
C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

1

Herb SutterHerb Sutter

ArchitectArchitect
Microsoft Visual C++Microsoft Visual C++

C++/CLI OverviewC++/CLI Overview

2
of
67

960x720 + software960x720 + software--rendered on 1.2GHz PIIIrendered on 1.2GHz PIII--M + Fx 1.1.4322M + Fx 1.1.4322

1.1. ItIt’’s easy to run existing C/C++ code on CLI: s easy to run existing C/C++ code on CLI:
100% JITted (IL) code; still native data.100% JITted (IL) code; still native data.
•• Just rebuild with /clrJust rebuild with /clr..

•• 1 day1 day to port the entire Quake 2 source base. (Nearly all of to port the entire Quake 2 source base. (Nearly all of
the effort was to translate from C to C++, and had nothing the effort was to translate from C to C++, and had nothing
to do with our compiler or the CLI platform.)to do with our compiler or the CLI platform.)

2.2. ItIt’’s not hard to extend existing code with CLI s not hard to extend existing code with CLI
types.types.
•• 2 days2 days to implement the radar extension using Fx (gradient to implement the radar extension using Fx (gradient

brushes, window transparency/opacity, Matrix.RotateAt).brushes, window transparency/opacity, Matrix.RotateAt).

3.3. It needs to be still easier, more natural, It needs to be still easier, more natural,
and and ““firstfirst--classclass”” to use C++ on the CLI.to use C++ on the CLI.

Quake II TakeawaysQuake II Takeaways

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

2

3
of
67

Some DefinitionsSome Definitions
ECMA: ECMA: European Computer ManufacturersEuropean Computer Manufacturers’’ Association.Association.

•• Accredited ISO fastAccredited ISO fast--track submitter.track submitter.

•• TC39:TC39: Programming language technical committee. (Programming language technical committee. (““SC22SC22””))

CLI:CLI: Common Language Infrastructure.Common Language Infrastructure.
•• The ECMAThe ECMA-- and ISOand ISO--standardized part of the CLR standardized part of the CLR

(Common Language Runtime, virtual machine with garbage (Common Language Runtime, virtual machine with garbage
collection), Base Class Library (BCL), and Frameworks (Fx).collection), Base Class Library (BCL), and Frameworks (Fx).

–– ECMA TC39/TG3:ECMA TC39/TG3: TG maintaining the CLI standard.TG maintaining the CLI standard.

IL:IL: Intermediate language.Intermediate language.
•• The instruction set of the virtual machine. IL has OO concepts The instruction set of the virtual machine. IL has OO concepts

baked in: Base classes, virtual function dispatch, casting, etc.baked in: Base classes, virtual function dispatch, casting, etc.

JIT:JIT: JustJust--inin--time compilation to native machine code.time compilation to native machine code.

Verifiability:Verifiability: Code that can be proven Code that can be proven ““correct.correct.””
•• Examples: No type errors, no array overruns.Examples: No type errors, no array overruns.

4
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

3

5
of
67

RationaleRationale
C++: FirstC++: First--class CLI development language.class CLI development language.

•• Remove Remove ““Why CanWhy Can’’t It I”” usability and migration barriers: usability and migration barriers:
Port and extend existing programs even more seamlessly.Port and extend existing programs even more seamlessly.

•• Key Qs:Key Qs: ““Why should a CLI developer use C++?Why should a CLI developer use C++?””
““Is C++ relevant in VM environments with GC?Is C++ relevant in VM environments with GC?””

•• Deliver promise of Deliver promise of CCLILI..

““Managed C++Managed C++”” insufficient: Grafting vs. integration.insufficient: Grafting vs. integration.
•• Great for basic interop, migrating existing code to CLI.Great for basic interop, migrating existing code to CLI.
•• Poor exposure of CLI features (e.g., __property). Poor Poor exposure of CLI features (e.g., __property). Poor

integration of C++ and CLI features (e.g., no templates of CLI integration of C++ and CLI features (e.g., no templates of CLI
types). Hard to write pure (verifiable, secure) CLI apps.types). Hard to write pure (verifiable, secure) CLI apps.

•• Ugly and nonintuitive syntax, uneven and contorted Ugly and nonintuitive syntax, uneven and contorted
semantics. Failed to achieve a natural, organic, semantics. Failed to achieve a natural, organic,
““everything in its placeeverything in its place”” surfacing of features.surfacing of features.

•• Low adoption. And those who do adopt still need to handLow adoption. And those who do adopt still need to hand--
wire way too much.wire way too much.

6
of
67

Feature coverage:Feature coverage:
•• Provide organic support for CLI features/idioms.Provide organic support for CLI features/idioms.

•• Make sure they have a firstMake sure they have a first--class feel.class feel.

–– Example: Verifiability at first try in this complete program:Example: Verifiability at first try in this complete program:

int main() { System::Console::WriteLine("Hello, world!"); }int main() { System::Console::WriteLine("Hello, world!"); }

•• Leave no room for a language lower than C++ (incl. IL).Leave no room for a language lower than C++ (incl. IL).

C++ C++ ×× CLI: Why a CLI programmer should use C++.CLI: Why a CLI programmer should use C++.
•• "Bring C++ to CLI":"Bring C++ to CLI": Support C++Support C++’’s powerful features also s powerful features also

for CLI types (e.g., deterministic cleanup, templates).for CLI types (e.g., deterministic cleanup, templates).

•• "Bring CLI to C++":"Bring CLI to C++": Support the CLISupport the CLI’’s powerful features s powerful features
also for native types (e.g., verifiability, garbage collection).also for native types (e.g., verifiability, garbage collection).

Major GoalsMajor Goals

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

4

7
of
67

Major ConstraintsMajor Constraints
A binding: Not a commentary or an evolution.A binding: Not a commentary or an evolution.

•• No room for No room for ““while wewhile we’’re at itre at it…”…” thinking.thinking.

Conformance: Prefer pure conforming extensions.Conformance: Prefer pure conforming extensions.
•• Nearly always possible, if you bend over backward far Nearly always possible, if you bend over backward far

enough. Sometimes thereenough. Sometimes there’’s pain, though.s pain, though.

–– Attempt #1: __ugly_keywords. Users screamed and fled.Attempt #1: __ugly_keywords. Users screamed and fled.

–– Now: Keywords that are not reserved words, via various Now: Keywords that are not reserved words, via various
flavors of contextual keywords.flavors of contextual keywords.

Usability:Usability:
•• More elegant syntax, organic extensions to ISO C++.More elegant syntax, organic extensions to ISO C++.

•• Principle of least surprise. Keep skill/knowledge transferable.Principle of least surprise. Keep skill/knowledge transferable.

•• Enable quality diagnostics when programmers err.Enable quality diagnostics when programmers err.

8
of
67

Corollary: Basic Hard Call #1Corollary: Basic Hard Call #1
““Pure extensionPure extension”” vs. vs. ““firstfirst--class feelclass feel””??

•• Reserved keywords give a better programmer experience and Reserved keywords give a better programmer experience and
firstfirst--class feel. But theyclass feel. But they’’re not pure extensions any more.re not pure extensions any more.

Our evaluation: Both purity and naturalness are Our evaluation: Both purity and naturalness are
essential.essential.
•• So we have to work harder at design and implementation.So we have to work harder at design and implementation.

•• Good news for conformance: Currently down to only three Good news for conformance: Currently down to only three
reserved words (generic, gcnew, nullptr).reserved words (generic, gcnew, nullptr).

•• Good news for the user: There are other keywords Good news for the user: There are other keywords –– theythey’’re re
just not reserved words. This retains a firstjust not reserved words. This retains a first--class experience.class experience.

•• Hard work for language designers and compiler writers: Hard work for language designers and compiler writers:
Extra effort via extra parsing work and a lex hack.Extra effort via extra parsing work and a lex hack.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

5

9
of
67

Corollary: Basic Hard Call #2Corollary: Basic Hard Call #2
““DonDon’’t commentt comment”” vs. vs. ““orthogonalityorthogonality””??

•• Orthogonal features are good: They make learning easier and Orthogonal features are good: They make learning easier and
make programmers more productive.make programmers more productive.

•• They can look like commentary even though theyThey can look like commentary even though they’’re not.re not.

Our evaluation: Orthogonality is essential.Our evaluation: Orthogonality is essential.
•• Inconsistency, unevenness, and special cases were a Inconsistency, unevenness, and special cases were a hugehuge source source

of complaints about of complaints about ““Managed C++Managed C++””::
–– T* meant 3 different & incompatible things, depending on T.T* meant 3 different & incompatible things, depending on T.
–– Gc and properties for CLI types, but not native ones.Gc and properties for CLI types, but not native ones.
–– Auto destruction and templates for native types, not CLI ones.Auto destruction and templates for native types, not CLI ones.

•• Insist on supporting features uniformly: Insist on supporting features uniformly: ““This is how you do itThis is how you do it””
for any type T.for any type T.
–– The easy sell: The easy sell: ““Great, C++ is showing Great, C++ is showing ‘‘em how to do it right!em how to do it right!””
–– The corollary: The corollary: ““Hey, theyHey, they’’re invading our C++!re invading our C++!””
–– Warn by default when extensions are used on native types.Warn by default when extensions are used on native types.

10
of
67

Why a LanguageWhy a Language--Level BindingLevel Binding
Reference types:Reference types:

•• Objects can physically exist only on the gc heap.Objects can physically exist only on the gc heap.

•• Deep virtual calls in constructors.Deep virtual calls in constructors.

Value types:Value types:
•• Cheap to copy, value semantics.Cheap to copy, value semantics.

•• Objects physically on stack, gc heap, & some on native heap.Objects physically on stack, gc heap, & some on native heap.

–– Gc heap: Gc heap: ““Boxed,Boxed,”” fullfull--fledged polymorphic objects (e.g., fledged polymorphic objects (e.g.,
Int32 derives from System::Object, implements interfaces).Int32 derives from System::Object, implements interfaces).

–– Otherwise: Laid out physically in place (not polymorphic).Otherwise: Laid out physically in place (not polymorphic).

Interfaces:Interfaces:
•• Abstract. Only pure virtual functions, no implementations.Abstract. Only pure virtual functions, no implementations.

•• A lot like normal C++ abstract virtual base classes.A lot like normal C++ abstract virtual base classes.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

6

11
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

12
of
67

adjective class C;

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

7

13
of
67

Type are declared Type are declared ““adjectiveadjective classclass””::
classclass NN{ /*{ /*……*/ };*/ }; // native// native

ref classref class RR { /*{ /*……*/ };*/ }; // CLI reference type// CLI reference type
value classvalue class VV { /*{ /*……*/ };*/ }; // CLI value type// CLI value type

interface classinterface class II { /*{ /*……*/ };*/ }; // CLI interface type// CLI interface type
enum classenum class EE { /*{ /*……*/ };*/ }; // CLI enumeration type// CLI enumeration type

•• C++ & CLI fundamental types are mapped to each other C++ & CLI fundamental types are mapped to each other
(e.g., int and System::Int32 are the same type).(e.g., int and System::Int32 are the same type).

Any type can:Any type can:
•• Have a destructor Have a destructor ~T()~T(), and/or finalizer , and/or finalizer !T()!T()..
•• Have a copy constructor, and/or copy assignment operator:Have a copy constructor, and/or copy assignment operator:

–– Value classes always have them. Native classes have them Value classes always have them. Native classes have them
by default. Ref classes do not have them by default.by default. Ref classes do not have them by default.

•• Be templated, or be used to instantiate a template.Be templated, or be used to instantiate a template.
•• (More on each of these later on.)(More on each of these later on.)

Basic Class Declaration SyntaxBasic Class Declaration Syntax

14
of
67

Class Declaration ExtensionsClass Declaration Extensions
Abstract and sealed:Abstract and sealed:

ref class A ref class A abstractabstract { };{ }; // abstract even w/o pure virtuals// abstract even w/o pure virtuals
ref class B ref class B sealedsealed : A { };: A { }; // no further derivation is allowed// no further derivation is allowed
ref class C : B { };ref class C : B { }; // error, B is sealed// error, B is sealed

Things that are required anyway are implicit:Things that are required anyway are implicit:
•• Inheritance from ref classes and interfaces is implicitly Inheritance from ref classes and interfaces is implicitly

public. (Anything else would be an error, so why make the public. (Anything else would be an error, so why make the
programmer write out something that is redundant?)programmer write out something that is redundant?)
ref class B sealed : A { };ref class B sealed : A { }; // A is a public base class// A is a public base class
ref class B sealed : public A { };ref class B sealed : public A { }; // legal, but redundant// legal, but redundant

•• Interfaces are implicitly abstract, and an interfaceInterfaces are implicitly abstract, and an interface’’s members s members
are implicitly virtual. (Ditto the above.)are implicitly virtual. (Ditto the above.)
interface class I { int f(); };interface class I { int f(); }; // f is pure virtual// f is pure virtual

CLI enumerations:CLI enumerations:
•• Scoped. Can specify underlying type. No implicit conversion to iScoped. Can specify underlying type. No implicit conversion to int.nt.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

8

15
of
67

PropertiesProperties
Basic syntax:Basic syntax:

ref class R {ref class R {
int mySize;int mySize;

public:public:
property int Size {property int Size {
int int getget()() { return mySize; }{ return mySize; }
void void setset(int val)(int val) { mySize = val; }{ mySize = val; }

}}
};};

R r;R r;
r.Size = 42;r.Size = 42; // use like a field; calls r.Size::set(42)// use like a field; calls r.Size::set(42)

Trivial properties:Trivial properties:
ref class R {ref class R {
public:public:
property int Size;property int Size; // compiler// compiler--generatedgenerated

};}; // get, set, and backing store// get, set, and backing store

16
of
67

Indexed PropertiesIndexed Properties
Indexed syntax:Indexed syntax:

ref class R { // ref class R { // ……
map<String^,int>* m;map<String^,int>* m;

public:public:
property int Lookup[String^ s] property int Lookup[String^ s] {{
int get()int get() { return (*m)[s]; }{ return (*m)[s]; }

protected:protected:
void set(int);void set(int); // defined out of line below// defined out of line below

}}
property String^ default[int i]property String^ default[int i] { /*{ /*……*/ }*/ }

};};
void R::Lookup[String^ s]::set(int v)void R::Lookup[String^ s]::set(int v) { (*m)[s] = v; }{ (*m)[s] = v; }

Call point:Call point:
R r;R r;
r.Lookup["Adams"]r.Lookup["Adams"] = 42;= 42; // r.Lookup[// r.Lookup[““AdamsAdams””].set(42)].set(42)
String^ s = String^ s = r[42]r[42];; // r.default[42].get()// r.default[42].get()

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

9

17
of
67

Contemplated Orcas ExtensionsContemplated Orcas Extensions
Overloaded and templated setters:Overloaded and templated setters:

ref class R {ref class R {
public:public:
property Foo Bar {property Foo Bar {
Foo get();Foo get();

void set(Foo);void set(Foo);

void set(int);void set(int); // overloaded function// overloaded function

template<class T>template<class T> // overloaded function template// overloaded function template
void set(T);void set(T);

}}
};};

18
of
67

Delegates and EventsDelegates and Events

A trivial event:A trivial event:
delegate void D(int);delegate void D(int);

ref class R {ref class R {
public:public:
event D^ e;event D^ e; // trivial event; compiler// trivial event; compiler--generated membersgenerated members

void f() {void f() { e(42);e(42); }} // invoke it// invoke it
};};

R r;R r;
r.e += gcnew D(this, &SomeMethod);r.e += gcnew D(this, &SomeMethod);
r.e += gcnew D(SomeFreeFunction);r.e += gcnew D(SomeFreeFunction);
r.f();r.f();

Or you can write add/remove/raise yourself.Or you can write add/remove/raise yourself.
•• Contemplated for Orcas: Overloaded/templated raise.Contemplated for Orcas: Overloaded/templated raise.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

10

19
of
67

Virtual Functions and OverridingVirtual Functions and Overriding
Explicit, multiple, and renamed overriding:Explicit, multiple, and renamed overriding:

interface class I1 { int f();interface class I1 { int f(); int h();int h(); };};
interface class I2 { int f();interface class I2 { int f(); int i();int i(); };};
interface class I3 { interface class I3 { int i();int i(); int j(); };int j(); };

ref struct R : I1, I2, I3 {ref struct R : I1, I2, I3 {
virtual int e() virtual int e() overrideoverride;; // error, there is no virtual e()// error, there is no virtual e()
virtual int f() virtual int f() newnew;; // new slot, doesn// new slot, doesn’’t override any ft override any f
virtual int f() virtual int f() sealedsealed;; // overrides & seals I1::f and I2::f// overrides & seals I1::f and I2::f
virtual int g() virtual int g() abstractabstract;; // same as // same as ““= 0= 0”” (for symmetry(for symmetry

with class declarations)with class declarations)

virtual int x() virtual int x() = I1::h= I1::h;; // overrides I1::h// overrides I1::h
virtual int y() virtual int y() = I2::i= I2::i;; // overrides I2::i// overrides I2::i
virtual int z() virtual int z() = j, I3::i= j, I3::i;; // overrides I3::i and I3::j// overrides I3::i and I3::j

};};

•• See also:See also:
Stroustrup & OStroustrup & O’’RiordanRiordan’’s 1990/1 paper with similar syntax.s 1990/1 paper with similar syntax.
GutsonGutson’’s paper N1494 in the current mailing.s paper N1494 in the current mailing.

20
of
67

Three differences:Three differences:
•• Scoped.Scoped.

•• No implicit conversion to underlying type.No implicit conversion to underlying type.

•• Can specify underlying type (defaults to int).Can specify underlying type (defaults to int).

enum classenum class E1 { Red, Green, Blue };E1 { Red, Green, Blue };

enum classenum class E2 E2 : long: long { Red, Skelton };{ Red, Skelton };

E1 e1 = E1 e1 = E1::E1::Red;Red; // ok// ok

E2 e2 = E2 e2 = E2::E2::Red;Red; // ok// ok

e1 = e2;e1 = e2; // error// error

int i1 = (int)Red;int i1 = (int)Red; // error// error
int i2 = E1::Red;int i2 = E1::Red; // error, no implicit conversion// error, no implicit conversion
int i3 = int i3 = (int)E1::(int)E1::Red;Red; // ok// ok

•• See also MillerSee also Miller’’s paper N1513 in the current mailing.s paper N1513 in the current mailing.

CLI EnumsCLI Enums

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

11

21
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

22
of
67

% is to ^
as

& is to *

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

12

23
of
67

Semantically, a C++ program can create object of Semantically, a C++ program can create object of
any type any type TT in any storage location:in any storage location:
•• On the native heap (lvalue):On the native heap (lvalue): T* t1 = new T;T* t1 = new T;

–– As usual, pointers (As usual, pointers (**) are stable, even during GC.) are stable, even during GC.

–– As usual, failure to explicitly call As usual, failure to explicitly call deletedelete will leak.will leak.

•• On the gc heap (gcOn the gc heap (gc--lvalue):lvalue): T^ t2 = gcnew T;T^ t2 = gcnew T;

–– Handles (Handles (^̂) are object references (to whole objects).) are object references (to whole objects).

–– Calling Calling deletedelete is optional: "Destroy now, or finalize later."is optional: "Destroy now, or finalize later."

•• On the stack (lvalue), or as a class member:On the stack (lvalue), or as a class member: T t3;T t3;

–– Q: Why would you? A: Next section: Deterministic Q: Why would you? A: Next section: Deterministic
destruction/dispose is automatic and implicit, hooked to destruction/dispose is automatic and implicit, hooked to
stack unwinding or to the enclosing objectstack unwinding or to the enclosing object’’s lifetime.s lifetime.

Physically, an object may exist elsewherePhysically, an object may exist elsewhere..

Unified Storage/Pointer ModelUnified Storage/Pointer Model

24
of
67

PointersPointers
Native pointers (Native pointers (**) and handles () and handles (^̂):):

•• ^̂ is like is like **. Differences: . Differences: ^̂ points to a whole object on the gc points to a whole object on the gc
heap (gcheap (gc--lvalue), canlvalue), can’’t be ordered, and cant be ordered, and can’’t be cast to/from t be cast to/from
void* or an integral type. (There is no void^.)void* or an integral type. (There is no void^.)

WidgetWidget** s1 = new Widget;s1 = new Widget; // point to native heap// point to native heap
WidgetWidget^̂ s2 = gcnew Widget;s2 = gcnew Widget; // point to gc heap// point to gc heap

s1s1-->>Length();Length(); // use // use -->> for member accessfor member access
s2s2-->>Length();Length();

((**s1).Length();s1).Length(); // use // use ** to dereferenceto dereference
((**s2).Length();s2).Length();

Use RAII Use RAII pin_ptrpin_ptr to get a to get a ** into the gc heap:into the gc heap:
R^ r = gcnew R;R^ r = gcnew R;
int* p1 = &rint* p1 = &r-->v; >v; // error, v is a gc// error, v is a gc--lvaluelvalue
pin_ptr<int> p2 = &rpin_ptr<int> p2 = &r-->v;>v; // ok// ok
CallSomeAPI(CallSomeAPI(p2p2);); // safe call, CallSomeAPI(int*)// safe call, CallSomeAPI(int*)

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

13

25
of
67

References and Unary &/%References and Unary &/%

Native (Native (&&) and tracking () and tracking (%%) references:) references:
•• %% is like is like &&. Differences: . Differences: %% can refer into any memory area can refer into any memory area

incl. the gc heap (binds to any lvalue or gcincl. the gc heap (binds to any lvalue or gc--lvalue). For now, lvalue). For now,
a a %% can only exist on the stack.can only exist on the stack.

StringString&& s3 = *s1;s3 = *s1; // bind// bind
StringString%% s4 = *s2;s4 = *s2; // bind & track// bind & track

s3s3..Length();Length(); // reference syntax with .// reference syntax with .
s4s4..Length();Length();

void swap(void swap(Object^%Object^% o1, o1, Object^%Object^% o2)o2) // C# // C# ““refref””
{ Object^ tmp = o1; o1 = o2; o2 = tmp; }{ Object^ tmp = o1; o1 = o2; o2 = tmp; }

Unary Unary && and and %% for for ““address ofaddress of””::
•• &myobj&myobj MyType* MyType*

(or interior_ptr<MyType>, for a gc(or interior_ptr<MyType>, for a gc--lvalue).lvalue).

•• %myobj%myobj MyType^.MyType^.

26
of
67

Native on the GC HeapNative on the GC Heap
Create a proxy for native object on gc heap.Create a proxy for native object on gc heap.

•• The proxyThe proxy’’s finalizer will call the destructor if needed.s finalizer will call the destructor if needed.

N^ hn = gcnew N;N^ hn = gcnew N; // native object on gc heap// native object on gc heap

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

N^ hn;
Variable

N N_proxy

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

14

27
of
67

Ref Class on Native HeapRef Class on Native Heap
Already implemented as gcroot template.Already implemented as gcroot template.

•• No finalizer will ever run. Example:No finalizer will ever run. Example:

R* pr = new R;R* pr = new R; // ref object on native heap// ref object on native heap

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

R* pr;
Variable

R
R_proxy

28
of
67

Ref Class on the StackRef Class on the Stack
The type of The type of ““%R%R”” is R^.is R^.

R r;R r; // ref object on stack// ref object on stack
f(%r);f(%r); // call f(Object^)// call f(Object^)

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

R r;
Variable

R

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

15

29
of
67

Boxing is implicit and strongly typed:Boxing is implicit and strongly typed:
int^ i = 42;int^ i = 42; // strongly typed boxed value// strongly typed boxed value
Object^ o = i;Object^ o = i; // usual derived// usual derived--toto--base conversions okbase conversions ok

Console::WriteLine("Two numbers: {0} {1}", Console::WriteLine("Two numbers: {0} {1}", i, 101i, 101););

•• i is emitted with type Object + attribute marking it as int.i is emitted with type Object + attribute marking it as int.
WriteLine chooses the Object overload as expected.WriteLine chooses the Object overload as expected.

•• Boxing invokes the copy constructor.Boxing invokes the copy constructor.

Unboxing is explicit:Unboxing is explicit:
•• Dereferencing a V^ indicates the value inside the box, and Dereferencing a V^ indicates the value inside the box, and

this syntax is also used for unboxing:this syntax is also used for unboxing:

int k = int k = *i*i;; // unboxing to take a copy// unboxing to take a copy

int% i2 = int% i2 = *i*i;; // refer into the box (no copy)// refer into the box (no copy)

swap(swap(*i*i, k);, k); // swap contents of box with stack variable// swap contents of box with stack variable
// (no copy, modifies the contents of box)// (no copy, modifies the contents of box)

Boxing (Value Types)Boxing (Value Types)

30
of
67

To demonstrate the unification, consider agnostic To demonstrate the unification, consider agnostic
templates.templates.

Example 1: Usual swap, with % instead of &.Example 1: Usual swap, with % instead of &.
template<class T>template<class T>
void swap(void swap(T%T% t1, t1, T%T% t2)t2)
{ T tmp(t1); t1 = t2; t2 = tmp; }{ T tmp(t1); t1 = t2; t2 = tmp; }

•• Works for any copyable T:Works for any copyable T:

Object ^o1, ^o2;Object ^o1, ^o2; swap(o1, o2);swap(o1, o2); // swap handles// swap handles
int ^i1, ^i2;int ^i1, ^i2; swap(i1, i2);swap(i1, i2); // swap handles// swap handles

swap(*i1, *i2);swap(*i1, *i2); // swap values// swap values
MessageQueue *q1, *q2;MessageQueue *q1, *q2; swap(q1, q2);swap(q1, q2); // swap pointers// swap pointers

swap(*q1, *q2);swap(*q1, *q2); // swap values// swap values
ref class R { } r1, r2;ref class R { } r1, r2; swap(r1, r2);swap(r1, r2); // swap values*// swap values*
value class V { } v1, v2;value class V { } v1, v2; swap(v1, v2);swap(v1, v2); // swap values// swap values
class Native { } n1, n2;class Native { } n1, n2; swap(n1, n2);swap(n1, n2); // swap values*// swap values*

* assuming copy construction/assignment are defined* assuming copy construction/assignment are defined

Aside: Agnostic templatesAside: Agnostic templates

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

16

31
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

32
of
67

T:: ~T()
and

T:: !T()

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

17

33
of
67

Cleanup in C++: Less Code, More ControlCleanup in C++: Less Code, More Control

The CLI state of the art is great for memory.The CLI state of the art is great for memory.
ItIt’’s not great for other resource types:s not great for other resource types:

•• Finalizers usually run too late (e.g., files, database Finalizers usually run too late (e.g., files, database
connections, locks). Having lots of finalizers doesnconnections, locks). Having lots of finalizers doesn’’t scale.t scale.

•• The Dispose pattern (tryThe Dispose pattern (try--finally, or C# finally, or C# ““usingusing””) tries to) tries to
address this, but is fragile, erroraddress this, but is fragile, error--prone, and requires the prone, and requires the
user to write more code.user to write more code.

Instead of writing tryInstead of writing try--finally or using blocks:finally or using blocks:
•• Users can leverage a destructor. The C++ compiler Users can leverage a destructor. The C++ compiler

generates all the Dispose code automatically, including generates all the Dispose code automatically, including
chaining calls to Dispose. (There is no Dispose pattern.)chaining calls to Dispose. (There is no Dispose pattern.)

•• Types authored in C++ are naturally usable in other Types authored in C++ are naturally usable in other
languages, and vice versa.languages, and vice versa.

•• C++: Correctness by default, potential speedup by choice. C++: Correctness by default, potential speedup by choice.
(Other: Potential speedup by default, correctness by choice.)(Other: Potential speedup by default, correctness by choice.)

34
of
67

Every type can have a destructor, Every type can have a destructor, ~T()~T()::
•• NonNon--trivial destructor == IDispose. Implicitly run when:trivial destructor == IDispose. Implicitly run when:

–– A stack based object goes out of scope.A stack based object goes out of scope.
–– A class memberA class member’’s enclosing object is destroyed.s enclosing object is destroyed.
–– A A deletedelete is performed on a pointer or handle. Example:is performed on a pointer or handle. Example:

Object^ o = f();Object^ o = f();
delete o;delete o; // run destructor now, collect memory later// run destructor now, collect memory later

Every type can have a finalizer, Every type can have a finalizer, !T()!T()::
•• The finalizer is executed at the usual times and subject to The finalizer is executed at the usual times and subject to

the usual guarantees, if the destructor has the usual guarantees, if the destructor has notnot already run.already run.
•• Programs should (and do by default) use deterministic Programs should (and do by default) use deterministic

cleanup. This promotes a style that reduces finalization cleanup. This promotes a style that reduces finalization
pressure.pressure.

•• ““Finalizers as a debugging techniqueFinalizers as a debugging technique””: Placing assertions or : Placing assertions or
log messages in finalizers to detect objects not destroyed.log messages in finalizers to detect objects not destroyed.

Uniform Destruction/FinalizationUniform Destruction/Finalization

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

18

35
of
67

Deterministic Cleanup in C++Deterministic Cleanup in C++
C++ example:C++ example:

void Transfer() {void Transfer() {
MessageQueueMessageQueue sourcesource("server("server\\\\sourceQueue");sourceQueue");
String^ qname = (String^)source.Receive().Body;String^ qname = (String^)source.Receive().Body;
MessageQueueMessageQueue dest1dest1("server("server\\\\" + qname)," + qname),

dest2dest2("backup("backup\\\\" + qname);" + qname);
Message^ message = source.Receive();Message^ message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
•• On exit (return or exception) from Transfer, destructible/ On exit (return or exception) from Transfer, destructible/

disposable objects have Dispose implicitly called in disposable objects have Dispose implicitly called in
reverse order of construction. Here: dest2, dest1, and reverse order of construction. Here: dest2, dest1, and
source.source.

•• No finalization.No finalization.

36
of
67

Deterministic Cleanup in C#Deterministic Cleanup in C#
Minimal C# equivalent:Minimal C# equivalent:

void Transfer() {void Transfer() {
using(using(MessageQueueMessageQueue source source

= new MessageQueue= new MessageQueue("server("server\\\\sourceQueue") sourceQueue")) {) {
String qname = (String)source.Receive().Body;String qname = (String)source.Receive().Body;
using(using(MessageQueue MessageQueue

dest1 dest1 = new MessageQueue= new MessageQueue("server("server\\\\" + qname)," + qname),
dest2 dest2 = new MessageQueue= new MessageQueue("backup("backup\\\\" + qname) " + qname)) {) {

Message message = source.Receive();Message message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
}}

}}

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

19

37
of
67

Deterministic Cleanup in VB/JavaDeterministic Cleanup in VB/Java
Alternative equivalent (in C# syntax):Alternative equivalent (in C# syntax):

void Transfer() {void Transfer() {
MessageQueue source = null, dest1 = null, dest2 = null;MessageQueue source = null, dest1 = null, dest2 = null;
try {try {
source source = new = new MessageQueue("serverMessageQueue("server\\\\sourceQueue");sourceQueue");
String qname = (String)source.Receive().Body;String qname = (String)source.Receive().Body;
dest1 dest1 = new = new MessageQueue("serverMessageQueue("server\\\\" + qname);" + qname);
dest2 dest2 = new = new MessageQueue("backupMessageQueue("backup\\\\" + qname);" + qname);
Message message = source.Receive();Message message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
finally {finally {
if(dest2 != null) { dest2.Dispose(); }if(dest2 != null) { dest2.Dispose(); }
if(dest1 != null) { dest1.Dispose(); }if(dest1 != null) { dest1.Dispose(); }
if(source != null) { source.Dispose(); }if(source != null) { source.Dispose(); }

}}
}}

38
of
67

Deterministic Cleanup in C++ (2)Deterministic Cleanup in C++ (2)

C++ example with polymorphism:C++ example with polymorphism:
void Transfer() {void Transfer() {
auto_ptr<Object> source =auto_ptr<Object> source =
new new MessageQueue("serverMessageQueue("server\\\\sourceQueue");sourceQueue");

// // ……
}}

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

20

39
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

40
of
67

generic<typename T>

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

21

41
of
67

Generics Generics ×× TemplatesTemplates

Both are supported, and can be used together.Both are supported, and can be used together.
Generics:Generics:

•• RunRun--time, crosstime, cross--language, and crosslanguage, and cross--assembly.assembly.
•• Constraint based, less flexible than templates.Constraint based, less flexible than templates.
•• Will eventually support many template features.Will eventually support many template features.

Templates:Templates:
•• CompileCompile--time, C++, and generally intratime, C++, and generally intra--assembly assembly

(a template and its specializations in one assembly (a template and its specializations in one assembly
will also be available to friend assemblies).will also be available to friend assemblies).

•• IntraIntra--assembly is not a high burden because you can assembly is not a high burden because you can
expose templates through generic interfaces (e.g., expose expose templates through generic interfaces (e.g., expose
a_container<T> via IList<T>).a_container<T> via IList<T>).

•• Supports specialization, unique power programming idioms Supports specialization, unique power programming idioms
(e.g., template metaprogramming, policy(e.g., template metaprogramming, policy--based design, based design,
STLSTL--style generic programming).style generic programming).

42
of
67

GenericsGenerics

Generics are declared much like templates:Generics are declared much like templates:
generic<typename T>generic<typename T>
where T : IDisposable, IFoowhere T : IDisposable, IFoo
ref class GR { // ref class GR { // ……
void f() {void f() {
T t;T t;
t.Foo();t.Foo();

} // call t.~T() implicitly} // call t.~T() implicitly
};};

•• Constraints are inheritanceConstraints are inheritance--based.based.

Using generics and templates together works.Using generics and templates together works.
•• Example: Generics can match template template params.Example: Generics can match template template params.

template< template< template<class> class Vtemplate<class> class V >> // a TTP// a TTP
void f() { V<int> v; /*...use v...*/ }void f() { V<int> v; /*...use v...*/ }

f<GR>();f<GR>(); // ok, matches TTP// ok, matches TTP

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

22

43
of
67

STL on the CLISTL on the CLI

C++ enables STL on CLI:C++ enables STL on CLI:
•• Verifiable.Verifiable.

•• Separation of collections and algorithms.Separation of collections and algorithms.

Interoperates with Frameworks library.Interoperates with Frameworks library.

C++ C++ ““for_eachfor_each”” and C# and C# ““for eachfor each”” both work:both work:
stdcli::vectorstdcli::vector<String^> v;<String^> v;

for_eachfor_each(v.begin(), v.end(), functor);(v.begin(), v.end(), functor);
for_eachfor_each(v.begin(), v.end(), (v.begin(), v.end(), _1 += _1 += ““suffixsuffix””);); // C++// C++
for_eachfor_each(v.begin(), v.end(), (v.begin(), v.end(), cout << _1cout << _1);); // lambdas// lambdas

g(%v);g(%v); // call g(IList<String^>^)// call g(IList<String^>^)

for eachfor each (String^ s in v) Console::WriteLine(s);(String^ s in v) Console::WriteLine(s);

44
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

23

45
of
67

ref class R : Native { };
class Native : R { };

46
of
67

CLI Types in the Native WorldCLI Types in the Native World

Basic interop example:Basic interop example:
class Data {class Data {
XmlDocument* xmlDoc;XmlDocument* xmlDoc;

public:public:
void Load(void Load(std::string fileNamestd::string fileName) {) {
XmlTextReader^ reader = gcnew XmlTextReader(XmlTextReader^ reader = gcnew XmlTextReader(

marshal_as<String^>(fileName)marshal_as<String^>(fileName)););
xmlDoc = xmlDoc = new XmlDocument(reader);new XmlDocument(reader);

}}
};};

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

24

47
of
67

CLI Types in the Native World (2)CLI Types in the Native World (2)

Template<Ref> example:Template<Ref> example:
template<class T>template<class T>
void AFunctionTemplate(T) { /*void AFunctionTemplate(T) { /*……*/ };*/ };

ref class Ref { /*ref class Ref { /*……*/ };*/ };

Ref ref;Ref ref;
AFunctionTemplate(ref);AFunctionTemplate(ref); // ok// ok

Of course, any type can be templated:Of course, any type can be templated:
template<class T>template<class T>
ref class ref class ARefTemplate { /*ARefTemplate { /*……*/ };*/ }; // ok// ok

48
of
67

Native Types in the CLI WorldNative Types in the CLI World

Basic interop example:Basic interop example:
ref class MyControlref class MyControl : UserControl { //: UserControl { //…… // reference type// reference type
std::vector<std::string>* words;std::vector<std::string>* words; // use native type// use native type

public:public:
void Add(void Add(String^ sString^ s) { Add() { Add(marshal_as<std::string>(s)marshal_as<std::string>(s)); }); }

void Add(std::string s) { wordsvoid Add(std::string s) { words-->push_back(s); }>push_back(s); }
};};

Segueing to Segueing to ““futuresfutures””: Generic<Native> example.: Generic<Native> example.
generic<class T>generic<class T>
where T : I1where T : I1
ref class SomeGeneric { /*ref class SomeGeneric { /*……*/ };*/ };

class Native : I1 { /*class Native : I1 { /*……*/ };*/ };

SomeGeneric<Native> g;SomeGeneric<Native> g; // ok// ok

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

25

49
of
67

What Users Are DoingWhat Users Are Doing

Example 1: Quake 2 extension example Example 1: Quake 2 extension example
(using v1 syntax):(using v1 syntax):

private __gc class RadarFormprivate __gc class RadarForm
: public System::Windows::Forms::Form: public System::Windows::Forms::Form

{{
std::vector<RadarItem>std::vector<RadarItem>** m_items;m_items;

public:public:
RadarForm() : RadarForm() : m_items(new std::vector<RadarItem>)m_items(new std::vector<RadarItem>)
{ /*{ /*……*/ };*/ };

~RadarForm() { ~RadarForm() { delete items;delete items; }} // v1 finalizer syntax// v1 finalizer syntax

// // …… etc.etc.
};};

•• Their first attempt was without the * (i.e., they naturally Their first attempt was without the * (i.e., they naturally
tried make the vector a member), but that wasntried make the vector a member), but that wasn’’t allowed.t allowed.

50
of
67

What Users Are Doing (2)What Users Are Doing (2)

Example 2: Faking up base classes Example 2: Faking up base classes
(e.g., expose native types to a CLI world).(e.g., expose native types to a CLI world).

private __gc class C {private __gc class C { // can// can’’t inherit from Native, sot inherit from Native, so……
NativeNative* n;* n;

public:public:
C() : C() : n(new Native)n(new Native) { /*{ /*……*/ };*/ };
~C() { ~C() { delete n;delete n; }}
void Foo(/*void Foo(/*…… a param list a param list ……*/)*/) { n{ n-->Foo(/*>Foo(/*……*/); }*/); }
void Bar(/*void Bar(/*…… a param list a param list ……*/)*/) { n{ n-->Bar(/*>Bar(/*……*/); }*/); }
// etc.// etc.

};};

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

26

51
of
67

Future: Unified Type System, Object ModelFuture: Unified Type System, Object Model

Arbitrary combinations of members and bases:Arbitrary combinations of members and bases:
•• Any type can contain members and/or base classes of any Any type can contain members and/or base classes of any

other type. Virtual dispatch etc. work as expected.other type. Virtual dispatch etc. work as expected.
–– At most one base class may be of ref/value/mixed type.At most one base class may be of ref/value/mixed type.

•• Overhead (regardless of mixing complexity, including deep Overhead (regardless of mixing complexity, including deep
inheritance with mixing and virtual overriding at each level):inheritance with mixing and virtual overriding at each level):
–– For each object: At most one additional object.For each object: At most one additional object.
–– For each virtual function call: At most one additional For each virtual function call: At most one additional

virtual function call.virtual function call.

Pure type:Pure type:
•• The declared type category, members, and bases are The declared type category, members, and bases are

either all CLI, or all native.either all CLI, or all native.

Mixed type:Mixed type:
•• Everything else. Examples:Everything else. Examples:

ref class Ref : R, public N1, N2 { string s; };ref class Ref : R, public N1, N2 { string s; };
class Native : I1, I2 { MessageQueue m; };class Native : I1, I2 { MessageQueue m; };

52
of
67

Future: Implementing Mixed TypesFuture: Implementing Mixed Types
1 mixed = 1 pure + 1 pure.1 mixed = 1 pure + 1 pure.

ref class M : I1, I2, N1, N2 {ref class M : I1, I2, N1, N2 {
System::String ^S1, ^S2;System::String ^S1, ^S2; M* pm = new M;M* pm = new M;
std::string s1, s2;std::string s1, s2; M^ hm = gcnew M;M^ hm = gcnew M;

};};

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

27

53
of
67

V2 Syntax:V2 Syntax:
ref class RadarForm : Formref class RadarForm : Form, , publicpublic Native Native {{
std::vector<RadarItem> items;std::vector<RadarItem> items;

};};

•• One safe automated allocation, vs. One safe automated allocation, vs.
NN fragile handwritten allocations.fragile handwritten allocations.

•• This class is also better because it This class is also better because it
also has a destructor (implements also has a destructor (implements
IDisposable). That makes it work IDisposable). That makes it work
well by default with C++ well by default with C++
automatic stack semantics (and C# automatic stack semantics (and C#
using blocks, and VB/J# dispose using blocks, and VB/J# dispose
patterns).patterns).

V1 Syntax:V1 Syntax:
private __gc class RadarForm : public Form {private __gc class RadarForm : public Form {
std::vector<RadarItem>std::vector<RadarItem>** items;items;
NativeNative* n* n;;

public:public:
RadarForm() :RadarForm() :
: n(new Native): n(new Native)
, items(new std::vector<RadarItem>), items(new std::vector<RadarItem>)
{ /*{ /*……*/ };*/ };

~RadarForm() { ~RadarForm() { delete items; delete n;delete items; delete n; }}
void Foo(/*void Foo(/*…… params params ……*/)*/)
{ n{ n-->Foo(/*>Foo(/*……*/); }*/); }

void Bar(/*void Bar(/*…… params params ……*/)*/)
{ n{ n-->Bar(/*>Bar(/*……*/); }*/); }

// etc.// etc.
};};

Future: Result for User CodeFuture: Result for User Code

54
of
67

Other FeaturesOther Features

Param arrays:Param arrays:
•• Created when needed, preferred over varargsCreated when needed, preferred over varargs

void f(String^ str, void f(String^ str, ... array<Object^>^ arr... array<Object^>^ arr););

f(f(““hellohello””, 42, 3.14, , 42, 3.14, ““worldworld””););

Unified CLI and C++ operators:Unified CLI and C++ operators:
•• Operators can now be static. Most work on handles.Operators can now be static. Most work on handles.

ref class R { public: // ...ref class R { public: // ...
static R^ operator+(R^ lhs, R^ rhs);static R^ operator+(R^ lhs, R^ rhs);

};};

•• Equality tests reference identity. Can be overridden by user.Equality tests reference identity. Can be overridden by user.

Delegating constructors.Delegating constructors.

XML doc comments.XML doc comments.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

28

55
of
67

Pure Extensions to ISO C++Pure Extensions to ISO C++

Only three reserved words:Only three reserved words:
gcnew generic nullptrgcnew generic nullptr

The rest are contextual keywords:The rest are contextual keywords:
abstract delegate each event finally in initonabstract delegate each event finally in initonlyly

interface literal override property ref sealedinterface literal override property ref sealed

value wherevalue where

56
of
67

Implementation DetailsImplementation Details

Strategies for specifying contextual keywords:Strategies for specifying contextual keywords:
•• Spaced keywords: Courtesy Max Munch, Lex Hack & Assoc.Spaced keywords: Courtesy Max Munch, Lex Hack & Assoc.

for each enum class/struct interface class/structfor each enum class/struct interface class/struct
ref class/struct value class/structref class/struct value class/struct

•• Contextual keywords that are never ambiguous: They appear Contextual keywords that are never ambiguous: They appear
in a grammar position where nothing may now appear.in a grammar position where nothing may now appear.

abstract finally in override sealed whereabstract finally in override sealed where
•• Contextual keywords that can be ambiguous with identifiers: Contextual keywords that can be ambiguous with identifiers:

““If it can be an identifier, it is.If it can be an identifier, it is.””
delegate event initonly literal propertydelegate event initonly literal property
Surgeon GeneralSurgeon General’’s warning: Known to cause varyings warning: Known to cause varying
degrees of parser pain in compiler laboratory animals.degrees of parser pain in compiler laboratory animals.

Not keywords, but in a namespace scope:Not keywords, but in a namespace scope:
array interior_ptr pin_ptr safe_castarray interior_ptr pin_ptr safe_cast

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

29

57
of
67

Minimal ImpactMinimal Impact

Except for the three reserved words (and some Except for the three reserved words (and some
macros), a wellmacros), a well--formed programformed program’’s meaning is s meaning is
unchanged.unchanged.

Macro example #1:Macro example #1:
// this has a different meaning in ISO C++ and C++/CLI// this has a different meaning in ISO C++ and C++/CLI
#define interface struct#define interface struct

// this has the same meaning in both// this has the same meaning in both
#define interface interface__#define interface interface__
#define interface__ struct#define interface__ struct

Macro example #2:Macro example #2:
// this has a different meaning in ISO C++ and C++/CLI// this has a different meaning in ISO C++ and C++/CLI
#define ref const#define ref const
ref class C { } c;ref class C { } c;

58
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

30

59
of
67

Why Standardize C++/CLI?Why Standardize C++/CLI?

Primary motivators for C++/CLI standard:Primary motivators for C++/CLI standard:
•• Stability of language.Stability of language.

•• C++ community understands and demands standards.C++ community understands and demands standards.

•• Openness promotes adoption. Openness promotes adoption.

•• Independent implementations should interoperate.Independent implementations should interoperate.

Same TC39, new TG5: C++/CLI.Same TC39, new TG5: C++/CLI.
•• C++/CLI is a binding between ISO C++ and ISO CLI only.C++/CLI is a binding between ISO C++ and ISO CLI only.

•• Most of TG5Most of TG5’’s seven planned meetings are cos seven planned meetings are co--located with located with
TG3 (CLI), and both standards are currently on the same TG3 (CLI), and both standards are currently on the same
schedule.schedule.

60
of
67

ISO and ECMA StructuresISO and ECMA Structures
ISO SC22:ISO SC22:

•• WG3: APLWG3: APL

•• WG4: CobolWG4: Cobol

•• WG5: FortranWG5: Fortran

•• WG9: AdaWG9: Ada

•• WG11: Binding techniquesWG11: Binding techniques

•• WG14: CWG14: C

•• WG15: POSIXWG15: POSIX

•• WG16: LispWG16: Lisp

•• WG17: PrologWG17: Prolog

•• WG19: Formal spec. langs.WG19: Formal spec. langs.

•• WG20: InternationalizationWG20: Internationalization

•• WG21: C++WG21: C++

ECMA TC39:ECMA TC39:
•• TG1: ECMAscriptTG1: ECMAscript

•• TG2: C#TG2: C#

•• TG3: CLITG3: CLI

•• TG4: EiffelTG4: Eiffel

•• TG5: C++/CLITG5: C++/CLI

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

31

61
of
67

The Importance of BindingsThe Importance of Bindings
Bindings for a language to other standards:Bindings for a language to other standards:

•• Demonstrate that a language is important.Demonstrate that a language is important.
•• Promote that languagePromote that language’’s use.s use.

C has standardized bindings to important C has standardized bindings to important
platforms:platforms:
•• SQL (ISO SC32/WG3, ANSI/INCITS H2):SQL (ISO SC32/WG3, ANSI/INCITS H2):

–– SQL/CLI (Client Level Interface) == ODBC. Antiquated. SQL/CLI (Client Level Interface) == ODBC. Antiquated.
More safety and security issues than C++.More safety and security issues than C++.

–– Around 1999, there was interest in both C++ and SQL to Around 1999, there was interest in both C++ and SQL to
specify a C++ binding. Nothing happened.specify a C++ binding. Nothing happened.

•• POSIX (ISO SC22/WG15):POSIX (ISO SC22/WG15):
–– A C API binding to an OS abstraction.A C API binding to an OS abstraction.
–– No longer under active development.No longer under active development.

C++ doesnC++ doesn’’t, even though wet, even though we’’ve tried.ve tried.

62
of
67

The Importance of Bindings (2)The Importance of Bindings (2)
Eiffel and C# have standardized bindings to CLI:Eiffel and C# have standardized bindings to CLI:

•• Eiffel (ECMA TC39/TG4).Eiffel (ECMA TC39/TG4).

•• C# (ECMA TC39/TG2).C# (ECMA TC39/TG2).

C++ has to be a viable firstC++ has to be a viable first--class language for CLI class language for CLI
development:development:
•• Key Q: Key Q: ““Why should a CLI developer use C++?Why should a CLI developer use C++?””

•• Key A: Key A: ““Great leverage of C++ features and great CLI feature Great leverage of C++ features and great CLI feature
supportsupport”” (not (not ““imitate Eiffel or C#imitate Eiffel or C#””).).

•• Deliver promise of Deliver promise of CCLI.LI.

OK, so itOK, so it’’s good to make C++ support better.s good to make C++ support better.
But why also standardize?But why also standardize?
•• To ensure independent implementations can interoperate.To ensure independent implementations can interoperate.

•• To ensure open participation.To ensure open participation.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

32

63
of
67

C++/CLI Participants and TimelineC++/CLI Participants and Timeline

Participants:Participants:
•• Convener: Convener: Tom PlumTom Plum
•• Project Editor: Project Editor: Rex JaeschkeRex Jaeschke
•• Subject Matter Experts:Subject Matter Experts: Bjarne Stroustrup, Herb SutterBjarne Stroustrup, Herb Sutter
•• Participants: Participants: Dinkumware, EDG, Plum Hall, Dinkumware, EDG, Plum Hall, ……
•• Independent conformance test suite: Plum HallIndependent conformance test suite: Plum Hall

ECMA + ISO process, estimated timeline:ECMA + ISO process, estimated timeline:
•• Oct 1, 2003: ECMA TC39 plenary. Kick off TG5.Oct 1, 2003: ECMA TC39 plenary. Kick off TG5.
•• Nov 15, 2003:Nov 15, 2003: Submit base document to ECMA.Submit base document to ECMA.

Microsoft will make this publicly available.Microsoft will make this publicly available.
•• Dec 2003 Dec 2003 –– Sep 2004: TG5 meetings (7).Sep 2004: TG5 meetings (7).
•• Dec 2004: Adopt ECMA standard.Dec 2004: Adopt ECMA standard.
•• Dec 2004: Kick off ISO fastDec 2004: Kick off ISO fast--track process.track process.
•• Dec 2005: Adopt ISO standard.Dec 2005: Adopt ISO standard.

64
of
67

Draft TG5 Meeting ScheduleDraft TG5 Meeting Schedule

December 2003 December 2003 –– September 2004: TG5 meetings.September 2004: TG5 meetings.
** = co= co--located with TC39/TG2/TG3located with TC39/TG2/TG3

**** = co= co--located with TC39/TG2/TG3 and adjacent to WG21located with TC39/TG2/TG3 and adjacent to WG21

DatesDates LocationLocation

11 Dec 4Dec 4--5, 5, ’’0303 College Station, TXCollege Station, TX

** 22 Jan 29Jan 29--31, 31, ’’0404 Kona, HIKona, HI

**** 33 Mar 18Mar 18--20, 20, ’’0404 Melbourne, Australia Melbourne, Australia

44 May 3May 3--4, 4, ’’0404 Boston/NY/NJ areaBoston/NY/NJ area

** 55 Jun 14Jun 14--15, 15, ’’0404 tbdtbd

** 66 Aug 2Aug 2--3, 3, ’’0404 tbd: WA or ORtbd: WA or OR

** 77 Sep 21Sep 21--22, 22, ’’0404 tbd: Redmond, WA?tbd: Redmond, WA?

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

33

65
of
67

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLI.templates, STL on CLI.

•• Unified type system, mixing native/CLI, other features.Unified type system, mixing native/CLI, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

66
of
67

Summary: C++ Summary: C++ ×× CLICLI

C++ features:C++ features:
•• Deterministic cleanup, Deterministic cleanup,

destructors.destructors.

•• Templates.Templates.

•• Native types.Native types.

•• Multiple inheritance.Multiple inheritance.

•• STL, generic algorithms, STL, generic algorithms,
lambda expressions.lambda expressions.

•• Pointer/pointee Pointer/pointee
distinction.distinction.

•• Copy construction, Copy construction,
assignment.assignment.

CLI features:CLI features:
•• Garbage collection, Garbage collection,

finalizers.finalizers.

•• Generics.Generics.

•• CLI types.CLI types.

•• Interfaces.Interfaces.

•• Verifiability.Verifiability.

•• Security.Security.

•• Properties, delegates, Properties, delegates,
events.events.

C++/CLI Overview
Herb Sutter

WG21 N1557 = J16 03-140

34

67
of
67

Conclusion: The Two FAQsConclusion: The Two FAQs

Q: Is C++ relevant on modern VM / GC platforms?Q: Is C++ relevant on modern VM / GC platforms?
•• Heck, yeah.Heck, yeah.

Q: Why should a CLI programmer use C++?Q: Why should a CLI programmer use C++?
•• Preserves code base investment. Easiest migration for Preserves code base investment. Easiest migration for

existing code base: "Just use /clr."existing code base: "Just use /clr."

•• Easiest and most efficient native interop, incl. mixed types.Easiest and most efficient native interop, incl. mixed types.

•• Deterministic (and automatic) cleanup as usual in C++, Deterministic (and automatic) cleanup as usual in C++,
no coding patterns. Correctness by default.no coding patterns. Correctness by default.

•• Leverage C++Leverage C++’’s unique strengths (e.g., templates, generic s unique strengths (e.g., templates, generic
programming, multiple inheritance, deterministic resource programming, multiple inheritance, deterministic resource
management and cleanup).management and cleanup).

•• Now not significantly harder or uglier than other languages.Now not significantly harder or uglier than other languages.

