
Progress toward Opaque Typedefs for C++0X

Document #: WG21/N1891 = J16/05-0151
Date: 2005-10-18
Revises: None
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown<wb@fnal.gov>

CEPA Dept., Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1 Introduction 1

2 The motivating requirement: overloading 2

3 Some basic properties 2

4 Two kinds of opaque typedef 3

5 Substitutability 4

6 Overload resolution 6

7 The return type issue 7

8 Expressions 7

9 Summary and conclusion 8

10 Acknowledgments 8

A Nomenclature describing typedef declarations 8

Bibliography 9

Important among [the qualities needed to do scientific research] is the
judgment of what problems are ripe for solution: exactly when does it
become profitable to look again over old ground, to rediscuss problems
that once seemed too hard.

— SIR FRED HOYLE

1 Introduction

This paper continues the discussion begun in N1706 [Bro04]. That paper presented introductory
rationale, exposition, and examples as a preliminary exploration on the subject of an opaque
typedef . In particular, we envisioned to combine the classical typedef with the C++ concepts
of public and private inheritance, thereby producing two new constructs that would jointly
address the oft-requested opaque typedef feature.

That early work was presented to the C++ standards bodies on October 20, 2004, at their
meeting in Redmond, Washington, USA. The presentation resulted in very strong encouragement

1

mailto:wb@fnal.gov

2 N1891: Progress toward Opaque Typedefs for C++0X

to continue development of the opaque typedef . The present paper presents results of a deeper
study of this topic, using nomenclature defined in Appendix A herein.

2 The motivating requirement: overloading

From extended conversations with prospective users, it has become clear that the characteristic
feature desired of an opaque typedef is the ability to overload functions and operators based on
one or more newly-defined opaque-types. For example, we would wish to overload the construc-
tors in a PhysicsVector class such that each constructor corresponds to a distinct coordinate
system. Temporarily using a notional opaque keyword, we might code this as:

1 // Listing 1
2 opaque typedef double X, Y, Z; // Cartesian 3D coordinate types
3 opaque typedef double Rho, Theta, Phi; // polar 3D coordinate types

5 class PhysicsVector
6 {
7 public:
8 PhysicsVector(X, Y, Z);
9 PhysicsVector(Rho, Theta, Phi);

10 ...
11 }; // PhysicsVector

In this way, a compiler would be able to diagnose usages that accidentally provided coordinates
in an unsupported order or in an unsupported mixture of coordinate systems. While this can be
accomplished in C++03 by inventing classes for each of the coordinates, this is generally viewed
as a fairly heavy burden: the above code would require six near-identical classes, each wrapping
a single value in the same way, differing only by name.

As a natural consequence of this required overloading capability, we propose that an underlying-
type UT shall meet all requirements of TR1 [Aus05, §4] such that is_convertible<OT,UT>::value
is well-formed for any opaque-type OT for which UT serves as underlying-type. (This requires, for
example, that UT be non-void, and that it not be an incomplete type.)

In addition, we propose that an underlying-type UT shall not be cv-qualified. This restriction
is consistent with two important C++03 precedents: (1) The underlying type of an enum has no
provision that permits its underlying type to be cv-qualified. (2) Application of inheritance makes
no provision that permits a base class to be cv-qualified.

3 Some basic properties

To complement the above overloading desideratum, it is convenient to express in terms of TR1’s
type traits [Aus05, §4] many of the basic properties desired of an opaque-type OT and of the
relationship between OT and its underlying-type UT. In the following, we use a function-style
notation to gain economy of expression without loss of clarity:

1. How shall OT’s unary type traits be defined?
Proposed answer: for each category and property defined by TR1, is_category(OT) ==
is_category(UT) shall be true, and
has_property(OT) == has_property(UT) shall also be true.

2. Are OT and UT the same type?
Proposed answer: is_same(UT,OT) shall be false.

N1891: Progress toward Opaque Typedefs for C++0X 3

3. Are OT and UT related by inheritance?
Proposed answer: is_base_of(UT,OT) shall be false, and
is_base_of(UT,OT) shall also be false.

4. Given two template instantiations, one with OT as a template argument and the other with
UT as the corresponding argument, how are the instantiations related?
Proposed answer: the two instantiations are unrelated.

5. Can instances of UT be explicitly converted to instances of OT?
Proposed answer: yes.

6. Can instances of UT be implicitly converted to instances of OT?
Proposed answer: no.

7. Can instances of OT be explicitly converted to instances of UT?
Proposed answer: yes.

The next section will address the final question: can instances of OT be implicitly converted to
instances of UT?

4 Two kinds of opaque typedef

We now come to a particularly important issue: Can instances of OT be implicitly converted to
instances of UT?

As we wrote in N1706,

Guided by well-understood substitutability principles as embodied in today’s C++, we
believe there is value in proposing to extend classical transparent typedefs with two
forms of opacity. We have designated these new forms, respectively, as public and
private. The former would permit substitutability in one (consistently specified) direc-
tion, the latter would permit no substitutability at all, while classical typedefs would
continue to permit mutual substitutability.

Our proposed answer thus depends on the kind of opaque typedef with which OT was declared.

4.1 typedef public

This first kind of opaque typedef is modeled after the behavior of two features of today’s C++:
enums and public inheritance. These features’ common characteristic of interest is the one-way
substitutability that they induce among instances of the types involved.

In brief, the semantics of the proposed public typedef would permit similar substitutability
in that instances of a newly declared type (the opaque-type) may be used wherever an instance
of the original type (the underlying-type) is expected. Unlike the mutual substitutability induced
by a classical typedef, an instance of an underlying-type may not stand in where an instance of
the opaque-type is expected. Further, an instance of a public typedef may never stand in for
an instance of a second opaque-type, even when both have the identical underlying-type.

As one consequence of this proposal, the underlying-type of a public typedef shall be
reference-related to its opaque-type (i.e., to its public-type) per [ISO03, 8.5.3/4]. Further ex-
position and discussion of substitutability is provided in §5.

4 N1891: Progress toward Opaque Typedefs for C++0X

4.2 typedef private

This second kind of opaque typedef is modeled on the behavior of private inheritance in today’s
C++ and was intended to fill an anticipated need for a non-substitutable type. However, we
have to date found no killer example for such a facility, and therefore will give less attention to
private typedefs in the remainder of this paper. We invite interested readers to formulate and
contribute such an example; failing any, we will likely discard this kind of opaque typedef from
future consideration.

5 Substitutability

N1706 relied heavily on substitutability as a significant defining characteristic for classical as
well as for opaque typedef s. In this section, we will formalize these notions.

5.1 Definition of substitutable

A type B is said to be substitutable for a type A if and only if there exists an implicit conversion
from B to A.

Equivalently (per [ISO03, §4/3]), if type B is substitutable for type A, then for an arbitrary
expression b of type B and for some invented temporary variable __a, the declaration A __a = b;
must be well-formed. If that declaration is ill-formed, then type B is not substitutable for type A,
and conversely.

Note that the above definition is similar, but not identical, to that of TR1’s is_convertible
type trait. The latter is defined to exclude certain “[s]pecial conversions” and “adjustments” that
our definition of substitutability does include.

5.2 Notation: the substitutability predicate

As a convenient shorthand in the nature of a type trait, we introduce the substitutability predicate
notation is_subst(B,A), defined such that is_subst(B,A) is true if type B is substitutable for
type A, and is false otherwise.

Future developments may suggest the extension of this predicate into a fully-featured C++0X
type trait; if so, the form is_subst<B,A>::value will likely be more appropriate in that context.
We will herein continue to use the functional style, reserving for the future any discussion of
such a trait’s usefulness in programming, of its name, or of the order of its parameters.

5.3 Substitutability in C++03

We note that the above definition of substitutable captures a relationship defined, induced, or
required by several extant C++ constructs. For example:

1. Given a class D that publicly inherits from a class B, we have is_subst(D,B) (commonly
known in this context as the is-a relationship) as well as is_subst(D*,B*), is_subst(D,B&),
etc.

2. We also have is_subst(E,I) where E is an enum type and I is the integral type used to
encode E’s enumerators.

3. For arbitrary type T, we generally have the trivial is_subst(T,T) as well as the more inter-
esting is_subst(T,T const), is_subst(T[. . .],T*), is_subst(T*,void *), etc.

4. A valid function call requires is_subst(Ai,Pi) where Ai denotes the type of the ith argu-
ment in the call and Pi denotes the type of the ith parameter of the function being called.

N1891: Progress toward Opaque Typedefs for C++0X 5

5. Among numeric types in the core language, we have such relationships as is_subst(int,long),
is_subst(float,double), etc.

5.4 typedef-induced substitutability

Let N denote the type identified by a (classical or opaque) typedef’s declarator-id, and let U
denote that declarator-id’s underlying-type. We then distinguish the following different forms of
typedef based on the substitutability relationships that each induces:

Kind of typedef is_subst(N,U) is_subst(U,N)

classical (transparent) true true
public (opaque) true false
private (opaque) false false

Further let N2 denote the type named by the declarator-id of a second typedef of the same
kind (i.e., classical, public, or private) and with the same underlying-type UT. We then have the
following additional substitutability relationships between N and N2:

Kind of typedef is_subst(N,N2) is_subst(N2,N)

classical true true
public false false
private false false

5.5 Transitivity

The substitutability induced by classical typedefs is clearly transitive: if is_subst(A,B) and
is_subst(B,C), then is_subst(A,C). However, this transitivity is a consequence of the classi-
cal typedef’s transparent nature. As the following counter-example demonstrates, transitivity
is not a general property of the substitutability relationship:

1 // Listing 2
2 struct A { };
3 struct B { B(A); };
4 struct C { C(B); };

6 A a;
7 B ba = a; // okay: is_subst(A,B)
8 C cb = ba; // okay: is_subst(B,C)
9 C ca = a; // oops: ! is_subst(A,C) per [ISO03, §13.3.3.1.2/1]

We intend that the substitutability induced by public typedefs, like that induced by classical
typedefs, be transitive:

1 // Listing 3
2 struct A {};
3 typedef public A B;
4 typedef public B C;

6 A a;
7 B ba = a; // okay: is_subst(A,B)
8 C cb = ba; // okay: is_subst(B,C)
9 C ca = a; // okay: is_subst(A,C)

6 N1891: Progress toward Opaque Typedefs for C++0X

5.6 Other factors influencing substitutability

On reflection, substitutability is not an automatic consequence of a classical typedef. Indeed,
not even type identity is a sufficient condition to ensure substitutability: The presence and the
accessibility of a suitable copy constructor are important factors.

For example, substitutability issues surrounding std::auto_ptr<> are materially affected by
the auto_ptr’s constness:

1 // Listing 4
2 typedef std::auto_ptr<int> AP;
3 AP p1(new int);
4 AP p2 = p1; // okay: is_subst(AP,AP)

6 typedef const std::auto_ptr<int> CAP;
7 CAP p3(new int);
8 CAP p4 = p3; // oops: ! is_subst(CAP,CAP)
9 AP p5 = p3; // oops: ! is_subst(CAP,AP)

This result follows from the lack of any auto_ptr copy constructor that can bind to a const
auto_ptr. (The example’s typedefs neither aid nor hinder these semantics.)

While not always intuitive, this state of affairs is a direct consequence of our definition of sub-
stitutability. We are not proposing any change to the current behavior. Therefore, our proposal
to introduce a C++ opaque typedef can be viewed as a new opportunity for substitutability, but
one that is subject to existing semantic constraints.

6 Overload resolution

To permit the above-described overloading behavior based on public typedef, we propose to
introduce into C++0X’s implicit conversion sequences the notion of a substitution Conversion.

Much like the derived-to-base Conversion described in [ISO03, §13.3.3.1/6], a substitution
Conversion “exists only in the description of implicit conversion sequences.” We propose the
following wording be added to this paragraph: “When the parameter has an underlying-type and
the argument expression has a public-type, the implicit conversion sequence is a substitution
Conversion from the public-type to the underlying-type. A substitution Conversion has Conversion
rank.”

Additionally, we propose to augment the second and the third bullets of [ISO03, §13.3.3.2/4],
which paragraph provides the rules to distinguish two conversion sequences with the same rank.

• Revise the second bullet so as to read: “If class B is derived directly or indirectly from class
A, or if type B is a public-type whose underlying-type is A, . . . ”.

• Similarly revise the third bullet to become: “If class B is derived directly or indirectly from
class A and class C is derived directly or indirectly from class B, or if type B is a public-type
whose underlying-type is A and type C is a public-type whose underlying-type is B, . . . ”.

Alternatively, we could duplicate the entirety of bullets two and three as new bullets four and
five, and make substitutions in the introductory clauses of the new bullet items instead of the
additions proposed above. In any event, we respectfully recommend that all future additions and
revisions to [ISO03] avoid use of anonymous bullets in order to simplify future references.

N1891: Progress toward Opaque Typedefs for C++0X 7

7 The return type issue

One of the consistent stumbling blocks in the design of an opaque typedef facility for C++0X
has involved the return type of a function1 selected via overload resolution in the presence of an
argument whose type is declared via an opaque typedef . While we had previously proposed that
the return type be determined via a form of type substitution, we now believe that this is not a
viable approach.

In particular, we have come to realize that there is no one consistent approach to the re-
turn type issue such that it will meet all expectations under all circumstances. Sometimes the
underlying-type is the desired return type, sometimes the opaque-type is the desired return type,
and sometimes a distinct third type is the desired return type. Indeed, sometimes the operation
should be disallowed, and so there is no correct return type at all.

Since only the provider of the opaque-type is in a position to know the desired behavior, we
now propose that the function’s result in every case be returned as the type originally specified by
the function selected by overload resolution, and that any other desired return type be specifically
provided by a suitably overloaded version of the function.

This is also consistent with the behavior of typedef private. Since in this case there is no
substitutability with respect to the underlying-type, the user must in all cases provide overloaded
functions to obtain whatever behavior is desired in the user context.

8 Expressions

8.1 Overloaded operators

We propose to augment [ISO03, §5/2] so as to read:

Operators can be overloaded, that is, given meaning when applied to expressions of
class type (clause 9) or enumeration type (7.2) or opaque-type.

8.2 Static casting

Analogous to [ISO03, §5.2.9/7], we propose to permit explicit static casts by adding:

A value of a type T can be explicitly converted to an opaque-type for which T serves as
a direct or indirect underlying-type. The value is unchanged.

8.3 Dynamic casting

We also propose to permit dynamic casting, where applicable. The second sentence of [ISO03,
§5.2.7/1] would be augmented so as to read:

T shall be a pointer or reference to a complete class type or to an opaque-type whose
direct or indirect underlying-type is a complete class type, or shall be “pointer to cv
void”.

Further, [ISO03, §5.2.7/2] would now begin:

1 For purposes of this discussion, we distinguish neither between functions and operators, nor between a function’s
arguments and an operator’s operands.

8 N1891: Progress toward Opaque Typedefs for C++0X

If T is a pointer type, v shall be an rvalue of a pointer to complete class type or to an
opaque-type whose direct or indirect underlying-type is a complete class type, and the
result is an rvalue of type T. If T is a reference type, v shall be an lvalue of a complete
class type or of an opaque-type whose direct or indirect underlying-type is a complete
class type, and the result is

To describe the augmented behavior of the dynamic_cast operator, we propose to insert the
following new paragraph into [ISO03, §5.2.7]:

If T is an opaque-type OT or is a pointer or reference to an opaque-type OT such that OT’s
underlying-type UT is a complete class type, then the dynamic_cast shall be carried
out pursuant to this description as if UT had been specified in place of OT. and then
that result static_cast to the required result type.

9 Summary and conclusion

This paper has continued discussions on the topic of opaque typedef s for C++0X. It has pre-
sented a number of important details regarding the behavior of a mechanism, including pre-
liminary wording. We would be pleased to receive feedback regarding this proposal in order to
determine whether these directions meet the perceived desiderata underlying the historical and
continuing requests for an opaque typedef facility in C++0X. Assuming the proposed directions
are of continued interest, we would ask for additional feedback in the form of specific citations
to paragraphs of [ISO03] in need of updating to accommodate the new facility.

10 Acknowledgments

I am pleased to acknowledge my Fermilab colleagues Mark Fischler, Jim Kowalkowski, and Marc
Paterno for significant ongoing discussions on this topic, and for their comments on early drafts
of this paper. Additionally, Richard Brown’s very careful proofreading and helpful suggestions
materially improved the clarity of this paper’s presentation.

I also wish to thank the Fermi National Accelerator Laboratory’s Computing Division, sponsor
of our participation in the C++ standards effort, for its past and continuing support of our efforts
to improve C++ for all our user communities.

A Nomenclature describing typedef declarations

In describing the syntax and semantics of typedefs and other declarations, C++03 [ISO03] uses
the following terminology:

declarator — That part of a declaration responsible for declaring “a single object,
function, or type.” In general, a single declaration may incorporate one or more
declarators.

type-specifier — That part of a declaration denoting a type common to (i.e., shared
by) all declarators within that declaration.

declarator-id — A name introduced by a declaration, specified as part of a declara-
tor. A valid typedef declaration must include at least one declarator-id, else
the declaration would be pointless.

N1891: Progress toward Opaque Typedefs for C++0X 9

operator — A symbol or sequence of symbols used (singly or in appropriate combi-
nation) to adjust (“modify”) a declaration’s type-specifier. Representative exam-
ples include &, * const, and [. . .].

For descriptive purposes, we augment this standard nomenclature with the term:

underlying-type — The synthesized type that is obtained from the type denoted by a
type-specifier after adjusting (“modifying”) that type with all operators associated
with a declarator-id.

The above nomenclature is applicable to all declarations. For example, in the C++03 declara-
tion:

1 typedef int I,
2 * P,
3 A[5],
4 * const CP;

int fills the role of type-specifier; it is shared by four declarators, each consisting of a distinct
declarator-id and an associated underlying-type:

declarator declarator-id operator underlying-type

I I none int

* P P * int *
A[5] A [5] int [5]

* const CP CP * const int * const

Finally, we introduce the following terms specifically for use in connection with opaque type-
def s:

opaque-type — A type that is distinct from, yet isomorphic to, a declaration’s underlying-
type, originating via an opaque typedef and associated with a specific declarator-
id within that typedef. The properties of an opaque-type depend on the kind of
opaque typedef with which it was declared, as detailed throughout this paper.

public-type — An opaque-type declared via a public typedef declaration.

private-type — An opaque-type declared via a private typedef declaration.

Bibliography

[Aus05] Matt Austern. (Draft) technical report on standard library extensions. Paper N1836,
JTC1-SC22/WG21, June 24 2005. Online: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2005/n1836.pdf; same as ANSI NCITS/J16 05-0096.

[Bro04] Walter E. Brown. Toward opaque typedefs in C++0x. Paper N1706, JTC1-SC22/WG21,
September 10 2004. Online: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2004/n1706.pdf; same as ANSI NCITS/J16 04-0146.

[ISO98] Programming Languages — C++, International Standard ISO/IEC 14882:1998(E). Inter-
national Organization for Standardization, Geneva, Switzerland, 1998. 732 pp. Known
informally as C++98.

[ISO03] Programming Languages — C++, International Standard ISO/IEC 14882:2003(E). Inter-
national Organization for Standardization, Geneva, Switzerland, 2003. 757 pp. Known
informally as C++03; a revision of [ISO98].

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf

	1 Introduction
	2 The motivating requirement: overloading
	3 Some basic properties
	4 Two kinds of
	5 Substitutability
	6 Overload resolution
	7 The issue
	8 Expressions
	9 Summary and conclusion
	10 Acknowledgments
	A Nomenclature describing declarations
	Bibliography

