
Stroustrup and Dos Reis 1 N1919=05-0179

Doc No: N1919=05-0179
Date: December 11, 2005
Project: JTC1.22.32
Reply to: Bjarne Stroustrup
 bs@cs.tamu.edu

Initializer lists

Bjarne Stroustrup and Gabriel Dos Reis
Texas A&M University

Abstract

This paper presents a synthesis of initialization based on consistent use of initializer lists.
The basic idea is to allow the use of initializer lists wherever initialization occurs and to
have identical semantics for all such initialization. For user-defined types, such
initialization is defined by a sequence constructor.

The discussion is based on the earlier papers and on discussions in the evolution working
group. Much of this paper summarizes the discussions of alternatives.

In addition to the main discussion and proposal, two subsidiary proposals (for the use of
initializer lists as sub-expressions and for disallowing narrowing in initializations using
initializer lists) are also presented.

If this proposal is accepted, we will propose that a sequence constructor be added to each
standard library container.

Suggested working paper text is an appendix (yet to be completed).

1 Previous work
The direct ancestor to this paper is N1890=05-0150 “Initialization and initializers”. That
paper provides an outline of solutions of a set of related problems. This paper refines the
parts of that paper that deals with initializer lists and sequence constructors. Please note
that the solution presented here differs slightly from the one presented in N1890 and is
more general and more complete (though not yet ready for a vote). In particular, it
provides for initializer lists as a general mechanism for variable length homogeneous
argument lists.
The other parts of “the initialization puzzle” presented in N1890 are or will be presented
in companion papers, such as Gabriel Dos Reis and Bjarne Stroustrup “Generalized
constant expressions” (N1920=05-0180), dealing with constant expressions and constant

Initializer lists 1 2005/12/17

Stroustrup and Dos Reis 2 N1919=05-0179

expression constructors). Here is a list of problems and suggested improvements that has
led to the current design:

• General use of initializer lists (Dos Reis & Stroustrup N1509, Gutson N1493,
Meredith N1806, Meridith N1824, Glassborow N1701)

• There are four different syntaxes for initializations (Glassborow N1584,
Glassborow N1701)

• C99 aggregate initialization (C99 standard)
• Type safe variable length argument lists (C++/CLI)
• Overloading “new style” casts
• Making T(v) construction rather than conversion (casting)
• Variadic templates (N1603 and N1704)

In each case, the person and paper referred to is just one example of a discussion,
suggestion, or proposal. In many cases, there are already several suggested solutions.
This is not even a complete list: initialization is one of the most fertile sources of ideas
for minor improvements to C++. Quite likely, the potential impact on the programmer of
sum of those suggestions is not minor. In addition to the listed sources, we are influenced
by years of suggestions in email, newsgroups, etc. Thanks and apologies to all of you
who contributed, but are not explicitly mentioned here.

2 Summary
As the result of the detailed discussion presented in the following sections we propose:

• To allow an initializer list (e.g., {1,2,3} or ={1,2,3)) wherever an initializer can
appear (incl. as a return expression, an function argument, a base or member
initializer, and an initializer for an object created using new). An initializer list
appears to the programmer as an rvalue.

• To introduce type initializer_list for the programmer to use as an argument type
when an initializer list is to be accepted as an argument. The name initializer_list
is known to the compiler, but its use requires including a definition of
initializer_list from namespace std.

• To distinguish sequence constructors (a single-argument constructor with a
initializer_list argument type) in the overload resolution rules.

• To use a type name to indicate the intended type of an initializer list (e.g.,
X{1,2,3}). This construct is primarily for disambiguation.

• To allow an initializer list to be used as arguments to a constructor of a class when
no sequence constructor can be used (e.g. f({1,2}) can be interpreted as f(X(1,2))
when f() unambiguously takes an X argument and X does not have a sequence
constructor for {1,2}). This mirrors the traditional (back to K&R C) use of
initializer lists for both arrays and structs and is needed for initializer lists to be
used for all initializers, thus providing a single notation with a single semantics
for all initialization.

Initializer lists 2 2005/12/17

Stroustrup and Dos Reis 3 N1919=05-0179

• Initialization using an initializer list, for example X x = { y }; is direct
initialization, not copy initialization.

• A separate/subsidiary proposal is to disallow narrowing conversions when using
the initializer list notation. For example, char c = { 1234 }; would become an
error.

• A separate/subsidiary proposal is to allow an initializer list as a sub-expression,
for example, x=y+{1,2}.

The aim is to make initialization with initializer lists a uniform notation for initialization
with a single semantics for all cases. This proposal breaks no legal ISO C++ program
except those that uses the proposed reserved name initializer_list.

3 Four ways of providing an initializer
Initialization of objects is an important aspect of C++ programming. Consequently, a
variety of facilities for initialization are offered and the rules for initialization have
become complex. Can we simplify them? Consider How to initialize an object of type X
with a value v:

X t1 = v; // “copy initialization” possibly copy construction
X t2(v); // direct initialization
X t3 = { v }; // initialize using initializer list
X t4 = X(v); // make an X from v and copy it to t4

We can define X so that for some v, 0, 1, 2, 3, or 4 of these definitions compile. For
example:

int v = 7;
typedef vector<int> X;
X t1 = v; // error: vector’s constructor for int is explicit
X t2(v); // ok
X t3 = { v }; // error: vector<int> is not an aggregate
X t4 = X(v); // ok (make an X from v and copy it to t4; possibly optimized)

and

int v = 7;
typedef int X;
X t1 = v; // ok
X t2(v); // ok
X t3 = { v }; // ok; see standard 8.5; equivalent to “int t3 = v;”
X t4 = X(v); // ok

and

int v = 7;

Initializer lists 3 2005/12/17

Stroustrup and Dos Reis 4 N1919=05-0179

typedef struct { int x; int y; } X;
X t1 = v; // error
X t2(v); // error
X t3 = { v }; // ok: X is an aggregate (“extra members” are default initialized)
X t4 = X(v); // error: we can’t cast an int to a struct

and

int v = 7;
typedef int* X;
X t1 = v; // error
X t2(v); // error
X t3 = { v }; // error
X t4 = X(v); // ok: unfortunately this converts an int to an int* (see §6.1)

Our aim is a design where a single notation where for every (X,v) pair:

• Either all examples are legal or none are
• Where initialization is legal, all resulting values are identical

3.1 Can we eliminate the different forms of initialization?
It would be nice if we didn’t need four different ways of writing an initialization. Francis
Glassborow explains this in greater detail in N1701. Unfortunately, we loose something if
we eliminate the distinctions. Consider:

vector<int> v = 7; // error: the constructor is explicit
vector<int> v(7); // ok

If the two versions were given the same meaning, either

• both would be correct (and we would be back in “the bad old days” where all
constructors were used as implicit conversions) or

• both would fail (and every program using a vector or similar type would fail).
We consider both alternatives unacceptable.

Question: but why would anyone expect the v = 7 notation to work? And if they
did why would they expect it to have a different effect from the v(7)? Some
people expect the v = 7 example to initialize v with the single element 7. Scripting
languages supply a steady stream of people with that expectation.

The equivalent problem for argument passing demonstrates that we cannot simplify by
eliminating copy initializations or explicit constructors while defining argument passing
and value return as initialization:

 void f(const vector<int>& v);
 f(7); // error: the constructor is explicit

Initializer lists 4 2005/12/17

Stroustrup and Dos Reis 5 N1919=05-0179

 vector<int> v = { 1,2,3,4,5,6,7 };
 f(v); // copy

We want the f(7) example to fail as an example of a class of programming errors that
occurred frequently before explicit constructors were introduced and continue to this day
when people forget to make their single-argument constructors explicit. Thus, we need
the current copy initialization semantics for argument passing, whereas people most often
prefer direct initialization of variables.

3.2 A constructor problem: Disabled copy
Also, consider the common practice of “outlawing” copying by declaring a private copy
constructor:

class X { /* … */ X(int); private: X(const X&); }; // no copy allowed
X x0 = X(1); // error (copy)
X x1 = 1; // error (copy)
X x2(1); // ok (no copy)

To have a single rule here would require us to choose between

• breaking a lot of code (disallow all three cases) and
• requiring that copy not be considered (allow all three cases).

We suspect we could live with the latter choice, but it would be a change making the
language more permissive and unless we guaranteed that no copy was done in any of the
cases, the result (invoking a private constructor) would be surprising and violate a very
reasonable assumption: A private function is not called from outside the class’ members.

Consider finally the most explicit form of initialization:

vector<int> v = vector<int>(7); // copy?
X e3 = X(1); // copy?

We cannot recommend that style for systematic use because it is unnecessarily verbose
and implies serious inefficiency unless compilers are guaranteed to eliminate the copy. It
would also break reasonable expectations unless the access to the copy constructor is
checked (to make the initialization of e3 fail). If we special-cased this form of
initialization (to make the examples legal and efficient), we would end up with a
semantics that differed from that of argument and return value initialization. For
example:

template<class T> void f(T v);
f(vector<int>(7)); // copy? Yes, we must copy
f(X(1)); // copy? Yes, we must copy and copy of X is disallowed

We conclude that we must live with different meanings for different initialization
syntaxes. That implies that we can try to make the syntax and semantics more general and

Initializer lists 5 2005/12/17

Stroustrup and Dos Reis 6 N1919=05-0179

regular, but we cannot reach the ideal of a single simple rule without serious side effects
on existing code. It is possible that some satisfactory solution exists to this puzzle, but
having looked repeatedly we haven’t found one and we don’t propose to spend more time
on this.

3.3 A constructor problem: explicit constructors
Explicit constructors can cause different behavior from different forms of initialization.
Consider:

struct X {
 explicit X(int);
 X(double); // not explicit
};

X a = 1; // call f(double)
X b(1); // call f(int)

void f(X);
f(1); // call f(double)

The reason f(double) is called is that the explicit constructor is considered only in the
case of direct initialization. We consider this backwards: what should happen is that the
best matching constructor should be chosen, and the call then rejected if it is not legal.
That would make the resolution of these cases identical to the cases where a constructor
is rejected because it is private.

We don’t make a proposal for that change here, but note this as a case where a difference
in initialization behavior could be eliminated by a rule change. See also Section 6.1.1.

We furthermore conjecture that having both an explicit and a non-explicit constructor
taking a single argument is poor class design.

4 Initializer lists
There is a widespread wish for more general use of initializer lists as a form of user-
defined-type literal. The pressure for that comes not only from “native C++” wish for
improvement but also from familiarity with similar facilities in languages such as C99,
Java, C#, C++/CLI, and scripting languages. Our basic idea is to allow initializer lists for
every initialization. What you loose by consistently using initializer lists are the
possibilities of ambiguities inherent in = initialization (as opposed to the direct
initialization using () and proposed { }).

Consider a few plausible examples:

Initializer lists 6 2005/12/17

Stroustrup and Dos Reis 7 N1919=05-0179

X v = {1, 2, 3.14}; // as initializer
const X& r1 = {1, 2, 3.14}; // as initializer
X& r2 = {1, 2, 3.14}; // as lvalue initializer

void f1(X);
f1({1, 2, 3.14}); // as argument
void f2(const X&);
f2({1, 2, 3.14}); // as argument
void f3(X&);
f3({1, 2, 3.14}); // as lvalue argument

X g() { return {1, 2, 3.14}; } // as return value

class D : public X {
 X m;
 D() : X({1, 2, 3.14}), // base initializer

m({1, 2, 3.14}) { } // member initializer
};
X* p = new X({1, 2, 3.14}); // make an X on free store X

// initialize it with {1,2,3.14}

void g(X);
void g(Y);
g({1, 2, 3.14}); // (how) do we resolve overloading?

X&& r = { 1, 2, 3 }; // rvalue reference

We must consider the cases where X is a scalar type, a class, a class without a
constructor, a union, and an array. As a first idea, let’s assume that all of the cases should
be valid and see what that would imply and what would be needed to make it so. Our
design makes these examples legal, with the exceptions of the lvalue examples. We don’t
propose to make initializers lvalues.

Note that this provides a way of initializing member arrays. For example:

class X {
 int a[3];
public:
 X() :a({1,2,3}) { }
};

Some people consider this important. Over the years, there has been a slow, but steady,
stream of requests for some way of initializing member arrays.

Initializer lists 7 2005/12/17

Stroustrup and Dos Reis 8 N1919=05-0179

4.1 The basic rule for initializer lists
The most general rule of the use of initializer lists is:

• Look for a sequence constructor and use it if we find a best one; if not
• Look for a constructor (excluding sequence constructors) and use it if we find a

best one; if not
• Look to see if we can do traditional aggregate or built-in type initialization; if not
• It’s an error

We propose to retain the slightly more restrictive rule “never use aggregate initialization
if a constructor is declared”. Without this restriction, we would not be able to enforce
invariants by defining constructors. Consequently, we consider a restriction necessary
and get this modified basic rule:

• If a constructor is declared
o Look for a sequence constructor and use it if we find a best one; if not
o Look for a constructor (excluding sequence constructors) and use it if we

find a best one; if not
o It’s an error

• If no constructor is declared
o look to see if we can do traditional aggregate or built-in type initialization;

if not
o It’s an error

This can (and should) be integrated into the overload resolution rules.

4.2 Sequence constructors
A sequence constructor is defined like this:

class C {
 C(initializer_list<int>); // construct from a sequence of ints
 // …
};

The initializer_list (“sequence initialize” or “sequence initializer”) argument type
indicates that the constructor is a sequence constructor. The type in <…> indicates the
type of elements accepted. A sequence constructor is invoked for an array of values that
can be accessed through the initializer_list argument. The initializer_list type offers
three member functions to allow access to the sequence (for details see ???):

template<class E> class initializer_list {
 // representation (a pair of pointers or a pointer plus a length)
public:
 initializer_list(const E*, const E*); // from [first,last)

Initializer lists 8 2005/12/17

Stroustrup and Dos Reis 9 N1919=05-0179

 initializer_list(const E*, int); // from [first, first+length)

 int size() const; // number of elements
 const T* begin() const; // first element
 const T* end() const; // one-past-the-last element
};

The three member functions provide STL-style (begin(),end()) access or “Fortran-style”
(first(),size()) access. It is essential that the sequence is immutable: A sequence
constructor cannot modify its input sequence. A sequence constructor might look like
this:

template<class E> class vector {
 E* elem;
public:
 vector (initializer_list<E> s) // construct from a sequence of Es
 {
 reserve(s.size());
 uninitialized_fill(s.begin(),s.end(),elem);
 }
 // … as before …
};

Let’s consider the examples above (Section 4) when X is std::vector<double>. For
example:

std::vector<double> v = {1, 2, 3.14}; // as initializer

 That’s easily done: std::vector has no sequence constructor (until we add the one
above), so we try {1, 2, 3.14} as a set of arguments to other constructors, that is, we try
vector(1,2,3.14). That fails, so all of the examples fail to compile when X is std::vector.

Now add vector(initializer_list<E>) to vector<E> as shown above. Now, some (but not
all) of the examples work when X is vector<double>. In each case, {1, 2, 3.14} is
interpreted as a temporary constructed like this:

double temp[] = {double(1), double(2), 3.14 } ;
vector<double> tempv(temp,temp+sizeof(temp)/sizeof(double));

That is, the compiler constructs an array containing the initializers converted to the
desired type. This array is read by vector’s sequence constructor, which copies the values
from the array into its own data structure for elements. This implies that every use of {1,
2, 3.14} in a place that accepts an rvalue succeeds. Uses that require an lvalue fails.

Initializer lists 9 2005/12/17

Stroustrup and Dos Reis 10 N1919=05-0179

Note that an initializer_list is a small object (probably two words), so passing it by value
makes sense. Passing by value also simplifies inlining of begin() and end() and constant
expression evaluation of size().

4.3 The initializer list rewrite rule
A simple way of understanding initializer list is in terms of a rewrite rule. Given

void f(initializer_list<int>);
f({1,2.0,’3’});

The compiler lays down an array

int a[] = {int(1), int(2.0), int(‘3’) };

And rewrites the call to

f(initializer_list<int>(a,3));

Assuming that initializer_list has been suitably declared and is in scope (§4.5.1), all is
now well.

Similarly, given

X v = {1,2.0,’3’};

The compiler looks at X and assuming it finds a sequence constructor taking a
initializer_list<int>, it lays down an array

int a[] = { int(1), int(2.0), int(‘3’) };

And rewrites the definition to

X v(initializer_list<int>(a,3));

Thus from the point of view of the rest of the language an initializer list that is accepted
by a sequence constructor is simply an invocation of the suitable constructor.

For the purpose of overloading, going from an initializer list to its initializer_list object
counts as a built-in conversion (as opposed to a user-defined conversion), independently
of what conversions were needed to generate the homogenous array.

4.4 Syntax
In the EWG there were strong support for the idea of the sequence constructor, but
initially no consensus about the syntax needed to express it. There was a strong

Initializer lists 10 2005/12/17

Stroustrup and Dos Reis 11 N1919=05-0179

preference for syntax to make the “special” nature of a sequence constructor explicit.
This could be done by a special syntax

class X {
 // …
 X{}(const int*, const int*); // construct from

// a initializer list of ints
 // …
};

or a special (compiler recognized) argument type. For example:

class X {
 // …
 X(initializer_list <int>); // construct from a initializer list of ints
 // …
};

We prefer the X(initializer_list<int>) design, because this “special compiler-recognized
class name” approach

• Hides the representation of the object generated by the constructor and used by
the sequence constructor. In particular, it does not expose pointers in a way that
force teachers to introduce pointers before initializer lists.

• Is composable: We can use initializer_list<initializer_list<int>> to read a nested
structure, such as { {1,2,3}, {3,4,5}, {6,7,8} } without introducing a name for the
inner element type.

• The initializer_list type can be used for any argument that can accept an
initializer list. For example int f(int, initializer_list<int>, int) can accept calls
such as f(1, {2,3}, 4). This eliminates the need for variable argument lists (…
arguments) in many (most?) places.

Finding a syntax for sequence constructors was harder – much harder – than finding its
semantics. Here are some alternatives. Consider these possible ways of expressing a
sequence constructor for a class C<E>:

template<Forward_iterator For> C<E>::C(For first, For last);
template<int N> C<E>::C(E(&)[N]);
C<E>::C(const E*, const E*);
C<E>::C{}(const E* first, const E* last);
C<E>::C(E … seq);
C<E>::C(... E seq);
C<E>::C(... initializer_list<T> seq);
C<E>::C(... E* seq);
C<E>::C ({}<E> seq);
C<E>::C(E{} seq);

Initializer lists 11 2005/12/17

Stroustrup and Dos Reis 12 N1919=05-0179

C<E>::C(E seq{});
C<E>::C(E[*] seq); // use sizeof to get number of elements
C<E>::C(E seq[*]);
C<E>::C(const E (&)[N]); // N “magically” becomes the number of elements

And more. None provided the three advantages of the initializer_list<E> approach
without other problems.

The hardest part of the design was probably to pick a name for the “special compiler
recognized class name”. Had we been designing C++ from scratch, we would probably
have chosen C::C(Sequence<int>). However, all the short good names have been taken
(e.g., Sequence, Range, and Seq). Alternatives considered included seqinit, seqref,
seqaccess, seq_access seq_init, and Seq_init. Our choice, initializer_list, seems the
most descriptive and the least obnoxious name that has not already been widely used; we
hope that the extravagant length is a protection. A quick check using google found only
one occurrence with that capitalization, and that was in a Java program. We suggest
initializer_list rather than Initializer_list because initial lower case is the norm in the
standard library.

The name initializer_list is not a keyword. Rather it is assumed to be in namespace std,
so you use it for something unrelated. For example:

int initializer_list = 7;

Doing so is would probably not be a good idea, though, once people get used to the
standard (library) meaning.

4.5 The initializer_list class
Some obvious questions:

• Is initializer_list a keyword? No, but.
• Must I #include a header to use initializer_list? Yes, #include<initializer_list>
• Why don’t we use a constructor that takes a general STL sequence?
• Why don’t we use a general standard library class (e.g. Range or Array)?
• Why don’t we use T(&)[N]?
• Can the size() be a constant expression? Yes.

More detailed answers and reasoning follows.

4.5.1 Keyword?
Is initializer_list a keyword? No, but it is a name in the standard library namespace and
the compiler will use it. In particular, if you declare an argument of type
initializer_list<int> and pass an initializer list to it, the compile will generate a call
std::initializer_list<int>(p,s), where p is the pointer to the start of the initializer list
array and s is its number of elements. For example:

Initializer lists 12 2005/12/17

Stroustrup and Dos Reis 13 N1919=05-0179

 // won’t compile unless std::initializer_list is in scope:

void f(std::initializer_list<int> s);

 void g()
 {
 int initializer_list;
 f({1,2,3}); // ok: use std::initializer_list
 }

If you don’t declare initializer_list (e.g., by including <initializer_list>), you get
compile-time errors.

4.5.2 Include header?
Must I #include a header to use it? Yes, you must include <initializer_list>.

4.5.3 Why don’t we use T(&)[N]?
Using “a notation” would save us a keyword (or the moral equivalent of a keyword: a
frequently used name in std, such as initializer_list) and make it clear that a core
language facility was used. Using T(&)[N] in particular would make it clear that we were
dealing with a fixed length homogenous list (that is, an array).

We have an aesthetic problem with T(&)[N], which will transform into an educational
problem an myths about its rationale. However, the critical problem is that relying on this
would turn every function that takes an initializer list as an argument into a template. For
example, say we have a pair of functions that handles the case of one and two integer
arguments:

void f(int);
void f(int,int);

If I find myself wanting to have a version that takes three integers and I suspect that I
might need more such versions, I would write:

template<int N> void f(int (&)[N]);

Now each different argument list size generates a separate specialization. For example:

 f({1});
 f({1,2});
 f({1,2,3});

Each calls a different function. This implies code replication, inability to use f() in a
dynamically linked library, and problems with overloading: no use of f() as a virtual

Initializer lists 13 2005/12/17

Stroustrup and Dos Reis 14 N1919=05-0179

function, for callbacks etc. That’s too high a price to pay for solving a naming problem.
This is especially so, as the fact that the length of the list is a constant is rarely
particularly useful.

4.5.4 Why don’t we use a constructor that takes a general STL sequence?
For example, for vector, why don’t we just deem

template<class For> vector(For first, For last);

to be the sequence constructor for vector? First of all, it doesn’t support the use of
initializer lists for arbitrary arguments. For example

 void f(int, int*, int*,int);

This would/should not be a good/sufficient clue that f() was willing to accept f (1,
{2,3,4,5,6},7) as a call.

Secondly, the overload resolution rules can’t work as described unless a sequence
constructor is distinguishable from other constructors (and we can’t eliminate current
uses of these “iterator constructors”). It would also be hard to accept the “iterator
constructor” above as a sequence constructor for ant T while rejecting a constructor
taking two int* arguments as a sequence constructor. However,

 X::X(int*,int*);

Just might be taking two unrelated integers, rather than a sequence. For example:

X a(new int(7), new int(9));

Finally, pairs of iterators are not trivially composable; for example, handling {{1},{2,3},
{3,4,5}} would require an intermediate named type with a sequence constructor to handle
the sub-sequences {1}, {2,3}, and {4,5,6}.

An earlier discussion of the initializer list problem used a distinguished form of the
“iterator constructor” as the sequence constructor:

template<class For> vector{}(For first, For last);

However, there was unanimous agreement that the initializer_list approach was
preferable.

4.5.5 General (std::) class?
Why don’t we use a general standard library class (e.g. vector, Range, or Array)? The
compiler-generated array that is the in-memory representation of the initializer list must

Initializer lists 14 2005/12/17

Stroustrup and Dos Reis 15 N1919=05-0179

be immutable. If we could write to it, we could be back to “the good old days of Fortran
where you could change the value of the literal 1 to 2”. For example, imagine that
initializer_list allowed modification of the array:

int f()
{
 Odd_vector<int> v = { 1, 2, 3 };
 return v[0];
}

We would certainly expect f() always to return 1. But consider

 template<class T> class Odd_vector {
 // …
 Odd_vector(initializer_list<T> s)
 {
 // copy from the array into the vector
 *s.begin() += 1; // illegal, but imagine what if
 }
 }

Assuming (reasonably, according to the simple memory model presented in §4.3) that
{1,2,3} defines a single array with initial value {1,2,3} repeatedly accessed by the
sequence constructor, we can get

cout << f(); // write 1
cout << f(); // write 2
cout << f(); // write 3
…

As each invocation of the sequence constructor modifies that array’s first element. It
follows that we cannot accept anything as our accessor to the underlying array unless it
can keep the array immutable.

4.5.6 Constant expression?
Can the size() be a constant expression? Maybe. At least, size() could be a constant
expression where the use of size() is in the same translation unit as the initializer list and
after it. Consider:

template<class T> class initializer_list {
 // …
 int size() const { /* … */ }
};

 // …

Initializer lists 15 2005/12/17

Stroustrup and Dos Reis 16 N1919=05-0179

 initializer_list<int> s = {1,2,3};

 char a[s.size()]; // ok: size is a constant expression

Clearly, there is enough information to deduce that s.size() is 3. Equally clearly, making
s.size() a constant expression requires a special rule. The proposal for generalizing
constant expressions (N1920=05-0180) suggests that this can be made to work. We are
not sure whether this is really important or just something people thought interesting. We
need a solid use case.

4.6 Initializer lists and ordinary constructors
When a class has both a sequence constructor and an “ordinary” constructor, a question
can arise about which to choose. The resolution outlined in §3.2 is that the sequence
constructor is chosen if the initializer list can be considered as an array of elements of the
type required by the sequence constructor (possibly after conversions of elements). If not,
we try the elements of the list as arguments to the “ordinary” constructors. The former
(“use the sequence constructor”) matches the traditional use of initializer lists for arrays.
The latter (“use an ordinary constructor”) mirrors the traditional use of initializer lists for
structs (initializing constructor arguments rather than struct members). Consider a few
examples:

vector<double> v1({1,2}); // v1 has two elements (values: double(1),double(2))
 // use sequence constructor
vector<double> v2({1}); // v2 has one element (value: double(1))
 // use sequence constructor
vector<double> v3({}); // v3 has no elements
 // use sequence constructor

Since we can convert 1 and 2 to the doubles required by vector<double>’s sequence
constructor, the sequence constructor is used for v1 and v2. If we don’t want that, we
must use another form of initialization:

vector<double> v11(1,2); // v11 has one element (value: double(1))
 // use ordinary constructor
vector<double> v22(1); // v22 has one element (value: double(), i.e. 0.0)
 // use ordinary constructor
vector<double> v33(); // oops: v33 is a function!

If the type of the elements in the initializer list doesn’t match what the sequence
constructor requires, we use an ordinary constructor:

vector<double> v111({1,2,My_alloc}); // use ordinary constructor
 // can’t convert My_alloc to double

Initializer lists 16 2005/12/17

Stroustrup and Dos Reis 17 N1919=05-0179

vector<double> v222({v2.begin(),v2.end()}); // use ordinary constructor
 // to copy v2 into v4

// (can’t convert vector<double>::iterator to double)

Discussion: Should the initialization of v111 and v222 simply be errors? That is,
should we reject the use of initializer list when there is no sequence constructor? For
aggregates, initializer lists serve two purposes:

• Initialize homogeneous sequences (i.e. arrays)
• Initialize heterogeneous sequences (i.e. structs)

To provide a general initializer mechanism, we must preserve this dual use. To
support user-defined types as well as built-in types and to provide a uniform syntax
for initialization, we must somehow ensure that initializer lists can be used for both
sequences (to initialize containers) and “ordinary objects”. We can have that support
disjoint: “if you have a sequence constructor, you can’t use initializer lists for other
constructors, but if you don’t have a sequence constructor you can” or we can have it
with “sequence constructor has priority” as suggested above. If we choose the
“either/or” rule, we will not be able to use {} initialization uniformly; another
initialization syntax will have to be used for classes with sequence constructors;
importantly, we would not be able to use {} initialization for standard library
containers. This would seriously weaken any effort to teach people to uniformly use a
single initialization syntax (the {} notation). Furthermore, we would not be able to
add a sequence constructor to a class that is already in use because that would break
any {} initialization already used.

4.7 Initializer lists, aggregates, and built-in types
So what happens if a type has no constructors? We have three cases to consider: an array,
a class without constructors, and non-composite built-in type (such as an int). First
consider a type without constructors:

struct S { int a; double v; };
S s = { 1, 2.7 };

This has of course always worked and it still does. Its meaning is unchanged: initialize
the members of s in declaration order with the elements from the initializer list in order,
etc.

Arrays can also be initialized as ever. For example:

int d[] = { 1, 2, 3, 5, 8 };

What happens if we use an initializer list for a non-aggregate? Consider:

 int a = { 2 }; // ok: a==2

// (as currently: there is a single value in the initializer list)
 int b = { 2, 3 }; // error: two values in the initializer list

Initializer lists 17 2005/12/17

Stroustrup and Dos Reis 18 N1919=05-0179

 int c = {}; // ok: default initialization: c==int()

In line with our ideal of allowing initializer lists just about everywhere – and following
existing rules – we can initialize a non-aggregate with an initializer list with 0 or 1
element. The empty initializer list gives value initialization. The reason to extend the use
of initializer lists in this direction is to get a uniform mechanism for initialization. In
particular, we don’t have to worry about whether a type is implemented as a built-in or a
user-defined type and we don’t have to depart from the direct initialization to avoid the
unfortunate syntax clash between () initialization and function declaration. For example:

X a = { v };
X b = { };

This works for every type X that can be initialized by a v and has a default constructor.
The alternatives have well known problems:

X a = v; // not direct initialization (e.g. consider a private copy constructor)
X b; // different syntax needed (with context sensitive semantics!)
X c = X(); // different syntax, repeating the type name

X a2(v); // use direct initialization
X b2(); // oops!

It appears that {} initialization is not just more general than the previous forms, but also
less error prone.

We do not propose that surplus initializers be allowed:

 int a = { 1, 2 }; // error no second element
 struct S { int a; };
 S s = { 1,2 }; // error no second element

Allowing such constructs would simply open the way for unnecessary errors.

Discussion: Discussion: The standard currently says (12.6.1/2) that when an
object is initialized with a brace-enclosed initializer list, elements are initialized
through “copy-initialization” semantics. For uniformity and consistency of the
initialization rules this should be changed to “direct-initialization” semantics.
That will not change the semantics of current well-formed programs; it will make
legal examples where the only problem was a private copy constructors.

5 Initializer list technicalities
As the saying goes “the devil is in the details”, so let’s consider a few technical details to
try to make sure that we are not blindsided.

Initializer lists 18 2005/12/17

Stroustrup and Dos Reis 19 N1919=05-0179

5.1 Sequence constructors
Can a class have more than one sequence constructor? Yes. An initializer list that would
be a valid for two (or more) sequence constructors is ambiguous.

Can a sequence constructor be a template? Yes. Note that a “yes” here implies that more
than one sequence constructor is possible.

Can a sequence constructor be invoked for a sequence that isn’t an initializer list? No.

5.2 What really is an initializer list?
The simplest model is an array of values placed in memory by the compiler. That would
make an initializer list a modifiable lvalue. It would also require that every initializer list
be placed in memory and that if an initializer list appears 10 times than 10 copies must be
present. We therefore propose that all initializer lists be rvalues. That will enable two
optimizations:

• Identical initializer lists need at most be store once (though of course that
optimization isn’t required).

• An initializer list need not be stored at all. For example, z=complex{1,2} may
simply generate two assignments to z.

The second optimization would require a clever compiler or literal constructors (§5).

Note that an initializer list that is to be read by a sequence constructor must be placed in
an array. The element type is determined by the sequence constructor. Sometimes, it will
be necessary to apply constructors to construct that array.

Initializer lists that are used for aggregates and argument lists can be heterogeneous and
need rarely be stored in memory (separately from the copy stored as an array).

Must initializer lists contain only constants? No, variables are allowed (as in current
initializer lists); we just use a lot of literals because that’s the easiest in small examples.

Can we nest initializer lists? Yes (as in current initializer lists). For example:

vector<vector<int>> v = { {1,2,3}, {4,5,6}, {7,8,9} }; // a 3 by 3 matrix

A more interesting example might be

Map<string,int> m = { {“ardwark”,91}, {“bison”, 43} };

Assuming that map has a sequence constructor for from a pair<string,int>, this will
work, correctly converting the literal strings to strings.

Initializer lists 19 2005/12/17

Stroustrup and Dos Reis 20 N1919=05-0179

5.3 Ambiguities and deduction
An initializer list is simply a sequence of values. If it is considered to have a type, it is the
list of its element types. For example, the type of {1,2.0} would be {int,double}. This
implies that we can easily create examples that are – or at least appears to be –
ambiguous. Consider:

class X {
 X(initializer_list<int>); // sequence constructor
 // …
};

class Y {
 Y(initializer_list<int>); // sequence constructor
 // …
};

class Z {
 Z(int,int); // not a sequence constructor
 // …
};

void f(X);
void f(Y);

void g(Y);
void g(Z);

f({1,2,3}); // error: ambiguous (f(X) and f(Y)?)
g({1,2,3}); // ok: g(Y)
g({1,2}); // ok: g(Y) (note: not g(Z));
g({1}); // ok

The overload resolution rules are basically unchanged: try to mach all functions in scope
and pick the best mach if there is a best match. What is new is a need to specify
conversions used for a legal call using an initializer list so that it can be compared with
other successful matches.

Discussion: We resolve the g({1,2}) call by preferring the sequence constructor in
one class over an ordinary constructor in another class. The alternative would be
to have the resolution depend on the number of elements in the initializer list.

How do we resolve ambiguity errors? By saying what we mean; in other words by stating
our intended type of the initializer list:

f(X{1,2,3}); // ok: f(X)
g(Z{1,2}); // ok: g(Z)

Initializer lists 20 2005/12/17

Stroustrup and Dos Reis 21 N1919=05-0179

Apart from using { } rather than (), it’s the same idea as the current techniques of using
explicit constructor calls.

Discussion: We do not propose to allow an “unqualified initializer list” to be used
as an initializer for a variable declared auto or a template argument. For example:

auto x = {1, 2, 3.14}; // error
template<class T> void ff(T);
ff({1, 2, 3.14}); // error

There is no strong reason not to allow this, but we don’t want to propose a feature
until we have a practical use in mind. If we wanted to allow this, we could simply
“remember” the type of the initializer list and use it when the auto variable or
template argument is used. In this case, the type of x would be {int,int,double}
which can be converted into a named type when necessary. For example:

auto x = {1, 2, 3.14}; // remember x’ is a {int,int,double}
vector<int> v = x; // initialize v {1, 2, 3.14};
g(x); // as above

It’s comforting to know that the concepts extend nicely even if we have no use for
the extension.

5.4 Initializer lists and templates
Can an initializer list be used as a template argument? Consider:

template<class T> void f(const T&);

f({}); // error
f({1});
f({1,2,3,4,5,6});
f({1,2.0}); // error
f(X{1,2.0}); // ok: T is X

There is obviously no problem with the last call (provided X{1,2.0} itself is valid)
because the template argument is an X. Since we are not introducing arbitrary lists of
types (product types), we cannot deduce T to be {int,double} for f({1,2.0}), so that call is
an error. Plain {} does not have a type, so f({}) is also an error.

This leaves the homogeneous lists. Should f({1}) and f({1,2,3,4,5,6}) be accepted? If so,
with what meaning? If so, the answer must be that the deduced type, T, is
initializer_list<int>. Unless someone comes up with at least one good use of this simple
feature (a homogeneous list of elements of type E is deduced to be an

Initializer lists 21 2005/12/17

Stroustrup and Dos Reis 22 N1919=05-0179

initializer_list<E>), we won’t propose it and all the examples will be errors: No template
argument can be deduced from an (unqualified) initializer list. One reason to be cautious
here is that we can imagine someone getting confused about the possible interpretations
of single-element lists. For example, could f({1}) invoke f<int>(1)? No, that would be
quite inconsistent.

5.5 C99 style initializers with casts
If we wanted to increase C99 compatibility, we could additionally accept the more
verbose version:

f((X){1,2,3}); // ok: f(X)
g((Z){1,2}); // ok: g(Z)

This is not something we recommend. The C semantics require the initializer list to be an
lvalue with weird results. Here is an example from the C99 standard [6.5.2.5 Compound
literals]:

EXAMPLE 8 Each compound literal creates only a single object in a given scope:
struct s { int i; };
int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;
return p == q && q->i == 1;

}
The function f() always returns the value 1.
17 Note that if an iteration statement were used instead of an explicit goto and a labeled
statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time around
p would
have an indeterminate value, which would result in undefined behavior.

 There is a danger that the “semi-compatible” syntax might become popular in C++ just
as “the abomination” f(void). Also, there would be subtle incompatibilities between the
C99 definition of such as construct and any consistent C++ view (see N1509).

5.6 Refining the syntax
So far, we have used initializer lists after = in definitions (as always) and as function
arguments. The aim is to allow an initializer list wherever an expression is allowed. In
addition, we might consider leaving out the = in a declaration:

auto x1 = X{1,2};
X x2 = {1,2};
X x3{1,2};

Initializer lists 22 2005/12/17

Stroustrup and Dos Reis 23 N1919=05-0179

X x4({1,2});
X x5(1,2);

These five declarations are equivalent (except for the name of the variables) and all
variables get the same type (X) and value ({1,2}). Similarly, we can leave out the
parentheses in an initializer after new:

X* p1 = new X({1,2});
X* p2 = new X{1,2};

It is never ideal to have several ways of saying something, but if we can’t limit the
syntactic diversity we can in this case at least reduce the semantics variation. We could
eliminate these forms:

X x3{1,2};
X* p2 = new X{1,2};

However, since X{1,2} must exist as an expression, the absence of these two syntactic
forms would cause confusion, and they are the least verbose forms. Note that new X{1,2}
must be interpreted as “an X allocated on the free store initialized by {1,2}” rather than
“new applied to the expression X{1,2}”. This is equivalent to the current rule for new
X(1,2).

Note that if we add a sequence constructor to vector, each of these definitions will create
a vector of one element with the value 7.0:

vector<double> v1 = { 7 };
vector<double> v2 { 7 };
vector<double> v3 ({ 7 });

auto p1 = new vector<double>{ 7 };
auto p2 = new vector<double>({ 7 });

We don’t propose a syntax for saying “this is a sequence: don’t treat is as a constructor
argument list”. We don’t see a need, because if you don’t know anything about a type,
you shouldn’t try to tell it how to initialize itself. Similarly, we don’t propose a syntax for
saying “this is an aggregate initializer, don’t use it for a class with constructors”.

Discussion: we think that the most likely confusion and common error from the new
syntax will (as with the old initialization syntax) be related to initializer lists with a
single argument. Consider:

vector<double> v2 { 7 };

Initializer lists 23 2005/12/17

Stroustrup and Dos Reis 24 N1919=05-0179

A naïve reader will have no way of knowing that this creates a vector of one double
initialized to 7.0 and not a vector of seven doubles. Obviously, making the second
interpretation the correct one would be even worse. Consider

vector<double> v1 { }; // a vector with no elements
vector<double> v2 { 7 }; // a vector with one element

// (not a vector with 7 elements)
vector<double> v3 { 7, 8 }; // a vector with two elements

We feel that this must work as stated. This also eliminated the possibility of making
the initialization of v2 ambiguous. Consequently, we consider the proposed design
the best possible (at least of the ones we have seen so far).

6 Initializer lists in expressions
We have discussed initializer lists in the context of initialization. However, we could
imagine them used elsewhere. Logically, an initializer list could appear in any place
where and expression could. We would need a reason to prohibit that.

6.1 Assignments
Assignments and initializations are closely related. For example, there is no real
implementation difference between them for built-in types. Consider:

X v = {1,2};
v = {3,4};

Having accepted the initialization, it would be hard to argue that the assignment was
illegal. After all, we define x=y as (something like) x.operator=(y). For some suitable
type X, we could write the assignment as v.operator=({3,4}) and have it work because
now {3,4} is an initializer. Provided that there is no problem with the syntax, this
example must be accepted.

6.2 General expressions
Consider more general uses of initializer lists. For example:

v = v+{3,4};
v = {6,7}+v;

When we consider operators as syntactic sugar for functions, we naturally consider the
above equivalent to

v = operator+(v,{3,4});
v = operator+({6,7},v);

Initializer lists 24 2005/12/17

Stroustrup and Dos Reis 25 N1919=05-0179

It is therefore natural to extend the use of initializer lists to expressions. We have not
explored the grammar for this in detail and suggest that it should be explored. We see no
obvious problems with this general use of initializer lists and suspect that people will
expect it to work if the simpler uses work. In particular, the grammar will have to be
explored.

6.3 Lists on the left-hand side
Whether we should allow lists on the right hand side of an assignment is a separate issue.
For example:

{a,b} = x;

We make no proposal or recommendation about this. It is a separate question.

7 Casting
When a user-defined type is involved, we can define the meaning of C-style casting (T)v
and functional style construction T(v) through constructors and conversion operators.
However, we cannot change the meaning of a new-style cast and T(v) is by definition an
old-style cast so its default meaning implies really nasty casts (reinterpret casts) for some
built-in type combinations. For example, int(p) will convert a pointer p to an int. This
leads to two common suggestions:

• Allow user-defined static_cast, etc.
• Default T(v) to mean static_cast<T>(v) rather than (T)v.

The two suggestions are related because often the reason for wishing T(v) to mean
static_cast<T>(v) is to be able to define it as a range-checked operation for some built-in
type T.

We have also heard the suggestion that T(v) should be “proper construction” and thus not
allow narrowing conversions (e.g. char(123456)). However, the functional notation is
used to be explicit about narrowing, so banning narrowing by default would be too
radical.

We don’t propose to allow overloading of the new-style casts. If you want a different
cast, you can define one using the same notational pattern, such as lexical_cast<T>(v).
The T(v) problem is worse: it basically defeats attempts to make casting safer and more
visible. It also, takes the ideal syntax for the least desirable semantics. Unfortunately, it
appears to be widely used for “nasty casts” (in correct code). For example:

typedef char* Pchar;
int i;
// …

Initializer lists 25 2005/12/17

Stroustrup and Dos Reis 26 N1919=05-0179

Pchar p = Pchar(i); // would usually require an obviously nasty reinterpret_cast

Basically, this means that we cannot change the meaning of T(v). This is really nasty for
several reasons:

• Consider:

Pchar p = Pchar(i);

This looks innocent, but hides nasty code.

• When we write generic code, there is no other general syntax for construction:

template<class T, class V> void f(T t, V v)
{
 // …
 X = T(v); // construct (but for some types it casts)
 // …
}

We consider that a serious problem. The { } syntax can be used as a remedy:

 T{v}

Means “(direct) initialize v to type T”. That is, T(v) will have the same value as the
variable x after T x{v}. Note that if T has a sequence constructor, T{v} means “make a T
with a single element v”.

7.1 Can we ban narrowing for T{v}?
It is extremely tempting to outlaw narrowing in a T{v} cast. However, we can’t do that
by itself. We must maintain the uniformity of { } initialization. After all, one of the main
aims of generalizing initializer lists and encouraging their use is to address the problems
with the diversity of meanings of other initialization notations. In particular, consider:

T{v}
T x{v};
T y = {v};
T a[] = {v};

The values of T{v}, x, y, and a[0] must be identical.

 That is, to get T{v} as a “safe” cast, we would have to disallow narrowing in all such
initialization. That’s still very tempting because the amount of code affected will be
“relatively minor”. However, remember that a “relatively minor” fraction of hundreds of
million lines of C++ code could easily be far too much. Given the advantages of

Initializer lists 26 2005/12/17

Stroustrup and Dos Reis 27 N1919=05-0179

addressing the problem with narrowing we will explore this possibility. Please note that
this proposal the ban narrowing for { } initialization (only) is separate for the main
proposal for dealing with initializer lists.

First note that banning narrowing conversions for { } initialization cannot lead to “silent”
change of meaning; it will simply cause previously legal C++ programs to be rejected by
the compiler. For example:

char x = { 1 }; // error: 1 is an int
char a[] = { ‘a’, ‘b’, ‘c’, 0 }; // error: 0 is an int

This problem could be remedied by requiring the compiler to verify that no narrowing
actually occurs:

 char x = { 69 }; // ok
 char y = { 1234 }; // error (assuming 8-bit chars)

For initializers that are literals, that’s trivial and some current compilers already warn.
That’s the rule we propose. Note that whether narrowing would occur (if allowed) is
often implementation defined.

That leaves initializer lists where the initializers are variables, such as:

void f(int a, int b, int c)
{

char x = { a }; // error: a is an int
char a[] = { a, b, c, 0 }; // error: a, b, c are ints
// …

 }

The proposal to ban narrowing is based on the conjecture that such cases are rare and has
a high enough incidence of errors, especially portability errors, that the community would
be willing to accept (not silent) errors.

7.1.1 Narrowing of function argument values
Consider

struct X {
 X(int);
};

X a(2.1); // ok
X b = 2.1; // ok
X c{2.1}; // error: narrowing

Initializer lists 27 2005/12/17

Stroustrup and Dos Reis 28 N1919=05-0179

void f(X);
f(2.1); // ok
f({2.1}); // error: narrowing

This would follow from a ban of narrowing where ever we use { … }. This is backwards
in the sense that the default (no use of { } in ordinary calls) is less safe than the “odd” use
with { … }. However, not doing it that way would break a lot of code. Note that this
resolution is consistent with the behavior of { … } vis a vis explicit constructors (§3.2).

7.1.2 History: why do we have the narrowing problem?
Are there any inherent benefits of implicit narrowing? Yes, consider:

void f(int i, double d)
{
 char c = i;
 int i2 = d;
 // …
}

This is shorter than equivalent using casts (C-style):

void f(int i, double d)
{
 char c = (char)i;
 int i2 = (int)d;
 // …
}

Or (C++ style):

void f(int i, double d)
{
 char c = static_cast<char>(i);
 int i2 = static_cast<int>(d);
 // …
}

Some implicit casts, such as double->int and int->char, have traditionally been consider
a significant – even invaluable – notational convenience. Others, such as double->char
and int*->bool, are widely considered embarrassments. When Bjarne once asked around
in the Unix room why implicit narrowing had actually been allowed. Nobody argued that
there were a fundamental technical reason, someone pointed out the obvious potential for
errors and all agreed that the reason was simply historical: Dennis Ritchie added floating
point before Steve Johnson added casts. Thus, the use of implicit narrowing was well
established before explicit casting became an option.

Initializer lists 28 2005/12/17

Stroustrup and Dos Reis 29 N1919=05-0179

Bjarne tried to ban implicit narrowing in “C with Classes” but found that a combination
of existing practice (especially relating to the use of chars) and existing code made that
infeasible. Cfront, however, stamped out the double->int conversions for early
generations of C++ programmers by providing long, ugly, and non-suppressible
warnings.

Please note that the suggestion to ban narrowing does not actually touch these common
examples. It relies on explicit use of { }.

8 Variadic templates
N1704 proposes a general and type safe method of passing both homogenous and
heterogenous lists. Why don’t we just use that proposal?

The major reason is that N1704 is a proposal for templates. We do not want to require
that every variadic function should be a template. Doing so would imply the problems of
code replication and the problems with defining virtual functions and (other) callbacks.

In addition, we worry that the heavy use of templates might make the proposal unsuitable
for long initializer lists. For example,

 vector<int> v = { 1,2,3, …. 1001, 1002, 1003 };

Consequently, we are of the opinion that the proposals address different problems and
this is not the place for a details discussion of variadic templates.

9 Acknowledgements
Obviously, much of this initializer list and constructor design came from earlier papers
and discussions. The main papers are listed in §1.

10 Appendix: Suggested working paper changes
<<Incomplete pending further discussion of the proposal and design alternatives>>

Here are working paper changes for the main proposal and two subsidiary proposals. The
two subsidiary proposals make sense only if the main proposal is accepted, but the main
proposal does not depend on the subsidiary proposals.

10.1 Main proposal
We propose to allow initializer lists wherever an initializer can appear.

Initializer lists 29 2005/12/17

Stroustrup and Dos Reis 30 N1919=05-0179

10.2 Narrowing proposal
We propose to ban narrowing conversions of values in initializer lists.

10.3 Syntax proposal
We propose to accept initializer lists as expressions.

10.4 Containers
We propose that each standard library container is provided with a sequence constructor
for its element type.

Initializer lists 30 2005/12/17

	Previous work
	Summary
	Four ways of providing an initializer
	Can we eliminate the different forms of initialization?
	A constructor problem: Disabled copy
	A constructor problem: explicit constructors

	Initializer lists
	The basic rule for initializer lists
	Sequence constructors
	The initializer list rewrite rule
	Syntax
	The initializer_list class
	Keyword?
	Include header?
	Why don’t we use T(&)[N]?
	Why don’t we use a constructor that takes a general STL sequ
	General (std::) class?
	Constant expression?

	Initializer lists and ordinary constructors
	Initializer lists, aggregates, and built-in types

	Initializer list technicalities
	Sequence constructors
	What really is an initializer list?
	Ambiguities and deduction
	Initializer lists and templates
	C99 style initializers with casts
	Refining the syntax

	Initializer lists in expressions
	Assignments
	General expressions
	Lists on the left-hand side

	Casting
	Can we ban narrowing for T{v}?
	Narrowing of function argument values
	History: why do we have the narrowing problem?

	Variadic templates
	Acknowledgements
	Appendix: Suggested working paper changes
	Main proposal
	Narrowing proposal
	Syntax proposal
	Containers

