Doc No: SC22/ W&21/ N1493
J16/ 03-0076

Dat e: 09/ 18/ 2003
Proj ect: JTC1. 22. 32
Reply to: Dani el F. Gutson

dani el gut son@ot nai | . com
Braces Initialization Overl oadi ng

1. The Problem

A goal of C++ is to sinmulate with classes the sane behavi ors and
capabilities of PODs.

This is possible through operator overl oadi ng.

However, it is not possible to provide the initialization abilities of a
C-array to a class: the braces initialization

Also, it is neither possible to initialize (construct) a non-aggregate class
with braces, as a sinple struct all ows.

Thi s paper proposes a mechanismto do both things, by overloading the braces
initialization.

This problem specially applies to container classes in libraries -such as
the std::vector, which would pernmit to treat it as an ordinary C-array -.

By no addressing this issue, "manual" (or explicit) initialization nust be
coded, loosing the sinplicity of the wide-used C's braces initialization

This proposal may fit in the follow ng categories:
* inmprove support for systens programi ng

* inprove support for library building

* inprove conpatibility with C

2. The Proposal
A) Problem partitioning.
Thi s paper considers the foll owi ng scenari os:
A. 1) braces initialization for a fixed nunber of el enents of known types:
this is the case of initializing a non-aggregate as an ordi nary struct

struct S
{
int a, b;
char* p;
b

Ss={1, 2, "hello" };

A.2) braces initialization for a NON-fi xed nunber (known at conpile tine)

of elements. This is sub-partitioned in two:

A. 2.1) honpgeneous elements: a non-fixed nunber of elenents of the
same type. This is the case of a C-array:

int x[] = {1,2,3,4,100};

A. 2.2) heterogeneous elenents: a non-fixed nunber of el enments, not
necessarily of the sane type.

B) The proposal
Thi s paper distinguishes three constructor types, as primtive semantic
units for achieving the problem scenari os.

1-the "fixed brace constructor"”

2-the "brace initiator constructor™

3-the "brace el enent constructor” (or “brace individual constructor”)

The "fixed brace constructor"™ covers the A 1 scenario; the "brace initiator”
and the "brace elenment" constructors are conbi ned together for covering
A 2.1 as well as A 2.2.

Characteristics and semanti cs:
1. The "fixed brace constructor"” is defined in the class with a specific
signature, telling the conpiler that whenever the class is initialized with
the form

classname instance ={ vy, Va, ..., Vo };
will try to match the signature with the v;..v, value types, and invoke it,
each v; being a paraneter.
This constructor type is nmultiple-overloadable, and mmnics the
initialization of an aggregate using braces for assigning a value to each
menber .

2. The "brace initiator constructor" can be defined once in the class with
the uni que signature of receiving one “size_t’ -like paraneter

The "brace el enent" accepts only one paraneter, and is

mul ti pl e-overl oadable, with an arbitrary paranmeter type.

VWhen a class is initialized with the form

classname instance ={ vy, V, ..., Vo };
if no "fixed brace constructor” is defined, or no one matches the signature
with the n elenments, then the conpiler invokes the "brace initiator
constructor" once passing n as the paranmeter, and then invokes n tinmes the
"brace el ement" constructor (one per each vi). The restriction is that every
type of the v;j has a type-conpatible "brace el enent" avail abl e.

If the "brace initiator constructor" is defined, then at |east one "brace
el ement"” constructor mnust be defined.

A class having "brace elenment"” constructors, w thout the "brace initiator"
constructor defined, is ill-formed and a conpiler error should be thrown.
By providing many "brace elenent" constructors to a class, the heterogeneous
scenario (A.2.2) is covered.

By providing only one "brace el enent" constructor, the honbgeneous scenario
(A.2.1) is covered.

For exanple, if the class is intended to be constructed with a braces
initialization |like a C-array of type int[], the "brace initiator"
constructor nust be defined, and one "brace element" receiving an int

par anet er must be al so defi ned.

The three constructor types are either called by the conpiler, or
“transparently” by a subclass in the initializer list ("transparently” neans
that the {} initialization should be used in the initializer list, and then
the conpiler will either invoke the "fixed braces constructor"” or the
"braces initiator" + "brace elenment" constructors).

2.1 Basic Cases

Before entering in the exanples, the syntax and alternatives are proposed now.
First, a set of candidates are exposed, and then assigned (arbitrary) to the
constructor types for devel oping the examples only. Syntax is not the aim of
thi s paper.

Synt ax candi dates, and their usage in the exanples bel ow
cl assnane {} (signature); /1 used for “braces initiator constructor”

cl assnane ={} (signature); // used for “fixed brace constructor”
classnane {*} (signature); [/ used for “brace el enent constructor”
classnane {...} (signature); /1l just proposed; not used here
classnane []{} (signhature); /1l just proposed; not used here

The first exanple covers scenario A .1, exposing the “fixed brace constructor”:
class Packet

{
public:
Packet = {} (char parity, const char* data, size_t len);
~Packet();
int getHeader() const;
char getParity() const;
const char* getData() const;
size_t getLength() const;
size_t getCRC() const;
private:
char _parity;
char* _data;
size_t _len;
size_t _crc;
void _calcCRC();
3
void sendInitialPacket()
{
Packet p = { ‘0’, “INIT”, 5 };
sendPacket(p);
¥

Packet::Packet ={} (char parity, const char* data, size_tlen)
: _parity(parity), _len(len)

{
_data = new char[len];
memcpy(_data, data, len);
_calcCRC();

¥

In the exanpl e above, the Packet class behaves as a C structure having a char,

char*, and a size_t elenent. The “fixed brace constructor”, however, hides the
default constructor, assigns the private attributes, copies the data for owning
it, and then calculates the CRC. (The destructor would delete [] the data).

The second exanpl e covers scenario A 2.1, simulating an array of integers.
class IntArray

{
public:
IntArray {} (size_t count);
IntArray {*} (int element, size_t position); //see 3.1
~IntArray();
int operator [] (size_t index) const
{
assert(index < _len);
return _array[index];
¥
int& operator [] (size_t index)
{
assert(index < _len);
return _array[index];
¥
private:
int* const _array;
const int _len;
&
void f()
{
IntArray arr = { 1,2,3,4,5,6 };
int x = arr[1];
arr[x] = 200;
¥

IntArray::IntArray {} (size_t count)
: _array(new int[count]), len(count)

i

IntArray::IntArray {*} (int element, size_t position)
{ _array[position] = element;

¥

IntArray::~IntArray()

{ delete [] _array;

3

Thi s exanple shows the usage of the “brace initiator” and the “brace el ement”
constructors. The first allocates the nmenory and assigns the I ength. The second
assigns the position-¢,element to the private allocated array. (please see
section 3.1 for information about the second parameter of the “brace el ement
constructor”).

The IntArray class cannot be initiated with a list of elements of a type not
casteable to int, as far as the “brace element constructor” is not available for
ot her types.

In function ‘f’, the conpiler will invoke the “brace initiator” passing 6 as the
paranmeter, and will invoke the “brace elenent” six tines i mediately, passing
the increnental nunber in the ‘position” argunent (0..5).

Thi s exanpl e just exposes the usage of the two constructors proposed in this
paper. The usage for a tenplate class is considered a trivial application and is
not exposed.

The third exanple covers the scenario A 2.2, where the class can be initialized
with a list of two classes types derived froma base cl ass.

struct Base { ... };

struct Derl : Base { ... };

struct Der2 : Base { ... };

class BArray

{
public:
BArray {} (size_t count);
BArray {*} (Derl element, size_t position);
BArray {*} (Der2 element, size_t position);
3
void f()
{
Derl di;
Der2 d2;
BArray arr = { d1, d1, d2, d1, d2 };
¥

This exanple is sinmlar to the second, but differs in the fact that BArray is an
‘ het er ogeneous’ contai ner, having two types of elenments (Derl and/or Der2).
I mpl ementation is left for the imagi nation of the reader.

2.2 Advanced Cases

The exanple here will conbine the first and second exanpl es of the previous
section, by using a nested braces initialization: an array of packets.
The Packet definition is the same as the defined in the first exanple.

class PacketArray

{
public:
PacketArray {} (size_t count);
PacketArray {*} (const Packet& pkt, size_t position);
b
void sendSequencel()
{
PacketArray seq = {
{0, “INIT”, 5},
{‘e’, “DATA1”, 6 },
{‘n’, “END”, 4 }
¥
sendPacketArray(seq);
¥
In this exanple, the conpiler will construct three tenporary packets by invoking

t he Packet::Packet ={}, then invoke the PacketArray’'s initiator, then three
times the PacketArray’ s brace elenent, and finally destroy the tenporary
packets.

(Let’s assune that the packets will be copied in private nmenory spaces by the
Packet Array i npl enentation).

3. Interactions and Inplenentability

3.1 Interactions

The A.2 scenarios could be covered by the "fixed braces constructor" by
recei ving one contai ner and overl oading the comma operator, but providing
the "brace initiator constructor” / "brace el enent constructor"™ conplex
provides sinplicity and efficiency (the nunber of elenents is known at
conpile tinme, so no re-allocation nust be carried out while appending the
el ements) .

Optionally, the "brace el enent constructor” mght accept an alternative
syntax, receiving the elenment position as the second parameter (of a
“size_t -like type).

Initializer list can only be defined in the "fixed brace" constructors and
the "brace initiator" constructor; the "brace el enent constructor" behaves as

a “sub-constructor” of the initiator, neaning that the per-elenent call is

not a constructor call itself, but a subsequent call sequence of the
initiator.

The ‘operator =, if defined, will be invoked neither in A 1 nor A 2 scenari os,

¢ ’

considering that the is syntactically required.

The place (private, public or protected) where the “brace el enent constructor”
is defined is insignificant, as far as the “brace initiator constructor”’s
accessibility is considered.

Name hiding rules for constructors is nornally applicable. Many constructors can
be provided, and anbiguities between the “fixed brace” and the “brace
initiator”/”"brace elenent” constructors shall be clarified by prioritizing the
fi xed brace constructor. (see section 3.2)

This proposal is conpatible with the existing syntax, as far as the proposed
constructs are currently invalid.

3.2 Inplenmentability

The conpiler nust prioritize the "fixed brace constructor"” signature matching
first.

If no one matches (or there is no one defined at all), then the "brace
initiator"/"brace elenent" conpl ex | ook up should take place.

In this case, all the elenent types listed within the braces should have a
conpati ble "brace el ement constructor” defi ned.

