
WG21/N1925=J16/05-0185 1

Doc. no: WG21/N1925=J16/05-0185

Date: 2005-12-04

Project: Programming Language C++

Reply to: Gerhard Wesp <gwesp@google.com>

Networking proposal for TR2
(rev. 1)

Contents

1 Motivation and Scope 3
1.1 Example code . 3
1.2 Non-goals . 4
1.3 Existing C++ networking frameworks 4

2 Impact on the Standard 5

3 Design Desisions 5
3.1 Connections, senders, receivers 5
3.2 Transport layer . 5
3.3 Addresses and address lists . 6
3.4 Waiting, timeout and non-blocking I/O 6
3.5 Support only for character streams 6
3.6 Error reporting . 6
3.7 Numeric ports . 6
3.8 Use of double for time values . 7

4 Proposed Text for the Standard 7
4.1 Header <network> synopsis . 7
4.2 The address concept . 8

4.2.1 address constructors . 9
4.2.2 address observers . 9

4.3 Resolve functions . 10
4.4 Class acceptor . 10

4.4.1 acceptor constructors . 11
4.4.2 acceptor observers . 11

4.5 Class connection . 11

WG21/N1925=J16/05-0185 2

4.5.1 connection constructors 12
4.5.2 connection destructor . 12
4.5.3 connection modifiers . 12
4.5.4 connection observers . 13

4.6 Class datagram receiver . 13
4.6.1 datagram receiver constructors 14
4.6.2 datagram receiver typedefs 14
4.6.3 datagram receiver static members 14
4.6.4 datagram receiver receive function template 14
4.6.5 datagram receiver observers 15

4.7 Class datagram sender . 15
4.7.1 datagram sender constructors 15
4.7.2 datagram sender observers 16
4.7.3 datagram sender modifiers 16

4.8 Stream buffer classes . 16
4.9 Class instreambuf . 16

4.9.1 instreambuf constructor 17
4.9.2 Overridden virtual functions 17

4.10 Class onstreambuf . 17
4.10.1 onstreambuf constructor 18
4.10.2 onstreambuf destructor 18
4.10.3 Overridden virtual functions 18

4.11 Class nstreambuf . 19
4.11.1 nstreambuf constructor 19

4.12 Stream classes . 19
4.13 Class instream . 19

4.13.1 instream constructor . 20
4.14 Class onstream . 20

4.14.1 onstream constructor . 20
4.15 Class nstream . 20

4.15.1 nstream constructor . 21
4.16 I/O multiplexing . 21
4.17 Additions to header <stdexcept> 22
4.18 Class network error . 22
4.19 Class transient error . 22
4.20 Class permanent error . 23

5 Unresolved Issues 23

6 Revision History 23

7 Acknowledgements 24

WG21/N1925=J16/05-0185 3

1 Motivation and Scope

File I/O has been a part of C++ since its beginnings. As networking I/O
becomes increasingly important and in some areas even more important than
file I/O, it seems natural to add this functionality to the standardized language
support library.

The present proposal defines support for

• Address resolution.

• Stream communication.

• Datagram communication.

The design is based on RAII for resource handling classes like network con-
nections and value semantics for non-resource holding classes like network ad-
dresses.

1.1 Example code

The following is an example of a streaming server implemented using the present
proposal. It takes whitespace-separated words as input and writes them back-
wards to its output. The example here is single-threaded but can easily be
extended to multiple server threads once threading becomes available in C++.

void reverse_server(const string& port) {

acceptor a(port);
clog << "Reverse server listening on port "

<< port << endl;

while(1) {
connection c(a);
clog << "Connection from: "

<< c.peer().host() << endl;
nstream ns(c);
ns << "500 Welcome to the REVERSE server." << endl;
string s;
while(ns >> s) {
if(s == "quit") {

ns << "550 Goodbye!" << endl;
break;

}
reverse(s.begin(),s.end());
ns << s << endl;

}
clog << "Connection closed." << endl;

}
}

WG21/N1925=J16/05-0185 4

1.2 Non-goals

• Out of band (OOB) data.

• Joining and leaving multicast groups.

• Support for layers other than the transport layer.

OOB data seems scarcely used, is incompatible with the classic C++ iostream
library and [3] suggests a second TCP connection instead.

Joining and leaving multicast groups can be implemented by operating sys-
tem specific external utilities.

The present proposal only defines support for the transport layer protocols
TCP and UDP. There is valid interest to address protocols from other layers in
the C++ standard, but we believe this is better done in separate proposals.

1.3 Existing C++ networking frameworks

The web site [1] lists some C++ libraries that include networking functionality,
among them Socket++ and wxWindows.

TrollTech’s QT library [6] includes networking functionality.
Douglas Schmidt’s ADAPTIVE Communication Environment (ACE) [4, 5]

is an extensive Object Oriented Programming toolkit including, among others,
networking functionality.

For example, a network stream connection can be set up as follows using
ACE1:

const ACE_TCHAR *server_host = "hostname";
u_short server_port = 4711;

ACE_IOStream<ACE_SOCK_Stream> server;
ACE_SOCK_Connector connector;
ACE_INET_Addr addr (server_port,

server_host);

if (connector.connect (server, addr) == -1)
ACE_ERROR_RETURN ((LM_ERROR,

"%p\n",
"open"),

-1);

server << "1 2.3 testing" << endl;

int i;
float f;

1Example from iostream client.cpp in the ACE distribution

WG21/N1925=J16/05-0185 5

ACE_IOStream_String s1;
ACE_IOStream_String s2;

server >> s1 >> i >> f >> s2;

The following is a non-exhaustive list of differences between ACE and the
present proposal:

• ACE uses return codes instead of exceptions.

• ACE uses the same address type for stream and datagram communica-
tions.

• ACE uses a specialized IOStream string class.

• ACE provides support for higher-layer protocols such as SSL.

2 Impact on the Standard

This proposal is a pure extension. It requires one new header file and additions
to one existing header file. It does not require changes to any existing standard
classes or functions nor to the core language.

Due to the nature of networking, the implementation must use components
outside the scope of the C++ standard.

A reference implementation is being developed for two widespread platforms.
Source code for experimentation can be obtained from the author.

3 Design Desisions

3.1 Connections, senders, receivers

We define the concept of a connection for stream-based protocols and of a sender
and receiver for datagram-based protocols.

To give implementors the maximum flexibility for implementing the proposed
interface, we do not attempt to define or use the classical “socket” abstraction in
C++. Implementations may actually choose to base networking on sockets, but
alternatives like XTI or operating system-specific APIs are just as well possible.

3.2 Transport layer

The transport layer protocols in use today seem to be exclusively TCP and
UDP. The stream-based and datagram-based communication defined by the
proposal naturally map to these protocols. Still, the proposed standard text does
not explicitly mention TCP or UDP. This leaves room for different underlying
protocols as long as they use communication endpoints based on the “host” and
“port” notion.

WG21/N1925=J16/05-0185 6

3.3 Addresses and address lists

We define a value-semantics abstraction of network addresses to enable storage
in the standard containers. This ability seems crucial for a wide variety of
applications.

Since more than one address may be associated with a given host/port pair,
communication class constructors actually accept lists of addresses where ap-
propriate. The implementation is then free to chose any appropriate pair of
addresses in order to establish communication.

We chose to use different address types for stream and datagram addresses
for maximum type safety. Indeed, threre are protocols where the port number
vs. port name mapping is different for on TCP or UDP, cf. [2], Section 6.5.

IPv4 and IPv6 addresses are handled transparently by the implementation,
i.e. application code is independent of which IP protocol version is used.

No assumption is made about the internal representation of addresses. The
host() and port() observers should return the host and port part in some
standard notation for the underlying address type, e.g. dotted-decimal for IPv4
addresses and decimal for port numbers.

3.4 Waiting, timeout and non-blocking I/O

We define non-blocking I/O for datagram communications, where sending is
non-blocking by its nature and a timeout can be given for reception.

For single-threaded applications handling multiple stream connections, the
iowait() multiplexing function is defined.

3.5 Support only for character streams

All networking protocols appear to be character- or octet-based, so there seems
no need to templatize the communication classes on the character type.

3.6 Error reporting

Many network errors are transient by nature and applications may wish to
try an operation again if an error occurs. Examples include DNS address
resolving where DNS is temporarily unavailable. The library will throw a
transient error exception in these cases.

If the problem is likely to be a permanent error, the library will throw a
permanent error exception. Examples include DNS being unable to resolve a
hostname or a nonexistant port name.

3.7 Numeric ports

We decided not to define address resolver functions with numeric port values
as arguments. Numeric port values can be given as strings. Adding scalar
arguments would lead to combinatorial explosion of an already high number of
overloads. The performance impact is expected to be minimal or even beneficial

WG21/N1925=J16/05-0185 7

since most applications get their port numbers in form of strings anyway, e.g.
on the command line or in configuration files.

3.8 Use of double for time values

We intend to enable fractional time values for operations that might time out.
Many operating systems or libraries define their own structures to represent
fractional time values. However, a simple double variable easily serves the
purpose and it therefore seems unnecessary to introduce a new type. Even
float precision will be enough in most cases, but we don’t think using double
incurs significant overhead over using float.

4 Proposed Text for the Standard

4.1 Header <network> synopsis

namespace tr2 {
// Network addressing.
typedef (implementation defined) stream_address;
typedef (implementation defined) datagram_address;

// Container of addresses.
typedef vector<stream_address> stream_address_list;
typedef vector<datagram_address> datagram_address_list;

// Resolve host/port names to addresses.
const stream_address_list resolve_stream(const string& host,

const string& port);
const datagram_address_list resolve_datagram(const string& host,

const string& port);
const stream_address_list resolve_stream(const string& port);
const datagram_address_list resolve_datagram(const string& port);

// Network connections.
class acceptor;
class connection;

// Datagram sender and receiver.
class datagram_sender;
class datagram_receiver;

// IOStream interface.
typedef (implementation defined) instreambuf;
typedef (implementation defined) onstreambuf;
class nstreambuf: public instreambuf , public onstreambuf;

WG21/N1925=J16/05-0185 8

class instream: public istream;
class onstream: public ostream;
class nstream: public iostream;

// I/O multiplexing.
template < class InputIteratorA, class InputIteratorB,

class ContainerA, class ContainerB >
bool iowait(const InputIteratorA& abeg,

const InputIteratorA& aend,
const InputIteratorB& bbeg,
const InputIteratorB& bend,

ContainerA& aready,
ContainerB& iready,
ContainerB& oready,

const double& to = -1);

4.2 The address concept

An address is an endpoint of network communications. Two addresses are
necessary in any type of network communications: A local address on the host
on which the program is executing and a remote address on any host to which a
network route exists. In stream-oriented communications, we speak of the two
endpoints of the network connection. In connection-less or datagram oriented
communication, we speak of the source and destination address of a datagram.

An address consists of a host part identifying a host or a network interface
of a host and a port part identifying a specific network port.

Both the host and the port part can be defined by a name or in numeric
form. The resolve family of functions use systems like DNS or port databases
to translate host and port names into addresses and vice versa.

A wildcard address is a special type of address to be used for local endpoints
only. It signals the system that it is free to choose the local host part, port part,
or both.

[Note: For the rest of this section, address refers to stream address and
datagram address so that actually two address types are defined.]

class address {
// Construct
// Implementation-defined default address.
address();

// observers
// Get host and port for this address.
const string host() const;
const string port() const;

WG21/N1925=J16/05-0185 9

// Get host and port name for this address.
const string host_name() const;
const string port_name() const;

// Get FQDN for host.
const string host_fqdn() const;

};

4.2.1 address constructors

address();

Effects: Constructs an implementation-defined default address.
[Note: The resulting address object is only required to support the host()

and port() member functions.]

4.2.2 address observers

const string host() const;

Returns: The host part of the address in numeric form.

const string port() const;

Returns: The port part of the address in numeric form.

const string host_name() const;

Returns: The host part of the address as an unqualified host name.
Throws: transient error or permanent error if a host name cannot be

obtained.

const string port_name() const;

Returns: The port part of the address as a service name.
Throws: transient error or permanent error if a service name cannot

be obtained.

const string host_fqdn() const;

Returns: The host name as Fully Qualified Domain Name (FQDN).
Throws: transient error or permanent error if the FQDN cannot be

obtained.

WG21/N1925=J16/05-0185 10

4.3 Resolve functions

const stream_address_list resolve_stream(const string& port);

Returns: A list of wildcard stream addresses suitable for use as the la
argument to an acceptor or connection constructor.

Throws: permanent error if the port name cannot be resolved.

const stream_address_list resolve_stream(const string& host,
const string& port);

Returns: A list of stream addresses suitable for use as the ra argument to
a connection constructor.

Throws: permanent error or transient error if either the host or the
port name cannot be resolved.

const datagram_address_list resolve_datagram(const string& port);

Returns: A list of wildcard datagram addresses suitable for use as the la
argument to an datagram sender or datagram receiver constructor.

Throws: permanent error if the port name cannot be resolved.

const datagram_address_list resolve_datagram(const string& host,
const string& port);

Returns: A list of datagram addresses each of which is suitable for use as
the ra argument to the send() method of class datagram sender.

Throws: permanent error or transient error if either the host or the
port name cannot be resolved.

4.4 Class acceptor

class acceptor {
typedef stream_address address_type;
typedef stream_address_list address_list_type;

acceptor(const string& ls,
unsigned backlog = (implementation defined));

acceptor(const address_list_type& la,
unsigned backlog = (implementation defined));

// Observers
const address_type& local();

};

An acceptor manages a queue of inbound stream connection requests to
a local address given in its constructor. Connections are not established until
a connection object is constructed with the acceptor as its constructor ar-
gument. Inbound connection requests which are not yet established are called
pending.

WG21/N1925=J16/05-0185 11

4.4.1 acceptor constructors

acceptor(const address_list_type& la,
unsigned backlog = (implementation defined));

Effects: The implementation chooses an appropriate address from la, allows
a maximum of backlog pending inbound connection requests at the chosen ad-
dress and makes them available for connection constructors with this acceptor
as its argument. If at least backlog inbound connections are pending, further
connection requests by clients will be refused.

Throws: permanent error if none of the addresses in la can be used as a
local connection endpoint.

Precondition: la.size() is at least 1.
Postcondition: local() returns the chosen local address.

acceptor(const string& ls,
unsigned backlog = (implementation defined));

Effects: Equivalent to acceptor(resolve stream(ls), backlog)

4.4.2 acceptor observers

const address_type& local();

Effects: Returns the local address chosen by the constructor.

4.5 Class connection

class connection
{
public:

typedef stream_address address_type;
typedef stream_address_list address_list_type;
// Construct
connection(const address_list_type& ra,

const address_list_type& la=address_list_type());
connection(const string& host, const string& port);

connection(acceptor&);

// Destroy
~connection();

// modifiers
void no_delay(bool=true);
// observers
address_type const& peer() const;
address_type const& local() const;

};

WG21/N1925=J16/05-0185 12

A connection represents the program’s view of a bidirectional stream-
oriented network connection. It has two endpoint addresses, a local one (on
the computer where the program is executed) and a remote one on this or any
other computer.

4.5.1 connection constructors

connection(const address_list_type& ra,
const address_list_type& la=address_list_type());

Effects: Attempts to establish a connection to a remote address in ra from
a local address in la. If la is empty, a suitable local address is chosen by the
implementation.

If the request becomes pending at the remote address, waits until the con-
nection becomes established.

Throws: transient error or permanent error if the connection cannot
be established.

Precondition: ra.size() is ≥ 1.
Postcondition: A stream-oriented network connection is established be-

tween la and ra. local() and peer() return the respective endpoint addresses.
[Note: The implementation shall try all suitable combinations from la and

ra in the attempt to establish a connection. It shall fail only if none of the
attempts succeeds, in this case throwing an exception related to the last attempt
made.]

connection(const string& host, const string& port);

Effects: Equivalent to connection(resolve stream(host,port)).

connection(acceptor& a);

Effects: If a connection request is pending at a, establish a connection with
the first request in a’s queue and return. Otherwise, wait until a request is
pending, establish the connection with the requesting peer and return.

Postcondition: local() == a.local(). A stream-oriented connection is
established between local() and peer().

4.5.2 connection destructor

~connection();

Effects: Closes the connection and destroys the connection object.

4.5.3 connection modifiers

void no_delay(bool=true);

WG21/N1925=J16/05-0185 13

Effects: When set to true, try to reduce the delay between data sent and
data being received.

[Note: This may be useful for interactive applications over a connection with
a high round trip time. Typically, this is implemented by disabling the so-called
Nagle algorithm of TCP, cf. [3].]

4.5.4 connection observers

const address_type& peer() const;

Returns: The remote connection endpoint.

const address_type& local() const;

Returns: The local connection endpoint.
[Note: The address returned by local() on this computer may differ from the

address returned by peer() on the remote computer.]

4.6 Class datagram receiver

class datagram_receiver {
public:

typedef datagram_address address_type;
typedef datagram_address_list address_list_type;

typedef (implementation defined) size_type;

datagram_receiver(const string& ls);
datagram_receiver(const address_list_type& la);

// Receive. begin must indicate beginning of large enough area.
// Returns timeout() on timeout.
template<class for_it>
size_type receive(const for_it& begin,

const double& timeout = -1,
size_type n = default_size());

// Constants.
static size_type timeout();
static size_type default_size();

// observers
// Source of last received packet.
const address_type& source() const;
// Local address.
const address_type& local() const;

};

WG21/N1925=J16/05-0185 14

4.6.1 datagram receiver constructors

datagram_receiver(const address_list_type& la);

Effects: Attempts to establish an endpoint for receiving datagrams at one
of the local addresses in la.

Throws: permanent error if the endpoint cannot be established at any of
the given addresses.

Precondition: la.size() is ≥ 1.
Postcondition: local() returns one of the elements of la. Datagrams can

be received at local().

datagram_receiver(const string& ls);

Effects: Equivalent to datagram receiver(resolve datagram(ls));

4.6.2 datagram receiver typedefs

typedef (implementation defined) size_type;

Represents: An unsigned integral type wide enough to hold all possible
datagram sizes and timeout().

4.6.3 datagram receiver static members

static size_type timeout();

Returns: A value used to indicate receive timeout that cannot be the size
of a datagram.

static size_type default_size();

Returns: An upper bound on the size of datagrams that can be received
on the implementation.

4.6.4 datagram receiver receive function template

template<class for_it>
size_type receive(for_it begin,

const double& timeout = -1,
size_type n = default_size());

Effects: Waits for a packet to be received. If no packet arrives within
timeout seconds, returns timeout(). Otherwise, writes the contents of the
received packet to the memory location pointed to by begin. If the received
datagram contains more than n characters, only n are written.

Returns: The number of characters written, i.e. the maximum of the n and
the size of the received packet, or timeout().

Requires: for it is a Forward Iterator with value type char.

WG21/N1925=J16/05-0185 15

4.6.5 datagram receiver observers

const address_type& source() const;

Returns: The source address of the last received datagram.

const address_type& local() const;

Returns: The local address on which datagrams are received.

4.7 Class datagram sender

class datagram_sender {
public:

typedef datagram_address address_type;
typedef datagram_address_list address_list_type;

datagram_sender();
datagram_sender(const string& ls);
datagram_sender(const address_list_type& la);

// Send data.
template<class for_it>
void send(const address_type& ra,

for_it begin, for_it end);

// Local address. Undefined if default-constructed.
const address_type& local() const;

};

4.7.1 datagram sender constructors

datagram_sender();

Effects: Constructs a datagram sender object. Subsequent calls to send()
will use a local address determined by the system as a local address.

datagram_sender(const string& ls);

Effects: Equivalent to datagram sender(resolve datagram(ls)).

datagram_sender(const address_list_type& la);

Effects: Constructs a datagram sender object.
Postcondition: local() returns one of the elements of la.
Throws: permanent error if none of the addresses in la is useable as a

local address for sending datagrams.

WG21/N1925=J16/05-0185 16

4.7.2 datagram sender observers

const address_type& local() const;

Returns: The local address used for sending datagrams.
Throws: permanent error if the datagram sender object was default con-

structed.

4.7.3 datagram sender modifiers

template<class for_it>
void send(const address_type& ra,

for_it begin, for_it end);

Effects: Sends the data in [begin,end) to ra. Uses one of the local ad-
dresses given in the constructor or an implementation-defined address if default
constructed.

Requires: for it is a Forward Iterator with value type char.
Throws: permanent error if

• ra is unsuitable for sending the datagram in conjunction with the local
address or

• the range [begin,end) is too large to fit in a datagram.

[Note: Datagram communication is best-effort. No indication is available if
the datagram was successfully delivered to its destination.]

4.8 Stream buffer classes

Three classes, instreambuf, onstreambuf and nstreambuf, are defined to as-
sociate input and output character sequences with a stream-based network con-
nection. No seek operations are supported.

The classes may be implemented as template specializations.
streambuf is a public virtual base class for instreambuf and ostreambuf.
The class nstreambuf is derived from instreambuf and onstreambuf.

4.9 Class instreambuf

class instreambuf {
public:

// Construct
instreambuf(connection& c,

int size = (implementation defined),
int size_pb = (implementation defined));

protected:
virtual int_type underflow();

private: // Expositon only

WG21/N1925=J16/05-0185 17

connection& c_;
vector<char> buffer;

};

The class instreambuf associates the input sequence with a network con-
nection.

4.9.1 instreambuf constructor

instreambuf(connection& c,
int size = (implementation defined),
int size_pb = (implementation defined));

Effects: Constructs an object of class instreambuf, initializing the base class
with streambuf() and c with c. Then creates a buffer of size size + size pb.

Postcondition: Characters in the input sequence will be read from the
network connection c.

Requires: size ≥ 1 and size pb ≥ 1.
Throws: out of range if an argument is out of range.
[Note: size pb is the size of the putback area.
During the lifetime of a connection object c, at most one instreambuf

object may be constructed on c.]

4.9.2 Overridden virtual functions

virtual int_type underflow();

Effects: If the input sequence has a read position available, returns
traits::to int type(*gptr()). Otherwise, returns traits::eof().

4.10 Class onstreambuf

class onstreambuf {
public:

// Construct
onstreambuf(connection& c, int size = (implementation defined));
// Destroy
virtual ~ostreambuf();

protected:
virtual int_type overflow(int_type c);
virtual int sync();

private: // Expositon only
connection& c_;
vector<char> buffer;

};

The class onstreambuf associates the output sequence with a network con-
nection.

WG21/N1925=J16/05-0185 18

4.10.1 onstreambuf constructor

onstreambuf(connection& c, int size = (implementation defined));

Effects: Constructs an object of class onstreambuf, initializing the base
class with streambuf() and c with c. Then creates a buffer of size size.

Postcondition: Characters in the output sequence will be written to the
network connection c.

Requires: size ≥ 1.
Throws: out of range if an argument is out of range.
[Note: During the lifetime of a connection object c, at most one onstreambuf

object may be constructed on c.]

4.10.2 onstreambuf destructor

virtual ~onstreambuf();

Effects: Calls sync().
[Note: As the destructor cannot return a value nor throw an exception,

programs wishing to check if all data was written to the controlled sequence
should call sync() before destroying the onstreambuf object.]

4.10.3 Overridden virtual functions

int_type overflow(int_type c);

Effects: Appends the character designated by c to the output sequence, if
possible, in one of two ways:

• If traits::eq int type(c,traits::eof()) returns false and if either
the output sequence has a write position available or the function makes a
write position available (as described below), the function calls sputc(c).
Signals success by returning c.

• If traits::eq int type(c,traits::eof()) returns true, there is no char-
acter to append. Signals success by returning a value other than traits::eof().

Notes: The function can make a write position available by adjusting the
put pointer by calling pbumb().

Returns: traits::eof() to indicate failure.

virtual int sync();

Effects: Synchronizes the controlled sequences with the buffer. That is, if
pbase() is non-null the characters between pbase() and pptr() are written to
the controlled sequence. The pointers are then reset as appropriate.

Returns: Zero on success and −1 if writing to the controlled sequence fails.

WG21/N1925=J16/05-0185 19

4.11 Class nstreambuf

class nstreambuf : public instreambuf, public onstreambuf {
public:

// Construct
nstreambuf(connection& c, int size = (implementation defined));

int size_in = (implementation defined)
int size_pb = (implementation defined)
int size_out = (implementation defined));

};

The class nstreambuf associates the input and the output sequence with a
network connection.

4.11.1 nstreambuf constructor

nstreambuf(connection& c,
int size_in = (implementation defined)
int size_pb = (implementation defined)
int size_out = (implementation defined));

Effects: Constructs an object of class onstreambuf, initializing the instreambuf
base class with instreambuf(c,size in,size pb) and the onstreambuf base
class with onstreambuf(c,size out).

4.12 Stream classes

The class onstream is defined as an ostream specialization to extract data from
the network stream from the local to the remote computer. The class instream
is defined as an istream specialization to extract data from the network stream
from the local to the remote computer. The class nstream is defined as a
iostream specialization to extract data from and insert data into the network
stream from the local to the remote computer.

4.13 Class instream

class instream : public istream {
public:

// Construct
instream(connection&);

private:
instreambuf sb; // exposition only

};

The class instream supports reading from an established network connec-
tion. It uses an instreambuf object to control the associated sequence. For the
sake of exposition, the maintained data is presented here as:

• sb, the instreambuf object.

WG21/N1925=J16/05-0185 20

4.13.1 instream constructor

instream(connection& c);

Effects: Constructs an object of class instream initializing sb with c, and
initializing the base class to use sb as its buffer.

Postcondition: rdbuf() returns &sb.

4.14 Class onstream

class onstream : public ostream {
public:

// Construct
onstream(connection&);

private:
onstreambuf sb; // exposition only

};

The class onstream supports writing to an established network connection.
It uses an onstreambuf object to control the associated sequence. For the sake
of exposition, the maintained data is presented here as:

• sb, the onstreambuf object.

[Note: Applications should carefully check an onstream’s state, since write
errors on network connections are much more common than for other types of
ostreams.]

4.14.1 onstream constructor

onstream(connection& c);

Effects: Constructs an object of class onstream initializing sb with c, and
initializing the base class to use sb as its buffer.

Postcondition: rdbuf() returns &sb.

4.15 Class nstream

class nstream : public iostream {
public:

// Construct
nstream(connection&);

private:
nstreambuf sb; // exposition only

};

The class nstream supports reading from and writing to an established net-
work connection. It uses an nstreambuf object to control the associated se-
quence. For the sake of exposition, the maintained data is presented here as:

• sb, the nstreambuf object.

WG21/N1925=J16/05-0185 21

4.15.1 nstream constructor

nstream(connection& c);

Effects: Constructs an object of class nstream initializing sb with c, and
initializing the base class to use sb as its buffer.

Postcondition: rdbuf() returns &sb.

4.16 I/O multiplexing

template < class InputIteratorA, class InputIteratorB,
class ContainerA, class ContainerB >

bool iowait(const InputIteratorA& abeg,
const InputIteratorA& aend,
const InputIteratorB& bbeg,
const InputIteratorB& bend,

ContainerA& aready,
ContainerB& iready,
ContainerB& oready,

const double& to = -1);

Requires:

• InputIteratorA is an input iterator type whose value type dereferences
to acceptor.

• InputIteratorB is an input iterator type whose value type dereferences
to streambuf.

• ContainerA is a container type supporting push back() and whose value
type is InputIteratorA.

• ContainerB is a container type supporting push back() and whose value
type is InputIteratorB.

Effects: Blocks the program until either of the postconditions below can be
satisfied or the timeout period of to seconds expires, whichever occurs earlier.
Uses push back() to append iterators referring to acceptors or stream buffers
to aready, iready and oready.

Postconditions:

• For all iterators i appended to aready, the constructor call connection(**i)
shall not block.

• For all iterators i appended to iready, the call (**i).sgetc() shall not
block.

• For all iterators i appended to oready, the call (**i).sputc(c) shall not
block.

WG21/N1925=J16/05-0185 22

Returns: true if and only if at least one output container was written to.
Note: A negative value for to causes the function never to time out. A

value of zero may be used for polling.

4.17 Additions to header <stdexcept>

namespace tr2 {
class network_error;

class transient_error;
class permanent_error;

}

4.18 Class network error

class network_error : public runtime_error {
public:

explicit network_error(const string& what_arg);
};

The class network error defines the type of objects thrown as exceptions
to report errors occuring on networking operations.

network_error(const string& what_arg);

Effects: Constructs an object of class network error.
Postcondition: strcmp(what(), what arg.c str()) == 0.

4.19 Class transient error

class transient_error : public network_error {
public:

explicit transient_error(const string& what_arg);
};

The class transient error defines the type of objects thrown as exceptions
to report transient network errors.

[Note: Transient network errors are errors that are likely to go away if the
operation is retried at a later stage.]

transient_error(const string& what_arg);

Effects: Constructs an object of class transient error.
Postcondition: strcmp(what(), what arg.c str()) == 0.

WG21/N1925=J16/05-0185 23

4.20 Class permanent error

class permanent_error : public network_error {
public:

explicit permanent_error(const string& what_arg);
};

The class permanent error defines the type of objects thrown as exceptions
to report permanent network errors.

[Note: Permanent network errors are errors that are likely to persist even if
the operation is retried at a later stage.]

permanent_error(const string& what_arg);

Effects: Constructs an object of class permanent error.
Postcondition: strcmp(what(), what arg.c str()) == 0.

5 Unresolved Issues

1. Discuss a “performance preferences” setting for TCP connections, similar
to Java’s setPerformancePreferences(). This would generalize no delay().

2. Discuss iowait() semantics. Should we include datagram receivers as
well?

3. Discuss istream extractors/ostream inserters for address types? If yes,
which address format to choose? Should we have ostream manipulators
for address formatting?

4. Local addresses should be reusable by default, check [3] for the exact
conditions.

5. Standardese for stream address and datagram address is not yet quite
standard.

6. This section should be removed.

6 Revision History

Differences from first draft:

• Added iowait().

• Some naming changes for addresses.

WG21/N1925=J16/05-0185 24

7 Acknowledgements

I’d like to thank Matt Austern and Benjamin Koznik for motivation, discus-
sions and constructive input. Isabel Drost kindly proofread the proposal with
meticulous accuracy.

References

[1] Available C++ libraries FAQ. http://www.trumphurst.com/cpplibs/cpplibs.phtml.

[2] R. Gilligan et al. RFC 2553—Basic socket interface extensions for IPv6.
http://www.faqs.org/rfcs/rfc2553.html, 1999.

[3] W. Richard Stevens et al. UNIX Network Programming, volume 1. Addison-
Wesley Professional, third edition, 2003.

[4] Douglas C. Schmidt. The ADAPTIVE Communication Environment
(ACE(TM)). http://www.cs.wustl.edu/~schmidt/ACE.html.

[5] Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming,
volume 2 of Systematic Reuse with ACE and Frameworks . Addison-Wesley
Professional, 1st edition, 2002.

[6] TrollTech homepage. http://www.trolltech.com/.

