Doc No: SC22/WG21/N1605
J16/04-0045

Date: 13-Feb-2004

Project: JTC1.22.32

Reply to: Daniel Gutson

danielgutson@hotmail.com

EXTENDING TEMPLATE TYPE PARAMETERSI|
Namespace and scope

1. The problem

There is no way of passing ascope —as a type definitions container- as a template
parameter. Namespaces cannot be specified as template parameters.

Templates cannot accept general ‘scopes as parameters; only classes and structures
are accepted for this purpose There is no way of specifying a general scope-type as
template parameter type, for applying the *::" operator —regardless it is a structure, class
or namespace.

This paper proposes both the ability to pass namespaces as template parameters, and
the addition of the ‘scope’ notion to the ‘type, non-type, and template’ set (temp.arg).

- Why is the problem important?

a Specifying different type-definitions sources: namespaces are usually a source
of type definitions. However, namespaces are not allowed as template
parameters.

b Differentiation between types, non-types, and scopes: a scope is qualitatively
different to a type and a non-type concept. Scopes cannot be instantiated, but
used as identifiers-definitions repository (i.e., they can be the left operand of
the ‘:’ operator). The importance of this difference involves two facts:

a. Forces the template implementation to use the scope template type
parameter as a scope, preventing instantiation or being used as a type
or non-type template parameter.

b. Acts as aself-documentation feature, providing the information to the
template client about the template parameter nature.

- How are people addressing, or working around the problem today?
Structures are commonly used as definition sources. The concept of a structure/class
iIsmisused in that case [Example
struct I nfoRepl
{

enum{ value =1 };
typedef char Type;

s

struct | nfoRep2
{

enum{ value = 2 };
t ypedef int Type;

tenpl ate <class Rep> class C

Rep:: Type t;
int f() { return Rep::val ue; }

C<I nf oRepl1l> c1; C<InfoRep2> c2;

-end example] since empty structures (in terms of allocable members) must be
defined, while namespaces are more suitable candidates for containing definitions.

- This feature fits in the following subset of categories mentioned in the proposal
template:
improve support for system programming: allows the usage of namespaces
for the purpose they are intended to be. Additionaly, allows no to be
forced to use structures for containing definitions.
improve support for library building:
i. Abstraction: by using the scope concept, allows library builders to
be abstracted whether the scope is a structure, namespace, or class.
ii. Misuse prevention: prevents a scope template parameter to be used
as an instantiable type.

2. The proposal

Add the concept of ‘scope’ to the template parameter possibilities. Use the * namespace’
keyword for declaring a scope parameter, as extension to the template type- parameter
clause.

2.1. Basic Cases

/lrewiting the previous exanple:
nanmespace | nf oRepl

{
enum{ value =1 };
t ypedef char Type;

nanespace | nf oRep2

{
enum{ value = 2 };
typedef int Type;

tenpl at e <nanespace Rep> class C

{
Rep:: Type t;
int f(){ return Rep::val ue; }
Rep r; //error: Rep is a scope

};

C<I nf oRep1> cl1; C<InfoRep2> c2;

2.2. Advanced Cases

Indistinctive usage of classes, structures and namespaces as SCOpes.

/lrewiting the previous exanpl e again:
nanmespace | nf oRepl

{

enum{ value =1 };
t ypedef char Type;

struct | nfoRep2

{
enum { value = 2 };
typedef int Type;
int i;
char c[20];
}
tenpl at e <namespace Rep> class C
{
Rep:: Type t;
int f(){ return Rep::val ue; }
Rep r; /lerror: Rep is a scope
size t g(){ return sizeof(Rep); } /lerror
H

tenpl at e <nanespace Sl1, nanespace Sl::S2, class
S1::82::T> S1::S2:: T function(S1::S2:: T t);

C<I nfoRepl> cl1; C<InfoRep2> c2;

Despite InfoRep2 is a structure, it cannot be instantiated while it is used as a
scope. Scopes can only be used as a left operand of the ‘::’ operator.

3.

I nteractions and implementability

3.1. Interactions:

a Both namespaces, classes and structures may be passed as scope template
parameters.

b Scope template parameters shall not be treated as types within the template
definition.

C) Scope template parameters will not be able to be re-opened within the
template definition; scope template parameters are treated as closedentities

[Example
tenpl at e <nanespace Rep> C
{
nanespace Rep { typedef char yy; } //error
}
-end example]

d Scopes and types shall be able to be specified as template parameters
belonging to a previous scope parameter (as shown in the ‘function’ example
above)

€ Scope template parameters can also have default scopes —classes, namespaces,
structures or another scope parameter of an outer template definition

[Example
tenpl at e <nanespace S1> struct CQuter
{
tenpl at e <nanespace S2 = S1> struct |nner
S2::Type t;
b
b
-end example]

3.2 Implementability

- Considering that a namespace is an open entity, only contained definitions
present in the current compilation unit namespace will be able to be specified.
[Worst case] The following syntactical situations are behaviorally equivalent:
Situation A: using a scope template parameter

compilation unit U1 contains:
1) a namespace N:
Namespace N contains a symbol definition S (i.e. a
structure), with definition D1.
2) atemplate definition T accepting a scope template parmeter P:
T acceses a member of P named S
3) aglobal instance ‘I’ of T instantiated with N::S.
compilation unit U2 contains.
1) anamespace N: (same name as U1)

Namespace N contains a symbol definition S, with
definition D2 (D11 D2);
2) the template definition T (same U1’ s definition).
3) an import of the U1's ‘I’ global instance;
4) afunction F that uses ‘I’
Situation B: using a type template parameter
compilation unit U1 contains:
1) asymbol definition S (i.e. a structure), with definition D1.
2) atemplate definition T accepting a type template parmeter P:
T acceses P.
3) aglobal instance ‘I’ of T instantiated with S
compilation unit U2 contains.
1) asymbol definition S, with definition D2 (D1t D2);
2) the template definition T (same U1’s definition).
3) an import of the U1's‘I” global instance;
4) afunction F that uses ‘I’

Observe that Situation B does not contain scope template parameters and may be
generated with current C++ syntax. (Situation A is same as situation B plus the grayed
texts, specific to this paper definitions).

Also observe that F uses S with definition D2, while ‘I’ was instantiated with S defined as
D1

- This paper leaves an open syntax issue regarding how to specify the global
namespace both for template parameter specification and default template

parameter value. The: : ' ' syntax is suggested (scope operator followed by
two consecutive single quotes):

tenpl ate <nanespace NS = ::''> class X

tenpl ate <namespace NS> class Y{}; Y<:''>vy;

4. Future work
This paper provides the basis for ‘template namespaces’, which needs a rigorous
analysis and the experience that may emerge from this proposal.

