
N1736=04-0176
November 5, 2004

Daveed Vandevoorde
daveed@vandevoorde.com

Modules in C++
(Revision 1)

Introduction
Modules are a mechanism to package libraries and encapsulate their implementations.
They differ from the C approach of translation units and header files primarily in that all
entities are defined in just one place (even classes, templates, etc.). This paper proposes a
module mechanism as an extension to namespaces with three primary goals:

• Significantly improve build times of large projects
• Enable a better separation between interface and implementation
• Provide a viable transition path for existing libraries

Before delving in the detailed benefits and issues of the proposal, this paper offers some
examples illustrating general principles and common use cases. Along the way some
nomenclature is introduced to enable concise discussion.

Example 1
The following example shows a simple use of a module namespace (or simply,
module). In this case, the module namespace encapsulates the standard library.

namespace << std; // Module import directive.
int main() {
 std::cout << “Hello World\n”;
}

The first statement in this example is a module import directive (or simply, an import
directive). Such a directive makes a namespace available in the translation unit. In
contrast to #include preprocessor directives, module import directives are insensitive to
macro expansion (except wrt. to the identifiers appearing in the directive itself, of
course).
Nonmodule namespaces are henceforth called open namespaces. The unqualified term
"namespace" then refers to both modules and open namespaces.

Example 2
Let’s now look at the definition (as opposed to the use) of a module namespace.

Modules in C++ N1736=04-0176

// File_1.cpp:
namespace >> Lib { // Module definition.
 namespace << std;
 export struct S {
 S() { std::cout << “S()\n”; }
 };
}

// File_2.cpp:
namespace << Lib;
int main() {
 Lib::S s;
}

Import directives only make visible those members of a module namespace that were
declared with the keyword export.
Note that the constructor of S is an inline function. Although its definition is separated
(in terms of translation units) from the call site, it is expected that the call will in fact be
expanded inline using simple compile-time technology (as opposed to the more elaborate
link-time optimization technologies available in some of today’s compilation systems).

Example 3
Importing a module is not transitive by default, except for exported import directives:

// File_1.cpp:
namespace >> M1 {
 export typedef int I1;
}

// File_2.cpp:
namespace >> M2 {
 export typedef int I2;
}

// File_3.cpp:
namespace >> MM {
 export namespace << M1; // Make M1 visible here and
 // in code that imports MM.
 namespace << M2; // Make M2 visible here,
 // but not in clients.
}

Modules in C++ N1736=04-0176

// File_4.cpp:
namespace << MM;
M1::I1 i1; // Okay.
M2::I2 i2; // Error: M2 invisible.

Example 4
Our next example demonstrates the interaction of module namespaces and private
member visibility.

// File_1.cpp:
namespace >> Lib {
 export struct S { void f() {} }; // Public f.
 export class C { void f() {} }; // Private f.
}

// File_2.cpp:
namespace << Lib; // Private members invisible.
struct D: Lib::S, Lib::C {
 void g() {
 f(); // Not ambiguous: Calls S::f.
 }
};

The similar case using nonmodule namespaces would lead to an ambiguity, because
private members are visible even when they are not accessible. In fact, within module
namespaces private members must remain visible as the following example shows:

namespace >> Err {
 export S { int f() {} }; // Public f.
 export C { int f(); }; // Private f.
 int C::f() {} // C::f must be visible for parsing.
 struct D: S, C {
 void g() {
 f(); // Error: Ambiguous.
 }
 };
}

Example 5
Module namespaces can be equipped with a startup and/or a shutdown function (always
using the identifier “main”).

Modules in C++ N1736=04-0176

// File_1.cpp:
namespace >> Lib {
 namespace << std;
 void main() { std::cout << “Hello “; }
 void ~main() { std::cout << “World\n”; }
}

// File_2.cpp:
namespace << Lib;
int main() {}

This program outputs “Hello World”. Clearly, this is mostly syntactic convenience since
the same could be achieved through a global variable of a special-purpose class type with
a default constructor and destructor as follows:

namespace >> Lib {
 namespace << std;
 struct Init {
 Init() { std::cout << “Hello “; }
 ~Init() { std::cout << "World\n"; }
 } init;
}

Example 6
A module may be designated as a program entry point by making it a program module:

namespace[”program”] >> P {
 namespace << std;
 void main() {
 std::cout << “Hello World\n”;
 std::exit(1);
 }
}

The square bracket construct following the first namespace keyword in the preceding
example is a namespace attribute list. Additional attributes are discussed in the
remainder of this paper.
Note that this proposal does not provide an option to pass command-line arguments
through a parameter list of main(), nor does it allow for main() to return an integer.
Instead, it is assumed that the standard library will be equipped with a facility to access
command-line argument information (the function std::exit() already returns an integer to
the execution environment).
The ability to write a program entirely in terms of module namespaces may be desirable,
not only out of a concern for elegance, but also to clarify initialization order and to enable
a new class of tools (which would not have to worry about ODR violations).

Modules in C++ N1736=04-0176

Example 7
A module may be partitioned into module partitions to allow only part of the module to
become visible at one time. For example, the standard header <vector> might be
structured as follows:

namespace << std[”vector_hdr”];
 // Load definitions from std, but only those
 // those from the "vector_hdr" partition should
 // be made visible.
// Definitions of macros (if any):
#define ...

The corresponding definition has the following general form:
namespace >> std[”vector_hdr”] {
 export namespace << std[”allocator_hdr”];
 // Additional declarations and definitions
}

The partition name is an arbitrary string literal, but it must be unique among the partitions
of a module. All partitions must be named, except if a module consists of just one
partition.
The partition mechanism is also a convenient vehicle to spread module namespaces
across multiple translation units. For example:

// File_1.cpp:
namespace >> Lib["part 1"] {
 struct Helper { // Not exported.
 // ...
 };
}

// File_2.cpp:
namespace >> Lib["part 2"] {
 namespace << Lib["part 1"];
 export struct Bling: Helper { // Okay.
 // ...
 };
}

This example also illustrates that when importing a module partition within the same
module, all declarations (not just the exported ones) are visible.
The dependency graph of the module partitions in a program must form a directed acyclic
graph. Note that this does not imply that the dependency graph of the complete modules
cannot have cycles.

Modules in C++ N1736=04-0176

Example 8
Nested modules must be declared in their enclosing module:

namespace >> Lib["part 1"] {
 export namespace >> Lib::Nest;
 // Nested module declaration.
}

A nested module can import its enclosing module.
namespace >> Lib::Nested { // Only valid if declared
 // in module Lib.
 namespace << Lib; // Okay.
}

The converse true too:
namespace >> Lib["part 2"] {
namespace << Lib::Nested; // Okay.
}

However, a single partition cannot both declare and import a nested module since that
amounts to a cyclic dependency in that partition's dependency graph:

namespace >> Lib["part 3"] {
 namespace >> Lib::Nest;
 namespace << Lib::Nest; // Error.
}

Note that modules can also contain nested open namespaces that are not so constrained:
namespace >> Outer {
 export namespace Inner {
 export typedef char C;
 }
 Inner::C flag;
}

Namespace scope variables and static data members appearing inside modules (e.g.,
"flag" in this example) are called module variables.

Example 9
Namespaces (both modules and open namespaces) can be marked global to express that
the names of their members are reserved in the global namespace:

namespace >> std::core["new_hdr"] {

 export namespace << std["stddef_hdr"];
 export void* operator new(std::size_t);
 // ...
}

Modules in C++ N1736=04-0176

This facility is primarily meant to enable a binary compatible transition from pre-module
C++: Global module members can be code-generated as if in the global namespace, but
their visibility is limited to the module namespace.

Benefits
The capabilities implied in the introductory examples suggest the following benefits to
programmers:

• Improved (scalable) build times
• Shielding from macro interference
• Shielding from private members
• Improved initialization order guarantees
• Avoidance of undiagnosed ODR problems
• Global optimization properties (exceptions, side-effects, alias leaks, …)
• Possible dynamic library framework
• Smooth transition path from the #include world
• Halfway point to full exported template support

The following subsections discuss these in more detail.

Improved (scalable) build times
It would seem that build times on typical C++ projects are not significantly improving as
hardware and compiler performance have made strides forward. To a large extent, this
can be attributed to the increasing total size of header files and the increased complexity
of the code it contains. (An internal project at Intel has been tracking the ratio of C++
code in “.cpp” files to the amount of code in header files: Over the last decade it has gone
from about 10 to about 1.) Since header files are typically included in many other files,
the growth in build cycles is generally superlinear wrt. to the total amount of source code.
Module namespaces address this issue by replacing the textual inclusion mechanism
(whose processing time is proportional to the amount of code included) by a precompiled
module attachment (whose processing times can be proportional to the number of
imported declarations). The property that client translation units need not be recompiled
if private module definitions change can be retained.
Experience with similar mechanisms in other languages suggests that modules therefore
effectively solve the issue of excessive build times.

Shielding from macro interference
The possibility that macros inadvertently change the meaning of code from an unrelated
module is averted. Indeed, macros cannot “reach into” a module. They only affect
identifiers in the current translation unit.
This proposal may therefore obviate the need for a dedicated preprocessor facility for this
specific purpose (for example as suggested in N1614 and N1625).

Modules in C++ N1736=04-0176

Shielding from private members
The fact that private members are inaccessible but not invisible regularly surprises
incidental programmers. Like macros, seemingly unrelated declarations interfere with
subsequent code. Unfortunately, there are good reasons for this state of affair: Without it,
private out-of-class member declarations become impractical to parse in the general case.
Module namespaces appear to be an ideal boundary for making the private member fully
invisible: Within the module the implementer has full control over naming conventions
and can therefore easily avoid interference, while outside the module the client will never
have to implement private members. (Note that this also addresses the concerns of
N1602; the extension proposed therein is then no longer needed.)

Improved initialization order guarantees
A long-standing practical problem in C++ is that the order of dynamic initialization of
namespace scope objects is not defined across translation unit boundaries. The module
dependency graph defines a natural partial ordering for the initialization of module
variables that ensures that implementation data is ready by the time client code relies on
it.

Avoidance of undiagnosed ODR problems
The one-definition rule (ODR) has a number of requirements that are difficult to diagnose
because they involve declarations in different translation units. For example:

// File_1.cpp:
int global_cost;

// File_2.cpp:
extern unsigned global_cost;

Such problems are fortunately avoided with a reasonable header file discipline, but they
nonetheless show up occasionally. When they do, they go undiagnosed and are typically
expensive to track down.
Modules avoid the problem altogether because entities can only be declared in one
module.

Global optimization properties (exceptions, side-effects, alias leaks, …)
Certain properties of a function can be established relatively easily if these properties are
known for all the functions called by the first function. For example, it is relatively easy
to determine that a function will not throw an exception if it is known that the functions it
calls will never throw either. Such knowledge can greatly increase the optimization
opportunities available to the lower-level code generators. In a world where interfaces
can only be communicated through header files containing source code, consistently
applying such optimizations requires that the optimizer see all code. This leads to build
times and resource requirements that are often unacceptable. Historically such optimizers

Modules in C++ N1736=04-0176

have also been less reliable, further decreasing the willingness of developers to take
advantage of them.
Since the interface specification of a module is generated from its definition, a compiler
can be free to add any interface information it can distill from the implementation. That
means that various simple properties (such as a function not having side-effects or not
throwing exceptions) can be affordably determined and taken advantage of.
An alternative solution is to add declaration syntax for this purpose as proposed for
example in N1664. The advantage of this alternative is that the properties can be
associated with function types and not just functions. In turn that allows indirect calls to
still take advantage of the related optimizations (at a cost in type system constraints). A
practical downside of this approach is that without careful cooperation from the
programmer, the optimizations will not occur. In particular, it is in general quite difficult
and cumbersome to manually deal with the annotations for instances of templates when
these annotations may depend on the template arguments.

Possible dynamic library framework
C++ currently does not include a concept of dynamic libraries (aka. shared libraries,
dynamically linked libraries (DLLs), etc.). This has led to a proliferation of vendor-
specific, ad-hoc constructs to indicate that certain definitions can be dynamically linked
to.
It has been suggested that the module namespace concepts may map naturally to dynamic
libraries and that this may be sufficient to address the issue in the next standard.

Smooth transition path from the #include world
As proposed, module namespaces can be introduced in a bottom-up fashion into an
existing development environment. This is a consequence of nonmodule code being
allowed to import modules while the reverse cannot be done.
The provision for module partitions allows for existing file organizations to be retained in
most cases. Cyclic declaration dependencies between translation units are the only
exception. Such cycles are fortunately relatively uncommon and can easily be worked
around by moving declarations to separate partitions.
The "global" module attribute enables a binary-compatible transition from a global
namespace library to a module namespace library. This is particularly needed for some
standard library facilities not declared in namespace std.
Finally, we note that modules are just a special kind of namespace. Moving a library from
an open namespace to a module namespace does therefore not require a binary
incompatible transition.

Halfway point to full exported template support
Perhaps unsurprisingly, from an implementer’s perspective, templates are expected to be
the most delicate language feature to integrate in the module world. However, the stricter
ODR requirements in modules considerably reduce the difficulty in supporting separately

Modules in C++ N1736=04-0176

compiled templates (the loose nonmodule ODR constraints turned out to be perhaps the
major hurdle during the development of export templates by EDG). Furthermore, it is
expected that the work to allow module templates to be exported can be reused when
implementing support for export templates in open namespace scopes (as already
specified in the standard).

Options
This section explores some additional possible features for module namespaces.

Auto-loading
It is possible to automatically import a module when its first use is encountered, without
requiring an explicit import directive. This would for example simplify Hello World to
the following:

int main() {
 std::cout << "Hello World!\n";
}

Opinions on whether this simplifies introductory teaching seem to vary, but there appears
to be a general agreement that it could be harmful to code quality in practice. It also has
slightly subtle implications for initialization order (since a module's import directives
determine when it may be initialized).

Exported macros
It may be possible to export macro definitions. However, this forces a C++ compiler to
integrate its preprocessor and it raises various subtleties wrt. dependent macros. For
example:

namespace >> Macros {
#define P A // Invisible?
#export X P // Expansion of X will not pick up P?
}

Exported macros are therefore probably undesirable. If needed, an import directive can
be wrapped in a header to package macros with modules.

Module seals
With the rules so far, third parties may in principle add partitions to existing multi-
partition modules. This may be deemed undesirable.
One way to address this is to assume implementation-specific mechanisms (e.g.,
compiler options) will allow modules to be "sealed" in some fashion.
Alternatively, a language-based sealing mechanism could be devised. A possibility is a
namespace attribute to indicate that a given partition and all the partitions it imports
(directly or indirectly) from the same module form a complete module. For example:

Modules in C++ N1736=04-0176

// File_1.cpp:
namespace >> Lib["core"] {
 // ...
}

// File_2.cpp:
namespace >> Lib["utils"] {
 namespace << Lib["core"];
 // ...
}

// File_3.cpp:
namespace["complete"] >> Lib["main"] {
 namespace << Lib["utils"];
 // Partitions "main", "utils", and "core"
 // form the complete module Lib.
}

// File_4.cpp:
namespace >> Lib["helpers"] {
 namespace << Lib["core"];
 // Error: "helpers" not imported into sealing
 // partition "main".
}

More than one partition per translation unit
It may be possible to specify that multiple modules or partitions be allowed in a single
translation unit. For example:

// File_1.cpp:
namespace >> M1 {
 // ...
}
namespace >> M2 {
 // ...
}

However doing so may require extra specification to define visibility rules between such
modules and is also likely to be an extra burden for many existing implementations.

Program-directed module loading
If modules can be compiled to dynamic libraries, it is natural to ask whether they could
be loaded and unloaded under program control (as can be done with nonstandard APIs
today).

Modules in C++ N1736=04-0176

Loading probably presents few problems other than agreeing on an API to do so.
Unloading presumably requires slightly different termination semantics: All the static
lifetime variables must be destroyed at that point (instead of in strict reverse construction
order). If this is desirable, the alternative termination semantics could be indicated with a
namespace attribute. For example:

namespace["dynamic"] >> Component {
 // ...
}

It may also be desirable to have such modules generate additional RTTI information that
could be used to synthesize safe calls to components not originally linked into the
application.

Standard module file format
Probably the major drawback of modules compared to header files is that the interface
description of a library may end up being obfuscated in a proprietary module file format.
This is particularly concerning for third-party tool vendors who until now could assume
plaintext header files. It is therefore probably desirable that the module file format be
partially standardized, so that third party tools can portably load exported declarations (at
the very least). This can be done in a manner that would still allow plenty of flexibility
for proprietary information.

Technical Notes
This section collects some thoughts about specific constraints and semantics, as well as
practical implementation considerations.

The module file
A module is expected to map on one or several persistent files describing its exported
declarations. This module file (we will use the singular form in what follows, but it is
understood that a multi-file approach may have its own benefits) will also contain any
exported definitions except for definitions of noninline functions, namespace scope
variables, and nontemplate static data members, which can all be compiled to a separate
object file just as they are in current implementations.
Some nonexported entities may still need to be stored in the module file because they are
(directly or indirectly) referred to by exported declarations, inline function definitions, or
private member declarations.
Not every modification of the source code defining a module namespace needs to result
in updating the associated module file. Avoiding superfluous compilations due to
unnecessary module file updates is relatively straightforward: A module file is initially
produced in a temporary location and is subsequently compared to any existing file for
the same module; if the two files are equivalent, the newer one can be discarded.
As mentioned before, an implementation may store interface information that is not
explicit in the source. For example, it may determine that a function won’t throw any

Modules in C++ N1736=04-0176

exceptions, that it won’t read or write persistent state, or that it won’t leak the address of
its parameters.
In its current form, the syntax does not allow for the explicit naming of the module file: It
is assumed that the implementation will use a simple convention to map module
namespace names onto file names (e.g., module name “Lib::Core” may map onto
“Lib.Core.mf”). This may be complicated somewhat by file system limitations on name
length or case sensitivity.

Module dependencies
When module A imports module B it is expected that A's module file will not contain a
copy of the contents of B's module file. Instead it will include a reference to B's module
file. When a module is imported, a compiler first retrieves the list of modules it depends
on from the module file and loads any that have not been imported yet. When this process
is complete, symbolic names can be resolved much the same way linkers currently tackle
the issue. Such a two-stage approach allows for cycles in the module dependency graph.

The dependencies among partitions within a module must form a directed
acyclic graph.

When a partition is modified, sections of the module file on which it depends need not be
updated. Similarly, sections of partitions that do not depend on the modified partition do
not need to be updated. Initialization order among partitions is only defined up to the
partial ordering of the partitions.

If a translation unit contains a module partition definition, it must contain no
declarations outside that partition definition.

This rule reflects the fact that module partitions are the "translation units" of the module
world. The rule only helps fitting the proposed module system in existing compilers. It
could be relaxed if deemed necessary.

Nested namespaces
The concept of open namespaces nested in a module namespace presents few problems:
It is treated as other declarative entities. If such an open namespace is anonymous, it
cannot be exported.

Nonexported namespaces cannot contain exported members.
This rule could relaxed since it is in fact possible to access members of a namespace
without naming the namespace, either through argument-dependent lookup, or through an
exported namespace alias.
Nested module namespaces must be declared in their enclosing module on the grounds
that all namespace members should be declared in that namespace. However, that creates
an implicit dependence of the nested module on its enclosing module, which in turn
creates a dependency cycle if the enclosing module imports the nested module. Our way
out of this conundrum is to specify the dependency constraints in terms of module
partitions and not in terms of modules.

Modules in C++ N1736=04-0176

Startup and termination
A program can contain at most one program module. If it does contain such
a module it cannot declare ::main() and the program's execution amounts to
the initialization of the program module's module variables.

We'll cast the execution of a module main() function in terms of variable initializations.
The module function main() is executed as if it were the default constructor
of a module variable defined in a synthesized partition dependent on all
other partitions. Similarly, the module function ~main() is executed as if it
were the destructor that same module variable.

This fits the notion that main() and ~main() are essentially a syntactic convenience that
could be replaced by special-purpose singleton class types. (The notion of a synthesized
dependent module partition is just to ensure that main() runs after all the module
variables have been initialized.) Like ::main() these functions are subject to some
restrictions (see also [basic.start.main] §3.6.1):

The module functions main() and ~main() cannot be called explicitly. Their
address cannot be taken and they cannot be bound to a reference. They
cannot be exported and they cannot be declared without being defined.

A fairly natural initialization order can be achieved within modules and module
partitions.

Within a module partition the module variables are initialized in the order
currently specified for a translation unit (see [basic.start.init] §3.6.2). The
initialization of module variables in one module partition must complete
before the initializations of module variables in another partition that has a
dependency on the first partition. The module variables and local static
variables of a program are destroyed in reverse order of initialization (see
[basic.start.term] §3.6.3).

As with the current translation unit rules, it is the point of definition and not the point of
declaration that determines initialization order.
The initialization order between modules is determined as follows:

Every module import directive defines an anonymous namespace scope
variable associated with the module being imported. This variable requires
dynamic initialization. The first of such variables associated with a module to
be initialized triggers by its initialization the initialization of the associated
module; the initialization of the other variables associated with the same
module is without effect.

This essentially means that the initialization of a module must be guarded by Boolean
flags much like the dynamic initialization of local static variables. Also like those local
static variables, the Boolean flags will likely need to be protected by the compiler if
concurrency is a possibility (e.g., thread-based programming).

Modules in C++ N1736=04-0176

Linkage
Namespace scope declarations cannot be declared extern or static in
modules. The extern keyword can only be used for linkage specifications (see
[dcl.link] §7.5) in module definitions.

Module namespaces and the import/export mechanisms make the storage specifiers
"extern" and "static" mostly redundant in namespace scopes. The only case that is not
trivially covered appears to be the forward declaration of namespace scope variables.
Consider the following non-module example:

void f(int*);

extern int i; // Forward declaration.

int p = &i;

int i = f(p);

It may be desirable to allow such constructs in modules, but the keyword "extern" does
not convey the right semantics. Instead, forward declarations can be indicated using a
trailing ellipsis token:

namespace >> Lib {
 int f(int*) ...; // Ellipsis optional.
 int i ...; // Forward declaration.
 int p = &i;
 int i = f(p); // Definition.

The static keyword can still be used in class scopes and local scopes (and the semantics
are similar in both cases).

In modules, names of exported entities have external linkage if and only if
they are exported.

Note that only namespace scope declaration can be declared (or defined) with the
keyword "export". Public and protected class members are exported only as a
consequence of their outermost enclosing class being exported.
Significantly more thought needs to go into the concept of linkage specification in
modules.

Exporting incomplete types
It is somewhat common practice to declare a class type in a header file without defining
that type. The definition is then considered an implementation detail. To preserve this
ability in the module world, the following rule is stated:

An imported class type is incomplete unless its definition was exported.
For example:

Modules in C++ N1736=04-0176

// File_1.cpp:
namespace >> Lib {
 export struct S {}; // Export complete type.
 export class C; // Export incomplete type only.
 class C { ... }
}

// File_2.cpp:
namespace << Lib;
int main() {
 sizeof(lib::S); // Okay.
 sizeof(Lib::C); // Error: Incomplete type.
}

Note that this does not answer the question of whether non-exported types accessible
through exported declarations are complete. For example:

// File_1.cpp:
namespace >> X {
 struct S {};
 export S f() { return S(); }
}

// File_2.cpp:
namespace << X;
int main() {
 sizeof(X::f()); // Allowed?
}

It is believed that this should indeed be allowed (in part because the invisible type may
have applicable conversion functions).

Explicit template specializations
Explicit template specializations and partial template specializations are slightly strange
in that they may be module namespace members not packaged in their own module:

namespace >> Lib {
 export template<typename T> struct S { ... };
}

namespace >> Client {
 namespace << Lib;
 template<> struct Lib::S<int>;
}

There are however no known technical problems with this situation.

Modules in C++ N1736=04-0176

It has been suggested that modules might allow "private specialization" of templates. In
the example above this might mean that module Client will use the specialization of
Lib::S<int> it contains, while other modules might use an automatically instantiated
version of Lib::S<int> or perhaps another explicit specialization. The consequences of
such a possibility have not been considered in depth at this point. (For example, can such
a private specialization be an argument to an exported specialization?)

Automatic template instantiations
The instantiations of noninline function templates and static data members of class
templates can be handled as they are today using any of the common instantiation
strategies (greedy, queried, or iterated). Such instantiations do not go into the module file.
However instances of class templates present a difficulty. Consider the following small
multimodule example:

// File_1.cpp:
namespace >> Lib {
 export template<typename T> struct S {
 static bool flag;
 };
 ...
}

// File_2.cpp:
namespace >> Set {
 namespace << Lib;
 export void set(bool = Lib::S<void>::flag);
 // ...
}

// File_3.cpp:
namespace >> Reset {
 namespace << Lib;
 export void reset(bool = Lib::S<void>::flag);
 // ...
}

// File_4.cpp:
namespace >> App {
 namespace << Set;
 namespace << Reset;
 // ...
}

Modules in C++ N1736=04-0176

Both modules "Set" and "Reset" must instantiate Lib::S<void>, and in fact both expose
this instantiation in their module file. However, storing a copy of Lib::S<void> in both
module files can create complications of the same kind that the loose ODR rules create in
the context of open namespace export templates.
Specifically, in module App, which of those two instantiations should be imported? In
theory, the two are equivalent, but an implementation cannot ignore the possibility that
some user error caused the two to be different. Ideally, such discrepancies ought to be
diagnosed (although current implementation often do not diagnose similar problem in the
header file world).
There are several possible technical solutions to this problem. Most of them rely on
having references to instantiated types outside the template's module to be stored in
symbolic form in the client module. This could allow (for example) an implementation to
temporarily reconstruct the instantiations every time they're needed. Alternatively,
references could be rebound to a single randomly chosen instance (this is similar to the
COMDAT section approach used in many implementations of the greedy instantiation
strategy). Yet another alternative, might involve keeping a pseudo-module of
instantiations associated with every module containing exported templates (that could
resemble queried instantiation).

Syntax considerations
The notation chosen for this proposal is meant to be reminiscent of the streaming concept
and parallels preprocessor inclusion in that "a file is being read". However, it is not the
only option. An obvious alternative may be to introduce new keywords "module" and
"import". This might for example allow:

module Lib {
 import module Lib2;
 export import module Lib3; // Ugly?
}

Replacing the keyword "import" by the keyword "using" seems undesirable: The latter
keyword is currently used to indicate name aliasing, which is both sufficiently similar to
and sufficiently different from the notion of importing that confusion is likely to ensue.
Another direction wrt. syntax is the introduction of export blocks:

namespace >> Lib {
 export {
 typedef int I; // Exported.
 typedef char C; // Exported.
 }
}

There are no known technical problems with this export block syntax, but they're not
preferred by this author.

Modules in C++ N1736=04-0176

Yet another alternative, is the separation of interface and implementation is separate
sections or files. (This is the approach used in languages like Modula-2 and Object
Pascal.) For example:

namespace >> Lib {

export:

 // Exported declarations.

implementation:

 // Implementation of exported interfaces.

}

It may be tempting to reuse the "public" and "private" keywords for this, but that is likely
to cause confusion by mixing up the concepts of access and visibility. Note also that if
there is a strict limitation to two sections, it becomes impractical to include exported
interfaces that include non-exported entities.

Acknowledgments
Important refinements of the semantics of modules and improvements to the presentation
in this paper were inspired by David Abrahams, Pete Becker, Peter Dimov, Thorsten
Ottosen, Jeremy Siek, John Spicer, and Bjarne Stroustrup.

