
Paul A Bristow JTC 1/SC22/WG21/N1842=05-0102 Date: 2005-07-27, version 1 page 1 of 3

A Proposal to add two iostream manipulators to the
C++ Standard Library
Document number: JTC 1/SC22/WG21/N1842=05-0102
Date: 2005-07-27, version 1
Project: Languages C++
References: C++ ISO/IEC IS 14882:1998(E),

Reply to: Paul A Bristow, pbristow@hetp.u-net.com, J16/04-0108

1 Background & motivation

Why is this important? What kinds of problems does it address, and what kinds of
programmers is it intended to support? Is it based on existing practice?

May I suggest, for completeness, the following additional trivial iostream
manipulators which return the stream back to the default state:

ios_base& automatic(ios_base& str)
{
 str.unsetf(ios_base::floatfield); // Effectively zero.
 return (str);
}

so cout << automatic ... // means not fixed nor scientific (default)

ios_base& noadjust(ios_base& str)
{
 str.unsetf(ios_base::adjustfield); // Effectively zero.
 return (str);
}

and cout << no adjust … // means no left, no right and no internal

My experience is that without these manipulators, for which I propose (tentatively)
the names automatic and noadjust, quite often layout cannot be performed with
manipulators. While this is possible with the single bit flags like showpos, showpoint
that have simple negates in noshowpos, noshowpoint, for multi-bit fields like
floatfield and adjustfield, there are no equivalents so it is necessary to use the
unsetf() function directly, which looks unsightly, and interrupts the sequence of
manipulators.

Novices expect, most reasonably, that everything simple to do with formatting is
possible with manipulators.

Novices using cout << … should not need to know about unsetf nor the details of the
float and adjust fields.

2 Impact on the C++ Standard

This proposal is for a pure addition to existing iostream manipulators. It does not
require any C++ language change, nor any change to the existing values provided by
ios.

Paul A Bristow JTC 1/SC22/WG21/N1842=05-0102 Date: 2005-07-27, version 1 page 2 of 3

Draft of Proposed Revised Text for
27.4.5.4 floatfield manipulators [lib.floatfield.manip]

ios_base & fixed (ios_base & str);

1 Effects: Calls
 str .setf(ios_base::fixed, ios_base::floatfield).

2 Returns: str

ios_base & scientific (ios_base & str);

3 Effects: Calls str .setf(ios_base::scientific, ios_base::floatfield).
4 Returns: str

Proposed addition to 27.4.5.4

ios_base & automatic (ios_base & str);

3 Effects: Calls str .unsetf(ios_base::floatfield)
4 Returns: str

and to 27.4.5.2 adjustfield manipulators [lib.adjustfield.manip]

ios_base & internal (ios_base & str);

1 Effects: Calls str .setf(ios_base::internal, ios_base::adjustfield).
2 Returns: str .

ios_base & left (ios_base & str);

3 Effects: Calls str .setf(ios_base::left, ios_base::adjustfield).
4 Returns: str .
ios_base & right (ios_base & str);

5 Effects: Calls str .setf(ios_base::right, ios_base::adjustfield).
6 Returns: str .

add

ios_base & noadjust (ios_base & str);

1 Effects: Calls str .unsetf(ios_base::adjustfield).
2 Returns: str .

In passing, I also note that a possible interpretation of Table 85: fmtflags constants

Constant Allowable values

adjustfield left | right | internal
basefield dec | oct | hex
floatfield scientific | fixed

is that adjustfield MUST be either left, right, or internal, implying that if none of these
are set, the implementation is non-conforming, (and similarly for basefield and
floatfield). However 27.4.4.1 basic_ios constructors declares:

void init (basic_streambuf <charT ,traits >* sb);

Postconditions: The postconditions of this function are indicated in Table 90.

Paul A Bristow JTC 1/SC22/WG21/N1842=05-0102 Date: 2005-07-27, version 1 page 3 of 3

Since the only flags set by init are flags() skipws | dec, so the adjustfield and
floatfields must both be zero. So one can infer that zero must be an allowed setting.

Table 85 could be made clearer by adding “0 | ” for floatfield and adjustfield (but
NOT basefield) to read:

adjustfield 0 | left | right | internal
basefield dec | oct | hex
floatfield 0 | scientific | fixed

Assuming basefield = 0 is NOT a Standard value?

For float fields, the effect of the default zero, neither fixed nor scientific, is to chose
the most appropriate format for the value.

It might be useful to clarify if other values of these fields are undefined behaviour or,
much better in my view, implementation defined. (Since the iword/pword system is so
awkward to use, allowing all additional bit combinations seems sensible).

