
Doc No: SC22/WG21/ N1717 04-0157

Project: Programming Language C++

Date: Friday, November 5, 2004

Author: Francis Glassborow & Lois Goldthwaite

email: francis@robinton.demon.co.uk

explicit class and default definitions
revision of SC22/WG21/N1582 = 04-0022 and SC22/WG21/ N1702 04-0142
1 The Problems being addressed
Certain member functions of a C++ class will be automatically generated by the compiler
if the programmer fails to mention them in code. These “special member functions” are
discussed in Clause 12 of the Standard:

• Default constructor

• Copy constructor

• Copy assignment operator =

• Destructor

Clause 12p1 says that code for these implicitly declared member functions and operators
is generated only if actually used in the program but adds that programs may explicitly
refer to an implicitly-declared function, such as by taking its address or forming a pointer
to it. The generated special member functions are inline public members of their
class.

Some other functions are also usable in programs even if not declared by the
programmer:

• operator & (address-of)

• operator , (comma)

and also – since declaration of a user-defined type T also implies existence of a T* –

• operator -> (class member access)

• operator * (indirection)

• operator ->* (pointer-to-member)

There are also these built-in operators that take a class type operand but which may not
currently be overridden by the programmer:

• operator .

• operator .*

• operator ::

mailto:francis@robinton.demon.co.uk

N1717 04-0147 2 of 12

There are additional operators (arithmetic, logical, function call, subscripting, and
new/delete) that can be defined by the programmer but are neither declared nor defined
by the compiler for user-defined types. These operators are not further discussed here.

The implicitly generated code for the four principal special member functions sometimes
has the wrong semantics – the most common example is shallow copy of pointers for
allocated memory – and therefore the programmer must be careful to define what
semantics are needed. Implicit generation also gives rise to the following syntax-related
problems:

• Declaring a copy constructor suppresses compiler generation of both the copy
constructor and the default constructor whereas declaring any non-copy
constructor permits compiler generation of a copy constructor. Note that because
a template constructor is explicitly not a copy constructor, the existence of such a
template does not prevent the generation of a copy constructor.

• The declaration of a non-copy assignment has no impact on the generation of a
copy assignment. This is curiously different from the rule for constructors.

• In the absence of a declared destructor the one generated by the compiler will be
non-virtual. If a destructor needs to be virtual it must be declared and defined by
the programmer.

• Currently the recommended ways to suppress compiler generated members are
simultaneously too specialized and too extensive.

There are good reasons for allowing compiler generation of some member functions but
we need a better way to control that behavior.

2 The Proposals
1) Provide a specific mechanism to turn off implicit special member function

generation. For this we propose that we enhance the grammar (9p1) to allow a
class-specifier to be qualified as explicit.

class-specifier:

class-head explicit1 opt { member-specificationopt }

This would permit usage like this:

class foo explicit { … };
struct bar explicit { … };
union baz explicit { … };
class fee: public fum explicit { ... };

1 In the Changes to the Working Paper section, we propose an addition to the grammar grandly called
postfix-decl-specifier, whose only production at the present time is explicit. This is a far-sighted
provision to allow for possible future modifiers to be tagged on the end of declarations; hypothetical
examples include such words as pure and interface.

N1717 04-0147 3 of 12

explicit does not become part of the class type and therefore shall not be used with
forward declarations and elaborated type specifiers. The explicit-ness of a class
definition is an implementation detail.

explicit unions are allowed as a matter of grammatical consistency with the other
class-keys; declaring a union explicit is not expected to be as commonly useful as
with class and struct, if only because unions themselves are less widely used.
Although a union can have member functions, including constructors and destructors,
it cannot contain as a member any object that has a non-trivial constructor, copy
constructor, destructor, or copy assignment operator, nor can it be a base or derived
class (9.5p1). It follows logically that the implicit special member functions would
themselves be trivial – even basic default value initialization is tricky if the
subobject’s type cannot be determined. Nevertheless it might be useful to inhibit
pass-by-value or stack allocation for an object of such type, by declaring it explicit.

Furthermore, as explicit qualification absolves the compiler from any responsibility
for generating implicit functions for a union and requires the programmer to define
them if needed, it might in future allow the restrictions to be loosened on which
object types can be made members of a union. If member objects do not comply with
the current rules on union membership, it would not be possible explicitly to declare
and default-define the special member functions, however. This extension is not part
of the current proposal.

In such an explicit qualified class none of the four special member functions that
can otherwise have compiler-generated definitions will be implicitly declared. Note
that it is the intention that these members are not declared as well as not defined by
the compiler so that an attempt to use them will result in a compile time diagnostic.
This will require redrafting of clause 12 so as to exclude implicit declaration of the
special member functions for classes that are declared as explicit. See the section
“Changes to the Working Paper” below.

2) Provide a mechanism for explicit invocation of compiler generation of the definition
of a special member function. Our proposed syntax is:

declarator {default}

So that, for example, the destructor for a class mytype would be defined in class by:
 ~mytype(){default}

[Note that no semicolon is necessary, but one is allowed to follow default without
error since most programmers will add one automatically out of habit.]

 Two alternate syntaxes were also considered:
declarator default;

declarator = default;

 The preferred syntax was chosen as the clearest indication that this is a definition, not
just a declaration. On the other hand, an argument can be made in favor of “= default”
that it parallels the “= 0” syntax for declaring pure virtual functions.

N1717 04-0147 4 of 12

Such definitions shall be available exactly as if implicitly defined according to 12.1p6
(default constructor), 12.8p8 (copy constructor), 12.8p13 (copy assignment operator),
and 12.4p6 (destructor). However, placing the explicit declaration in the protected or
private section of the class would affect accessibility. An explicit declaration of a
special member function must match the signature of some form of one that would be
implicitly declared in order to qualify as a special member function that can be
default-defined if desired.

Though they would likely be provided inside the class definition (in which case they
are inline) they can also be provided in a normal implementation file, in which case
they are not inline. Note that this allows programmers to provide non-inline
default definitions of the four special member functions. This might be useful where a
programmer wanted to use instrumented versions for debugging and profiling but
wanted to use the compiler generated default in production code, or wanted to avoid
all inline code to ensure future binary compatibility.

Non-inline default definitions of the special member functions shall only be available
if the relevant special functions are explicitly declared in the class definition. This is
to avoid ODR violations caused by implicit declarations combined with non-inline
default definitions in some translation unit.

If it is not possible to generate a definition of a special member function in response
to an explicit generation statement the code is ill-formed, diagnostic required.

The generation of an explicitly declared and default-defined default constructor is not
suppressed by the declaration of other constructors. Even a class which is not
qualified as explicit may use this mechanism to generate implementations of
special member functions.

Example:
class example explicit{
 public:
 example(){default}
 example(int * i_ptr):val(*i_ptr){}
 virtual ~example(){default};
 private:
 int val;
};
// note the class is silly as such but is sufficient to
// demonstrate the combined
// use of explicit and default.

class derived: public example{
 public:
// public interface members
 private:
 std::string s;
};
int main(){
 int i(12);
 example e1; // OK, uses compiler generated default
 example e2(&i); // OK uses second constructor
 example e3(e1); // ERROR no implicit copy ctor

N1717 04-0147 5 of 12

 derived d1; // OK
 derived d2(d1); //ERROR, cannot generate copy ctor
 example* d_ptr = new derived;
 delete d_ptr; // calls ~example which first redirects

// to an implicitly generated ~derived
// which calls ~string

}

3) The issue of how a pure virtual default destructor should be provided clarifies that
explicit defaults are definitions and can be used as implementations. For example:
 class abc {
 public:
 abc();
 abc(int);
 virtual ~abc() = 0;
 private:

// details
 };
 inline abc::~abc(){default}

 The definition could be moved to a separate implementation file. If the required
function definition cannot be compiler generated at the definition point the code is ill-
formed.

Note that out-of-class default definitions are not inline unless defined with the inline
keyword.

Discussion
1. Explicit declaration of any of the member functions that would otherwise be implicitly
declared is supported even in a class that is not qualified as explicit. Two common uses
of this would be where you want the compiler to generate a virtual destructor, and where
you want the compiler to generate a default constructor in the presence of other user
declared constructors.

2. An explicit base class has some influence on derived classes but the explicit
requirement is not in itself inherited. For example if the base class does not provide
explicit copy construction and assignment then the derived class cannot generate a copy
constructor or copy assignment. However the programmer can provide complete
definitions of either of those, though the assignment case will be problematical if the base
class contains any data members. A call to some constructor for the base class can be
included in the member initializer list of the derived class, or the programmer could
simply allow the default constructor of the base class to execute before the body of the
derived class constructor is entered (which is what happens currently if a user-written
copy constructor or copy assignment for a derived class omits to call a specific base class
constructor).

That the base class subobject is default-initialized if the programmer omits to mention it
is obvious to all experienced C++ programmers. But to belabor the obviousness of it,
here is an example program demonstrating what happens, and therefore why the non-
existence of a base class copy constructor need not prevent a derived class from being
copied:

N1717 04-0147 6 of 12

#include <iostream>
using namespace std;

class example
{
 public:
 int i;
 example() : i(99) { }
 example(example const & other) : i(other.i) { }
 virtual ~example() { }
};

class derived : public example
{
 // implicit copy ctor calls base class copy ctor
};

class descendant : public example
{
 public:
 int j;
 descendant() : j(21) { }
 // explicit copy ctor calls base class default ctor
 // -- if you want to copy base class, include it in
 // mem initializer list
 descendant(descendant const & other) : j(other.j) { }
};

int main()
{
 derived d1;
 d1.i = 55;
 derived d2(d1);
 cout << d2.i << endl; // 55

 descendant d3;
 d3.i = 77;
 descendant d4(d3);
 cout << d4.i << endl; // 99 -- d3.i wasn't copied!!

 return 0;
}

[There is an apocryphal tale about the Cambridge mathematician G H Hardy, who was
giving a lecture and said something was obvious... then paused... left the hall, returned
fifteen minutes later, reassured the audience that it was indeed obvious and continued the
lecture.]

3. An example use case for a base class that could never be copy constructed, but only
default initialized, might be a base class that maintains a counter to keep track of how
many times the object executes a certain function. A concrete example might be
something following the Factory pattern, which is used to create instances of various
types. Keeping track of how many times each individual Factory has been used could
help with load balancing.

N1717 04-0147 7 of 12

In such a case, you wouldn’t want to duplicate the secret data for the original’s base class
when creating another instance from it, so logically all counters should be initialized to 0
for a new instance, no matter how it is constructed.

One advantage of explicit qualification of a class is that it allows earlier diagnosis of
some errors. For example the conventional hack to suppress copy semantics:
 class do_not_copy_me {

// private & unimplemented
 do_not_copy_me(do_not_copy_me const&);

 public:
 //
 };

results in delaying diagnosis of attempts to copy instances in class scope until link time,
whereas explicit class qualification allows immediate compile-time diagnosis at the
point of error.

4. Another advantage of this explicit qualification is that it places information about
the copy semantics of a class right out front rather than buried in the private interface.
That a class does not support copy semantics is a public quality and should not be implied
by a private declaration. explicit qualification will better document the programmer's
intent and provide better diagnostics than those currently available through such library
mechanisms as Boost's non-copyable. On the other hand it does allow the designer of the
derived class to explicitly override the non-copyable property by writing the special
member copy functions for the derived class though constrained by possibly not being
able to copy inaccessible base class members. Note that an explicit class that does not
have a declared destructor cannot reside on the stack or as a static object because it is not
destructible. However it could be constructed dynamically. The burden for clean-up then
remains with the class user (possibly through explicit destruction of sub-objects followed
by a call to operator delete).

5. Special member functions which have been explicitly declared and default-defined are
never trivial. Therefore an explicit class can never be a POD, even if its special
member functions are default-defined. (The justification for this restriction is that the
semantics of a class should not change if its inline default-defined functions are moved
out of line.)

6. A question still under discussion is whether an explicit class can be an aggregate as
defined in 8.5.1p1: “An aggregate is an array or a class (clause 9) with no user-declared
constructors (12.1), no private or protected non-static data members (clause 11), no base
classes (clause 10), and no virtual functions (10.3).” If it is deemed to comply with these
requirements, then an object could be initialized with a brace-enclosed list of values
instead of a constructor.

7. An explicitly declared and default-defined constructor can be declared an explicit
constructor:
 class foo {

 // stuff
 public:

N1717 04-0147 8 of 12

 foo(int j, int k);

 foo() { default } // would otherwise

 // be suppressed

 };

8. If a class template is qualified as explicit, then implicit special member function
declarations will be suppressed in all instantiations of that template:
 template< class T >
 class furble explicit{
 // no special member functions for any furble<T>
 };

9. A specialization of a non-explicit class template can be declared as explicit. If an
explicit class template is specialized, then that specialization will be explicit only if
it is also declared as such.

10. An object of an explicit class can be used as a member subobject of another class
or union. However, if it lacks a default constructor or copy constructor, that will affect
compiler generation of the special member functions for the containing class.

11. If move semantics are adopted, an explicit class might be made movable even if not
copyable.

12. An explicit class without a user-declared copy constructor is deemed to have no
accessible copy constructor, even if it has a standard conversion to a base class which
does have a copy constructor defined. This may require some reinterpretation of 12.8p10:
“Because a copy assignment operator is implicitly declared for a class if not declared by
the user, a base class copy assignment operator is always hidden by the copy assignment
operator of a derived class.” Standardese for a mechanism to hide the base class copy
assignment operator even in the absence of a derived class copy assignment operator
needs to be found.

base b { };
class derived : public base explicit{ };
base b;
derived d;
b = d; // OK, but slices
d = b; // error

13. The issue of exception-specifications for the special member functions of explicit
classes requires special scrutiny. Implicitly declared member functions have an exception
specification. 15.4p13 details what that exception specification must be: “If f is an
implicitly declared default constructor, copy constructor, destructor, or copy assignment
operator, its implicit exception-specification specifies the type-id T if and only if T is
allowed by the exception-specification of a function directly invoked by f’s implicit
definition; f shall allow all exceptions if any function it directly invokes allows all
exceptions, and f shall allow no exceptions if every function it directly invokes allows
no exceptions.”

N1717 04-0147 9 of 12

Furthermore 15.4p3 says, “If any declaration of a function has an exception-specification,
all declarations, including the definition and an explicit specialization, of that function
shall have an exception-specification with the same set of type-ids… If an exception-
specification is specified in an explicit instantiation directive, it shall have the same set of
type-ids as other declarations of that function. A diagnostic is required only if the sets of
type-ids are different within a single translation unit.”

Should a user declaring special member functions be required to add an exception-
specification to all declarations? This seems to impose an unreasonable burden on the
programmer. Can a default definition be stretched to generate an exception-specification
for a user-declared function automagically? This seems to impose an unreasonable
burden on the compiler. It seems more reasonable to say that a user-declared function,
even if default-defined, has the exception-specification declared by the programmer, if
any.

14. There is also an issue when overriding virtual functions with exception-specifications.
For purposes of this paper, the issue mainly affects destructors, since that is the special
member function most likely to be virtual. (The assignment operator can be made virtual
but rarely is.) An overriding function in a derived class must have an exception-
specification at least as restrictive as the overridden function in its base class (15.4p4).
When multiple inheritance is involved, this can get tricky (15.4p13). However, this does
not appear to be a problem unique to explicit classes.

15. To return briefly to the topic of operators that can be overloaded by the programmer,
this paper proposes that they not be suppressed by an explicit qualification. Although
operators ‘&’, ‘,’, and ‘->’ can be used without programmer-supplied semantics, and thus
might be considered to be implicitly declared in some sense, 13.3.1.2, 5.3.1, and 5.18
state clearly that such usage invokes the built-in operators rather than implicitly generated
member functions.

The address-of operator has such obviously useful semantics that suppressing it would
make C++ harder, not easier, to learn. Besides, many definitions of copy constructors rely
on it to check for identity assignment, so it would nearly always have to be reinstated
anyway. Operator comma is not so obviously useful in ordinary programming, but the
only putative benefit of suppressing it routinely might be to check for typos that should
have been semi-colons instead of commas. Any benefit would be insignificant compared
with the trouble of changing the world’s compilers. In the same vein, when novices are
learning how to access a class member through a pointer, they don’t need the additional
complication of defining operator ->.

Summary
This paper proposes a change to C++ grammar to allow the keyword explicit to be
included in a class-specifier. The effect of qualifying a class type definition in this way
would be to suppress the implicit declaration and definition of the four special member
functions discussed in clause 12 of the Standard. A second change in the grammar would
allow the programmer to un-suppress the implicit definitions on a selective basis. This
could also be invoked for classes that are not explicit-qualified, but where the special
member functions have been suppressed under circumstances specified in the present

N1717 04-0147 10 of 12

Standard, or even where the desire is simply to document that the compiler-generated
default definitions are suitable.

No new keywords are added to the language, since explicit and default are already
reserved words which cannot appear in the context of class and member function
definitions.

The benefits of the suggested change include:

• Code would better document the programmer’s intent.

• Because the new rules would be more straightforward, they would make C++
easier to learn and teach. Current means of suppressing or enabling member
functions are complicated and difficult to understand.

• Some coding standards forbid the use of implicit member functions, even if their
semantics are correct, and require the programmer explicitly to define all
functions. And some functions must be explicitly defined in any case because
they have been suppressed by other declarations. This raises the opportunity to
create errors in the additional code (such as by forgetting to invoke a base class
copy constructor in the derived class). Being able to invoke explicit generation of
these common functions will result in programs that are shorter and more
readable.

• Another motivation for defining all member functions out of line is to preserve
binary compatibility. This mechanism allows them to be generated out of line,
achieving the same benefit of shorter, more readable, code with fewer errors.

• Apart from the out-of-line generation of implicit functions – which might be
achievable now by taking the address of such functions – this paper does not
propose any detectable change to executable C++ programs. The grammar
changes should not break any existing code because the two keywords are already
reserved and are merely being used in new contexts.

Changes to the Working Paper
The actual changes to the WP will require four things:

1) Changed grammar in clause 9 to allow class definitions to be qualified as
explicit. [We have added a new category of postfix-decl-specifier, to
indicate a modifier that follows the normal declaration. Currently explicit
is the only member of this group, but it could later be extended to cover pure
and nothrow and …

2) Added material to chapter 12 to describe the explicit class syntax and the
default definition syntax. [We have placed all the new stuff into a separate
section, rather than tinkering with a sentence here and there.]

3) Added grammar to 8.4 to allow default as a definition of a function body.

4) Possible changes to deal with 12 above.

N1717 04-0147 11 of 12

9 paragraph 2 and A.8 (page 790 of WP):

From:

class-specifier:
class-head { member-specification opt }

To:

postfix-decl-specifier:
explicit

class-specifier:
class-head postfix-decl-specifier opt { member-specification opt }

8.4 paragraph 1 and A.7 (page 789 of WP)

From:

function-body:
compound-statement

To:

function-body:
compound-statement
{ default ;opt }

[The authors are aware that an additional constraint that default can only be used with
special member functions will be required somewhere but are uncertain as to where that
should go.]

12 paragraph 1:

From:
The implementation will implicitly declare these member functions for a class type when the program does
not explicitly declare them, except as noted in 12.1. The implementation will implicitly define them if they
are used, as specified in 12.1, 12.4 and 12.8.

To:
The implementation will implicitly declare these member functions for a class type when the program does
not explicitly declare them, except as noted in 12.1 and 12.9. The implementation will implicitly define
them if they are used, as specified in 12.1, 12.4, 12.8 and 12.9.

Add:

12.9 Explicit classes
Implicit declaration and definition of special member functions can be suppressed by qualifying the class
definition with the postfix-decl-specifier explicit. [Example:
 class E explicit {
 // has no constructor, copy constructor,

N1717 04-0147 12 of 12

 // assignment operator or destructor
 };

-- end example.]

However, these functions can be explicitly declared. Functions so declared obey the usual access rules
(clause 11). A program is ill-formed if one of these special member functions of an explicit class is used
without being declared.

An explicitly-declared special member function is never trivial.

An explicitly-declared special member function of any class (not restricted to those qualified as
explicit) may be implicitly defined by the compiler, if the body of the definition consists of
{default}. Such a definition is called a default-definition.

A default-defined special member function is implicitly defined at the point of the definition, according to
the rules in 12.1[p6], 12.4[p6], and 12.8[p8 and p13], except that such functions are not automatically
inline or public. If it is not possible to generate a default-definition of an explicitly declared special
member function at the point of definition the code is ill-formed, diagnostic required.

A default-defined special member function is inline if it is either declared as inline or the definition is
provided in the class definition. [Example:

struct A {

 A();

 A(const A&){default} // inline explicit default definition

 virtual ~A();

};

inline A::A(){default} // inline explicit default definition

A::~A() {default} // out of line explicit default definition

-- end example.]

An explicitly-declared special member function has an exception-specification according with its
declaration, even if an implicitly-declared function might have a different exception-specification.

An object of an explicit class can be used as a member subobject of another class or union. However, if
its special member functions are missing, implicit or default definition of the special member functions for
the containing class may be ill-formed.

A class derived from an explicit base class is not explicit unless it is so qualified, but if special member
functions are missing from the base class definition, implicit or default definition of the derived class’s
member functions may be ill-formed.

If a class template is qualified as explicit, then implicit special member function declarations will be
suppressed in all instantiations of that template:
 template< class T >
 class furble explicit {
 // no special member functions for any furble<T>
 };

A specialization or partial specialization of an explicit class template is not explicit unless it is so qualified.
A specialization or partial specialization of a non-explicit class template may be qualified as explicit.

[The authors are uncertain as how to phrase (in stnadardese) the requirements of point 12 of the Discussion,
above.]

	explicit class and default definitions �revision of SC22/WG21/N1582 = 04-0022 and SC22/WG21/ N1702 04-0142
	
	1 The Problems being addressed
	2 The Proposals
	Discussion
	Summary
	Changes to the Working Paper

