
};
tr1::function<double(int, const std::string&)> f = unique_class_name(b, t);

2.4. Linkage
1. Lambda classes should have the linkage of the enclosing function (or of the class if the lambda is defined in a 

class  constructor  or  destructor,  or  in  the  member  initialiser  in  the  constructor),  or  of  the  variable  being 
initialised if lambda class is defined in a simple-declaration in the namespace scope.

2. If a lambda is defined in a function, all the names defined in that function are visible in the that class with the 
globally unique name.

2.5. Access to names and entities from inside the lambda body
1. The lambda body and the lambda bound values initialiser must have the same access to the names outside of 

the lambda definition as the scope enclosing that lambda definition.

2. All the entities visible in the lambda body may actually be references to the original variables, but this must not 
be observable in the lambda  body.

3. It is legal for lambda objects to refer to  local references even if lambda objects outlive these references but not 
the referenced objects.

4. Name visibility in a lambda should be the same as if one had a function object class (in a unique namespace) 
with external linkage, which had members with the same names and types (references) as all the variables 
defined  in  the  local  scope  and  accessible  from the  point  where  lambda  was  declared,  including  function 
parameters. Whether types of these "member variables" are references or not is implementation dependent.

5. It is undefined behaviour if there is a valid lambda object which body refers to a name of an object which 
storage is released.
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2.6. Where lambda expressions can be used
Anywhere where a primary expressions may be used. For example,

1. In function bodies (function-body) of functions

2. In an assignment-expression of function or operator parameter-declaration-clause

3. In variable declarations (simple-declaration) in global and namespace scopes.

(1) and (2) are implementable for functions with external linkage. In case of functions with internal linkage, this 
may be done, as this is implemented in VC++ compilers (v7, v8). In case of (3), if the variable being declared has 
internal linkage or is in an unnamed namespace, the implementation must create a different lambda-object in 
every translation unit. For example,

int x;
namespace { int y; }
tr1::function<void()> f = void() { x += y; };

is equivalent to

namespace { lambda_class_name lambda_object; }
tr1::function<void()> f = lambda_object;

This would also work with proposal for type deduction N1894 [1]. For example one could write

int x;
namespace { int y; }
auto f = void() { x += y };

This approach would also result in correct code if a lambda object is used to initialise a variable in an unnamed 
namespace. For example

int x;
namespace { int y; }
namespace { tr1::function<void()> f = void() { x += y; }; }

2.7. Impact on existing code
This proposal is only an extension and there is no impact on existing code.

2.8. Examples
template<class T> void inherit(T t) {
  struct X : public T {
    X() {} // ill-formed, classes generated by lambda definitions which refer 
to local variables do not have default constructors
    void foo() {
      --k; // ill-formed, 'k' is is not declared here, it is only declared in 
the lambda function body
    }
  };
  t(); // valid
  T t2(t); // valid
}
void foo() {
  int k = 0;
  inherit(void () { ++k; });
}

class B : public tr1::enable_shared_from_this<B> {

Valentin Samko, http://val.samko.info/lambda/ Page 9 of 16

http://val.samko.info/


Doc. No: N1958=06-0028 C++ lambda functions

  int n;
  B() {}
  B(const B& b) : n(b.n) {}
public:
  static tr1::shared_ptr<B> create() {
    return tr1::shared_ptr<B>(new B());
  }
  tr1::function<void(int&)> callback() const {
    return void(int& x)
      : (tr1::shared_ptr<const B> me(shared_from_this()))
    { x += n; };
  }
  // Note, this is not a misprint, x+=n is correct as well as x+=me->n as 
this lambda object already contains a shared pointer to this object, so it is 
not destroyed until the last copy of this lambda object is destroyed.
  // This callback can still be used even if user does not have any direct 
shared pointers to this object, as this lambda object will get a copy of a 
shared pointer to this object.
};

namespace {
 int x = 0;
 tr1::function<void()> f = void() { ++x; };
 tr1::function<tr1::function<void()>()> f2 =
  tr1::function<void()>() { return void() { ++x; }; };
 typedef tr1::function<int(int)> integer_transform;
  typedef tr1::function<integer_transform(integer_transform)
  > function_operator; 
 function_operator fop = integer_transform(integer_transform t) {
  return int (int x) : (integer_transform original_t(t)) {
   return original_t(x) % 100;
  };
 };
 // this creates a function object transformer fop which can be used to 
transform any function object which converts integer to another integer into 
another similar function object, which executes the original function object 
and returns the remainder after division of the result by 100.
 integer_transform t1 = int(int x) { return x*x; };
 integer_transform t2 = fop(t1);
}
void foo() {
 f();
 f2()();
 t2(10); // equivalent to fop(t1)(10)
 fop(t1)(10);
}

The following would be possible if the proposal [12] is accepted.

std::set<
  int, decltype(bool (int x, int y) { return std::abs(x) < std::abs(y); })
  > s;
struct A { std::string name; };
std::set<
  A, decltype(bool (const A& x, const A& y) { return x.name < y.name; })
  > sa;
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3. Protection against accidental misuse
1. Lambda object  may outlive local  variables  used by that  lambda object  and once these  variables  are 

destroyed and their storage is released, even an existence of a lambda function which refers to them 
results in undefined behaviour.

2. It a general case, is not possible for a compiler to determine at compile time that lambda will not outlive 
any variables it refers to.

3. It is undefined behaviour if there is a lambda object which body refers to a name of an object which 
storage is released, see 2.5/6 in this document. For example,

tr1::function<void()> foo() {
 int c = 0;
 return void(){ ++c; };
}

and

bool b = true;
tr1::function<void()> foo() { int x=0; return void() { if (b) ++x; }; }
void bar() { b = false; foo()(); }

results in undefined behaviour.

4. A case when a lambda object still exists which refers to local variables after they are destroyed is similar 
to existing C++ practices, for example

struct A { A(int& i) : i_(i) {} int& i_; };
A f() {
  int j=0;
  A a(j);
  // ...
  return a;
}

will lead to similar undefined behaviour and no compiler diagnostic is required. This shows that our case 
is consistent with the existing C++ practices.

3.1. Run time error detection
Most of such problems may be detected at run time by the implementation (many compilers already have options 
to add buffer overrun and other run time error detection). For example, if a lambda is defined in a function and its 
body refers to an object defined with automatic storage in that function, then implementation may store a counter 
of all the lambda objects of that type created by that function call or by copy construction, and if that counter is 
non zero when storage for local variables in that function is released, then the error may be reported at run time. 

So, for

void foo() {
  int a = 0;
  bar(void() { ++a; });
}

The implementation will produce the equivalent of

struct lambda_class {
  lambda_class(size_t& counter, int& a) : counter_(counter), a_(a) {}
  lambda_class(const lambda_class& x) : counter_(x.counter_), a_(x.a_) 
{ ++counter_; }
  ~lambda_class() { --counter_; }
  int& a_;
  size_t& counter_;
};
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tr1::function<void()> foo() {
  int a = 0;
  struct guard {
    guard() : counter(0) {}
    size_t counter;
    ~guard() { if (counter) report_error(); }
  } g;
  bar(lambda_class(g.counter, a));
}

which would call  implementation internal  function  report_error() if  function  bar stores a copy of the 
passed lambda object.

This run time error detection is possible for variables with automatic storage defined in the function (or another 
lambda body) where a lambda was defined.  Similar  run time checks for member variables (when lambda is 
defined in a member function) or for dynamically allocated objects are much harder to implement and will result 
in significant performance and memory usage overhead. For example,

struct A {
 int member_int;
 tr1::function<void()> foo() { return void() { ++member_int; }; }
};
tr1::function<void()> bar() {
 A a;
 return a.foo();
}

will result in undefined behaviour but the error will not be reported at run time. We also note that when creating 
function objects with tr1::bind for member functions, there are no run time checks whether the object which 
member function is being called was not destroyed yet.

There is no need for the standard to require implementations to detect these errors at run time, as such run time 
error detection can be optionally provided by an implementation and would be conforming with the standard (as 
the error is only detected when an undefined behaviour would occur otherwise).  This would be consistent with 
the spirit of C++, as similar run time checks are not required when the program uses a reference to an object 
which storage was released. For example,

struct X { X(const int& x) : v(x) {} const int& v; };
X foo(int t = 1) { return X(t); }
int y = foo().v;

results in undefined behaviour, but no run time error detection is required and it is up to the implementation to 
detect such errors at run time.

3.2. Garbage collection
Another  approach  to  avoid problem with lambda objects  accessing variables  which no longer  exist  requires 
garbage collection for all the variables (even primitives on the stack), and this is not achievable in C++. Any 
workarounds would only cover a few useful cases (i.e. never 100% coverage) and it would be against the spirit of 
C++. Also, such workarounds may introduce performance loss and possible memory allocation errors in the most 
simple cases (for example, allocation of local variables on the heap if they are used in a closure, as this is done by 
C#). Also we need to note that even if GC is introduced in C++, this still will not solve the general problem with 
local primitives on the stack. For example there is a similar problem in Java, where closures can not refer to non 
final local variables.

Therefore, the problems associated with lambda functions in the absence of GC  should not stop the introduction 
of the lambda functions in C++, as is it very unlikely that such a GC (even for local variables on the heap) will be 
introduced in C++ in a foreseeable future.
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3.3. Copying local scope variables to lambda by default
If  objects  with  automatic  storage  defined  in  functions  are  copied  to  the  lambda  object  by  default  (and  not 
referenced as this is described in this proposal) the problem with lambda objects outliving the function scope 
would be less of an issue. Unfortunately, this approach has other very significant problems.

1. Copying would invalidate iterators if both, container and iterator to that container are copied.

2. Copying will result in slicing.

3. Copying will lead to unexpected results with pointers and references, as pointers copied from the local 
scope will still point to the original objects and not to the copied ones.

4. Copying objects of non trivial types will result in performance problems.

5. Copying will make access to the function scope variables inconsistent with access to the namespace scope 
variables, as the second will not be copied.

4. Required changes to the standard

1. 1.8/1
An object is created by a definition (3.1), by a new-expression (5.3.4) [Add by a lambda definition (8.6)] 
or by the implementation (12.2) when needed.

2. [Add: 3.3.2/5 – Names declared in lambda definitions are local to these lambda definitions. ]

3. [Add:

3.3.4/8 – Lambda scope [basic.scope.lambda]

1. The potential scope of a name declared in a lambda definition consists of the declarative region 
following the name's point of declaration and of the lambda function body.
2. A name declared in the lambda definition hides a declaration of the same name in the enclosing 
scope, which scope extends to the lambda function body. ]

4. 3.9.2 Compound types

-- classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and 
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities 
(clause 11) [Add or defined by a lambda definition].

5. 5.1/3 The keyword this shall be used only inside a non-static class member function body (9.3) [Remove: 
or] in a constructor mem-initializer (12.6.2) [Add or in lambda definition defined in a non static class 
member function body. When the keyword this is used in a lambda definition, it refers to the pointer to 
the enclosing function's class.]

6. 7/1 Declarations [dcl.dcl]

declaration:

[Add lambda-function-definition ]

7. 7/2

A declaration that declares a function or defines a class, namespace, template, [Add lambda function ] or 
function also has one or more scopes nested within it.

8. [Add
8.6 “Lambda definition”
Lambda definition defines an implementation dependant lambda class with 
external linkage and a temporary object of that class (12.2). Lambda 
definitions are primary expressions and have the following grammar
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lambda-definition:
type-specifier lambda-declarator lambda-bound-values-declaratoropt {lambda-body}

lambda-declarator:
( parameter-declaration-clause )

lambda-bound-values-declarator:
: ( lambda-bound-values-list )

lambda-body:
compound-statement

lambda-bound-values-list:
lambda-bound-value
lambda-bound-values-list, lambda-bound-value

lambda-bound-value:
decl-specifier-seq declarator ( assignment-expression )
decl-specifier-seq abstract-declarator ( assignment-expression )

1. As lambda-function-definition defines a class and a variable, it can be defined in any scope where a 
temporary is acceptable.

2. Lambda objects must be copyable. When a lambda object is copied, all the objects and references 
bound to this lambda objects must be copied.

3. Lambda objects are temporary objects, created lambda definitions.

4. As lambda objects are temporary objects, they are destroyed as the last step in evaluating the full-
expression (1.9) that (lexically) contains the point where they were created.

[ The contents of sections 2.2 – 2.5 of this proposal should be inserted here ] ]

9. [Add 9/6 – Classes can also be defined by lambda function definitions (8.6) ]

10. 12.1 Constructors [class.ctor]

... An implicitly-declared default constructor for a class is implicitly defined when it is used to create an 
object of its class type (1.8).  [Add: If it is used to create an object of a class generated by a lambda 
definition which refers to anything but static, global and external variables and enum values or has 
bound variables, the program is ill-formed.]

11. 12.2/1 Temporary objects [class.temporary]

Temporaries  of  class  type  are  created  in  various  contexts:  binding an  rvalue  to  a  reference  (8.5.3), 
returning an rvalue (6.6.3),  a conversion that  creates  an rvalue  (4.1,  5.2.9,  5.2.11,  5.4),  throwing an 
exception (15.1), entering a handler (15.3),  [Add  lambda definition (8.6)  ]  and in some initializations 
(8.5).”

12. A.4
primary-expression:

literal
this
( expression )
id-expression

[Add: lambda-expression ]
[Add

lambda-expression
lambda-function-definition ]

13. A.6
declaration:

[Add lambda-definition ]

5. Implementation notes
1. Local functions which have access to the local variables are quite similar to the lambda functions and are 
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supported  by  the  GNU C  compiler.  It  implements  taking  the  address  of  a  nested  function  using  a 
technique called trampolines. The downside of this approach is that it requires executable stack. The 
upside is that there is implementation experience of a technique similar to what we are proposing.

2. Once we have local classes with external linkage [2], lambdas are much easier to implement.

3. Many implementation details  including generation of  the  unique  external  names  and to  the  linkage, 
relevant to this proposal and explaining how such a functionality may be implemented are explained in 
detail in [2].

4. Lambda functions may lead to a more optimal code than with wrapper-helper classes defined by user. For 
example, consider

struct helper_functor {
 helper_functor(int& a, std::string& b, int& c, double& d)
  : local_a(a), local_b(b), local_c(c), local_d(d)
 int& local_a;
 std::string& local_b;
 int& local_c;
 double& local_d;
 bool operator()(const MyClass& v) const {
  return v.foo(local_a, local_b) ? v.bar(local_c, local_d) : true
 }
};
void foofoo(int a, std::string b) {
 std::vector<MyClass> v = get_data();
 int c = barbar();
 double d = 3.14;
 std::remove_if(v.begin(), v.end(), helper_functor(a, b, c, d));
}

Here  sizeof(helper_functor) is at least the size of 4 references, and this object will be copied by the 
for_each algorithm, possibly many times. Now, consider the equivalent with C++ lambdas

void foofoo(int a, std::string b) {
 std::vector<MyClass> v = get_data();
 int c = barbar();
 double d = 3.14;
 std::remove_if(
  v.begin(), v.end(),
  bool (const MyClass& v) { return v.foo(a, b) ? v.bar(c, d) : true; });
}

In  addition  to  having  simpler  and  easier  to  understand  source  code,  this  version  may  be  more  optimal  as 
implementation is not required to store in the lambda object references to all the variables accessed in the lambda 
definition body. For example, implementation may only store one pointer to the stack frame, thus reducing the 
size of the lambda object, and that will result in a more optimal code.

Annex A – Notes
1. Although this  proposal  does not  provide any means to  pass lambda function objects  to  functions which 

require a function pointer parameter, this functionality can be added in the future for lambdas which do not 
refer to any local variables and do not have any bound variables by adding a conversion to function pointer 
operator to the corresponding lambda class.

2. The lambda definition syntax in this proposal does not support lambda classes with template operator(). As 
this  functionality  can  be  added  later  and  it  will  not  conflict  with  anything in  this  proposal  (apart  from 
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argX_type typedefs) this is left out of this proposal for now.

3. If the proposal for decltype and auto keywords [12] is accepted then return_type and argX_type typedefs will 
not be required as one will always be able to deduce the return type and argument types from the operator(). 
This will also simplify introduction of lambdas with template parameters, as such lambda classes can not have 
argX_type typedefs for template parameters.
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