
Accessing the target of a tr1::function object

Douglas Gregor

Document number: N1667=04-0107
Date: July 16, 2004
Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor <dgregor at cs.indiana.edu>

1 Introduction

Class template tr1::function stores function objects of arbitrary types. While these function objects are
copied, invoked, and destroyed by the implementation as needed, their identities are completely lost to the
user: there is no way to access the stored function object or determine its type.

Both of these abilities are desirable, especially when using tr1::function to build higher-level callback
constructs such as delegates or signals/slots. In particular, these capabilities are required to implement
delegates that can ignore duplicate targets and remove targets based on their function object values. For
instance, one can imagine creating a delegate class template that operates like this (and is implemented
with a container of tr1::function objects):

enum mouse_button { mb_left, mb_middle, mb_right };

delegate<void(int x, int y, mouse_button)> on_click;

on_click += display_context_menu();

// Say we want to record clicks for playback later...
on_click += record_macro(macro_name);

// We’re done recording the macro: remove the function object
on_click -= record_macro(macro_name);

Here, the implementation of -= needs to compare function object wrappers for equality. Herb Sutter
discusses these limitations in much more detail [1] and provides additional motivation for these features.

2 Target access

I propose to introduce two member functions to class template tr1::function, type and target. The type
member function returns an std::type info object referring to the type of the target function object (or
typeid(void) if there is no target):

tr1::function<int(int, int)> f = std::plus<int>();
assert(f.type() == typeid(std::plus<int>));
tr1::function<int(int, int)> g;
assert(g.type() == typeid(void));

1



Doc. no: N1667=04-0107 2

The target member function is templated on the type of the target and returns a pointer to the actual
target function object (if the type matches) or a null pointer (if the type does not match), e.g.:

std::plus<int>* fp = f.target<std::plus<int> >(); // OK, fp points to stored object
std::minus<int>* nfp = f.target<std::minus<int> >(); // OK, NULL pointer

There are several alternatives to the member functions proposed, the most popular of which is some form
of operator== for tr1::function. I am not proposing any variant of operator== because:

• We would still require the type and target member functions (or something like them) to have full
access to the function object targets.

• operator== is unimplementable for tr1::function within the C++ language, because we do not have
a reliable way to detect if a given type T is Equality Comparable without user assistance.

• A more limited form of operator==, which can compare a tr1::function object to any potential
target, is implementable but less intuitive.1 We need more experience before we can commit to such a
strange form of operator.

• Adding operator== is not useful unless all of the standard binders also add operator==.

3 Proposed Text

Add to the end of the class definition in 3.4.3 [tr.func.wrap.func]:

// function target access
type_info type() const;
template<typename T> T* target();
template<typename T> const T* target() const;

Add a new subsection to 3.4.3 titled “function target access” [tr.func.wrap.func.target]:

type_info type() const;

Returns: If *this has a target of type T, typeid(T); otherwise, typeid(void).
Throws: will not throw.

template<typename T> T* target();
template<typename T> const T* target() const;

Requires: T must be a function object type callable with parameter types T1, T2, . . ., TN and return type
R.
Returns: If type() == typeid(T), a pointer to the stored function target; otherwise, the NULL pointer.
Throws: will not throw.

References

[1] H. Sutter. Generalizing observer. C/C++ Users Journal, 21(9), September 2003. Available online at
http://www.cuj.com/documents/s=8840/cujexp0309sutter/.

1Peter Dimov noted that this form of operator== is sufficient to implement delegates.

http://www.cuj.com/documents/s=8840/cujexp0309sutter/

	Introduction
	Target access
	Proposed Text

