
Improving Enumeration Types [N1513=03-0096]

David E. Miller

Introduction

It has been said, "C enumerations constitute a curiously half-baked concept." [Design and
Evolution of C++ (C) 1994, B.Stroustrup, p.253] Even though C++ enumerations have some
improvements over C, some issues remain. This submission endeavors to improve enumerations
by eliminating certain lingering deficiencies.

Summary of issues

1. Inconsistent relationship between enumerations of separate types

2. Limitation to integral types

3. Inability to specify actual storage space and type to be used

4. Potentially conflicting names, unless separated by namespace use

5. Denormalized tables mapping enumeration values to printable names and vice
versa

Issues and proposed changes

1. Inconsistent relationship between enumerations of separate types

Statement of problem

Although it is not permitted to assign from one enumeration type to another, it is
permitted to compare such values, in that the values are silently converted to integral
types.

Example of problem

typedef enum Color { ClrRed, ClrOrange, ClrYellow,
ClrGreen, ClrBlue, ClrViolet };

typedef enum Alert { CndGreen, CndYellow, CndRed };

Color c1 = ClrRed ;

Alert a1 = CndGreen ;

a1 = c1 ; // not allowed

a1 = ClrYellow ; // not allowed

bool goToAlertAndArmWeapons = (a1 >= ClrYellow) ; //
Allowed, but silently incorrect

Current work-around

class PseudoEnumColor // class simplified for clarity

{

 typedef enum Color { Red, Orange, Yellow, Green, Blue,
Violet }; // private

public:

 static const PseudoEnumColor ClrRed, ClrOrange,
ClrYellow, ClrGreen, ClrBlue;

 Color m_value ;

 explicit PseudoEnumColor(Color value): m_value(value
){}

 bool operator<(PseudoEnumColor const & other) { return
this->m_value < other.m_value ; }

 int getIntValue() const { return m_value ; }

};

const PseudoEnumColor PseudoEnumColor::ClrRed(
PseudoEnumColor::Red);

// Similarly for Alert

PseudoEnumAlert a1 = PseudoEnumAlert::ClrGreen ;

bool goToAlertAndArmWeapons = (a1 >= ClrYellow) ; // No
longer allowed, with or without scoping ClrYellow

Proposed solution

Extending the "explicit" keyword to enumeration types can eliminate the implicit
conversion without breaking any existing code.

Example of proposed solution

typedef explicit enum Color { ClrRed, ClrOrange, ClrYellow,
ClrGreen, ClrBlue, ClrViolet };

typedef explicit enum Alert { CndGreen, CndYellow, CndRed
};

Alert a1 = CndGreen ;

Color c1 = ClrRed ;

a1 = c1 ; // not allowed

a1 = ClrYellow ; // not allowed

bool goToAlertAndArmWeapons = (a1 >= ClrYellow) ; // No
longer allowed, due to specification of "explicit"

Effect on existing code

Since the change involves adding the "explicit" keyword to get the desired effect, no prior
code is affected.

Ease of explanation

Since the change is similar in tone to the extant use of "explicit," differing mainly in
direction, i.e. "explicit" for constructors blocks implicit conversion to the type, whereas
the proposed use blocks implicit conversion from the type, it should be very easy to
explain and to use.

2. Limitation to integral types

Statement of Problem

For a certain purposes, it would be useful to allow floating point enumerations.

Although it is common to consider enumerations to be specific values, as listed in the
declarations, they are also used to represent bit combinations and ranges, among other
purposes. It is convenient to be able to specify floating point values as enumerations,
particularly as values to be passed to functions, which by being declared to take floating
enumeration parameters, can be protected at compilation time against invalid values.

Example of problem

double const valid1 = 1.234, valid2 = 2.468;

void func(double val); // val must be limited to those
values specified outside the function

func(valid1); // value is allowed

func(3.333); // value should not be allowed

Current work-arounds

Various work-around exist involving use of class wrappers to preclude casually passing
values not prespecified. As they are fairly obvious, they are not presented here.

Proposed solution

Extending the allowed constants for enum types can extend enumeration types without
breaking any existing code.

The underlying data type of the enumeration would be the least required to hold all
named values, i.e. if no double value were specified, the underlying data type would be
float.

Example of proposed solution

typedef enum FloatEnum { LowVal = 1.23, MidVal = 4.56,
HighVal = 7.89 };

void func(FloatEnum val);

func(LowVal); // allowed

func(3.333); // ordinary float value would be blocked at
compilation time

Effect on existing code

Since the change a superset of currently allowed values, no prior code is affected.

Ease of explanation

Since the change is a simple extension of allowed types to allow floating point, it should
be very easy to explain and to use.

3. Inability to specify actual storage space and type to be used

Statement of Problem

There are actually two related problems: the need to be able to know, definitely, how
much space will be used by an enumeration variable, particularly in a packed struct, and
the need to be able to specify how that enumeration will be treated when used as a
number, e.g. as signed or unsigned.

There are times when it is essential to be able to lay out fields in a struct with the
expectation those fields will have the same sizes and layouts across multiple compilers,
as in data communications and storage. Because the specification of enumeration types
allows implementations to take either the minimal space necessary or a larger amount,
they cannot be used reliably in such structs.

Examples of problem

Size consistency and minimization

typedef enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet

{

 Version m_version ; // bad, size can vary by
implementation

 Version getVersion() const { return m_version ; }

 void setVersion(Version ver) { m_version = ver ; }

};

Type specification

#include <iostream>

using namespace std ;

typedef enum E1_t { E1a = 1, E1b = 2, Ebig = 0xFFFFFFF0U };

int main()

{

 E1_t e1 = E1a ;

 cout << "sizeof(e1) = " << sizeof(e1)

 << ", sizeof(E1_t) = " << sizeof(E1_t)

 << endl ;

 cout << "E1a = " << E1a << ", Ebig = " << Ebig << endl ;

 if(E1a >= -1)

 cout << "E1a >= -1" ;

 else

 cout << "E1a < -1" ;

 cout << endl ;

 if(Ebig >= -1)

 cout << "Ebig >= -1" ;

 else

 cout << "Ebig < -1" ;

 cout << endl ;

 return 0 ;

}

// program output

sizeof(e1) = 4, sizeof(E1_t) = 4

E1a = 1, Ebig = -16

E1a >= -1

Ebig < -1

A = 111

This result (treating all E1_t values, especially Ebig, as signed) is counter-intuitive,
particularly to the naive user, who declared Ebig using a constant ending in a suffix
specifying unsignedness and expected the compiler to understand the intent.

Current work-arounds

Size specification work-around

typedef enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet

{

 unsigned char m_version ; // works, but requires casting

 Version getVersion() const { return (Version)m_version ;
}

 void setVersion(Version ver) { m_version =
(unsigned char)ver ; } // Not strictly needed, but helps
turn off compiler warnings about type change

};

Additionally, internal class uses of the unsigned char member may require either casts or
access functions.

Type workarounds

Class wrappers

Explicit casts

Proposed solution

Borrowing from a C# approach, it is suggested there be an option to specify the
underlying data type, which would also be the type to which implicit numeric
conversions would be made. When utilized, this option would supersede the current size
and type specifications.

Specifying a type inadequate to hold all the listed values would not be permitted.

Example of proposed solution

typedef enum E1_t: unsigned int { E1a = 1, E1b = 2, Ebig =
0xFFFFFFF0U };

// typedef enum Version: signed char { Ver1 = 1, Ver2 = 2
};

typedef enum { Ver1 = 1, Ver2 = 2 } VersionSChar: signed
char, VersionInt: int ; // Note this would allow related
enums of different sizes, useful for some optimizations

struct Packet

{

 VersionSChar m_version ; // size (and alignment)
guaranteed to be identical to that of signed char

 VersionSChar getVersion() const { return m_version ; }
// No cast needed

 void setVersion(VersionSChar ver) { m_version = ver ;
}

};

Effect on existing code

Since the new capability is optional, does not change the semantics of any existing code,
and requires the user to add code not currently valid, no prior code should be affected.

Ease of explanation

Since the change is a simple extension of allowed types to allow floating point, it should
be very easy to explain and to use.

Because the new feature makes the underlying data type and numeric conversion explicit,
it should be easier to teach than the current rules.

4. Potentially conflicting names, unless separated by namespace use;
potentially confused even with namespace use.

Statement of problem

In a single scope, declaring two enumeration value names results in a conflict.

Declaring two enumerations carrying identical value names in different namespaces, but
inadvertently specifying the wrong "using," can result in the wrong enumeration constant
being used.

Example of problem

namespace NS1 {

typedef enum Color { Red, Orange, Yellow, Green, Blue,
Violet };

};

namespace NS2 {

typedef enum Alert { Green, Yellow, Red };

};

using namespace NS1 ; // but NS2 was what should have been
specified, if anything

// Alternatively, another enum with conflicting names could
be declared within a scope

Alert a1 = NS2::Green ;

Color c1 = Red ;

a1 = c1 ; // not allowed

a1 = Yellow ; // not allowed

bool goToAlertAndArmWeapons = (a1 >= Yellow) ; //
Allowed, but likely incorrect

Current work-around

class PseudoEnumColor // class simplified for clarity

{

 typedef enum Color { Red, Orange, Yellow, Green, Blue,
Violet }; // private

public:

 static const PseudoEnumColor ClrRed, ClrOrange,
ClrYellow, ClrGreen, ClrBlue;

Color m_value ;

 explicit PseudoEnumColor(Color value): m_value(value
){}

 bool operator<(PseudoEnumColor const & other) { return
this->m_value < other.m_value ; }

 int getIntValue() const { return m_value ; }

};

const PseudoEnumColor PseudoEnumColor::ClrRed(
PseudoEnumColor::Red);

// Similarly for Alert

PseudoEnumAlert a1 = PseudoEnumAlert::ClrGreen ;

bool goToAlertAndArmWeapons = (a1 >= ClrYellow) ; // No
longer allowed, with or without scoping of ClrYellow

Proposed solution

Allowing the typedef name to be used as a scope modifier to the enumeration constants,
similarly to an approach used in C#.

Example of proposed solution

typedef [explicit] enum Color { Red, Orange, Yellow, Green,
Blue, Violet };

typedef [explicit] enum Alert { Green, Yellow, Red };

// Note it would be possible to have non-unique enumeration
constants in the same scope.

Alert a1 = Alert.Green ; // or Alert::Green ;

Color c1 = Color.Red ; // or Color::Red

a1 = c1 ; // not allowed

a1 = Yellow ; // not allowed, due to ambiguity

bool goToAlertAndArmWeapons = (a1 >= Yellow) ; // No
longer allowed, due to ambiguity (leaving aside the
possible use of proposed "explicit")

Effect on existing code

Since the change involves adding to the enumeration value name a prefix not currently
allowed, there should be no effect on existing valid code. However, if the "::" version is
used, there may be a possibility of changing code in the event the same name is used for
both a namespace and an enumeration type, though this is probably not found in actual
practice.

Ease of explanation

Since the proposed prefix acts as a disambiguator, its usage should be clear, even to a
novice.

There is an additional benefit in making it easier for printable names for enumerations to
more closely match the internal names, since there would be less need for disambiguating
prefixes.

5. Denormalized tables mapping enumeration values to printable names and
vice versa

Statement of problem

It is common to need functions to convert back and forth between enumeration values and
printable strings corresponding to the names. Although it is not hard to write such functions, the
mappings amount to a denormalized database, with the obvious maintenance issues associated
with insuring the tables match exactly whenever a new enumeration value is added or removed.

Additionally, this common functionality is implemented in various ways lacking any
standardization as to name or exact functionality.

Example of problem

typedef enum Alert { Green, Yellow, Red };

Alert valueFromName(char const pszName)

{

 Alert valueCorrespondingToName ;

 // compare pszName to all possible names

 if(noMatch)

 throw ;

 return valueCorrespondingToName ;

};

char const * nameFromValue(Alert val)

{

 switch(val)

 {

 case CndGreen: return "Green" ;

 ...

 default: return "?" ; // or throw something, e.g. val

 }

}

char const * szAlertGreen[] = "Green" ;

Alert a1FromName = valueFromName(szAlertGreen);

char const * pszAlertFromVal = nameFromValue(a1FromName);

Current work-around

Code is currently written in an ad hoc manner, with maintenance often done manually, rather
than in an automatically guaranteed fashion, except in those places utilizing code generators.

Proposed solution

Borrowing from C#, the language should specify the conversion functions’ names and
algorithms, including what to do when input is invalid. To avoid name collisions, it is suggested
that the enumeration type be used as a disambiguating scope, similarly to C# usage is this
context.

In the event more than one enumeration constant within a particular enumeration carried the
same value, translation from value to name would convert to the first lexically defined name.

Example of proposed solution

typedef [explicit] enum Alert { Green, Yellow, Red };

char const * szAlertGreen[] = "Green" ;

Alert a1FromName ;

bool success = Alert::valueFromName(szAlertGreen, &a1FromName
); // No longer necessary to declare the function

char const * pszAlertFromVal = Alert::nameFromValue(a1FromName
);); // No longer necessary to declare the function

In the event functions of the same name and parameter type were defined, those definitions
would pre-empt the default implementations, analogously to the specification of copy
constructors and assignment operators in classes.

If not used, the functions need not be generated.

Effect on existing code

Since the proposed function names have scope prefixes that are currently invalid syntax, there
should be no effect upon existing code.

Ease of explanation

The extension is very similar to C# enumeration functionality and appears very simple and
straightforward to explain to novices, particularly inasmuch as it would allow them to write

cleaner code than is often the case, at the stage before novices are consider look-up and error
checking to be second nature.

Conclusion

The changes described are intended to reduce the likelihood of undetected error while enabling
code to be written more clearly and consistently. The proposed changes would do so without
breaking existing code.

