
Decltype and auto
Programming Language C++

Document no: N1478=03-0061

Jaakko Järvi
Indiana University

Pervasive Technology Laboratories
Bloomington, IN

jajarvi@osl.iu.edu

Bjarne Stroustrup
ATT&T Research

and Texas A&M University
bs@research.att.com

Douglas Gregor
Rensselaer Polytechnic Institute

Computer Science
Troy, NY

gregod@cs.rpi.edu

Jeremy Siek
Indiana University

Pervasive Technology Laboratories
Bloomington, IN
jsiek@osl.iu.edu

April 28, 2003

1 Introduction

C++ does not have a mechanism for querying the type of an expression. Neither is there a mechanism for initializing
a variable without explicitly stating its type. Stroustrup suggests [Str02] the language to be extended with mech-
anisms for both these tasks, discussing broadly several different possibilities for the syntax and semantics of these
mechanisms.

The emphasis of this proposal is on defining the exact semantics for the above two mechanisms. We do, however,
suggest a specific syntax: thedecltypeoperator for querying the type of an expression, and the keywordauto for
indicating that the compiler should deduce the type of a variable from its initializer expression. Moreover, we propose
a variant of one of the new function definition syntaxes discussed in [Str02].

In the following, we summarize earlier discussions ontypeof. We use the operator nametypeofwhen referring to
the mechanism for querying a type of an expression in general. Thedecltypeoperator refers to the proposed variant of
typeof.

1.1 Motivation

C++ would benefit fromtypeofandauto in many ways. These features would be convenient on several occasions, and
increase the readability of the code. More importantly, the lack of atypeofoperator is worse than an inconvenience
for many generic library authors: it is often not possible to express the return type of a generic function. This leads
to hacks, workarounds, and reduced functionality with an additional burden imposed on the library user (see for
example the return type deduction mechanisms in [JPL03, Dim01, WK02, Vel], or the function object classes in the
standard library). Below we describe typical cases which would benefit fromtypeofor auto. For additional examples,
see [Str02].

• The return type of a function template can depend on the types of the arguments. It is currently not possible to
express such return types in all cases. Many forwarding functions suffer from this problem. For example, what
should be the return type of thetracefunction below?

1

Doc. no: N1478=03-0061 2

template <class Func, class T>
??? trace(Func f, T t) { std::cout << "Calling f"; return f(t); }

Currently, return types that depend on the function argument types are expressed as (complicated) metafunctions
that define the mapping from argument types to the return type. For example:

template <class Func, class T> typename Func::result_type trace(Func f, T t);

or following a recent library proposal [Gre03]:

template <class Func, class T>
typename result_of<Func(T)>::type trace(Func f, T t);

Such mappings rely on programming conventions and can give incorrect results. It is not possible to define a set
of traits classes/metafunctions that cover all cases. Withtypeof(that has appropriate semantics, see Section 2)
thetracefunction could be defined as:

template <class Func, class T>
fun trace(Func f, T t)−> typeof(f(t));

Note the suggested new function definition syntax, discussed in Section 5, where the return type expression
following the−> symbol comes after the argument list. Using this syntax, the argument names are in scope in
the return type expression.

As another example, the return types of operators in various algebraic libraries (computations on vectors, ma-
trices, physical units, etc.) commonly depend on the argument types in non-trivial ways. We show an addition
operator between two matrices as an example:

template <class T> class matrix;
...

template <class T, class U>
??? operator+(const matrix<T>& t, const matrix<U>& u);

For instance, suppose the return type ofmatrix<int>() + matrix<double>()is matrix<double>. Expressing such
relations requires heavy template machinery. Usingtypeof, the relation could be expressed as:

template <class T, class U>
fun operator+(matrix<T> t, matrix<U> u)−> matrix<typeof(t(0,0)+u(0,0))>;

• Often the type of a relatively simple expression can be very complex. It can be tedious to explicitly write such
types, making it tedious to declare variables. Common cases are iterator types of containers:

int foo(const std::map<std::string, std::map<std::string, std::string>& m) {
std::map<std::string, std::map<std::string, std::string> >::const_iterator

it = m.begin();
...

}

Types resulting from invocations of function templates can be too complicated to be at all practical to write by
hand. For example, the type of the Lambda Library [JP02] expression_1 + _2 + _3spans several lines, and
contains types that are not part of the public interface of the library. Some variant oftypeofcan be used to
address this problem. For example, the declaration ofit usingtypeofbecomes:

typeof(m.begin()) it = m.begin();

This is obviously a great improvement. However, as described in Section 4, the semantics fortypeof is not
exactly ideal for the purpose of declaring variables. Furthermore, the redundant repetition of the initializer
expression is a distraction and not quite harmless. For example, the following example appeared (innocently) in
a reflector discussion:

typeof(x∗y) z = y∗x;

Doc. no: N1478=03-0061 3

The snag is that the type of similar, yet different, expressions are not necessarily the same. Thus, the need
to repeat the initializer becomes a maintenance problem. Consequently, we propose a separate mechanism for
declaring variables,auto, which deduces the type of the variable from its initializer expression:

auto it = m.begin();

2 Design alternatives fortypeof

Two main options for the semantics of atypeofoperator have been discussed: either to preserve or to drop references
in types. For example:

int& foo();
...
typeof(foo()); // int& or int?

int a;
int& b = a;

typeof(a); // int& or int?
typeof(b); // int& or int?

A reference-droppingtypeofalways removes the top-level references. Some compiler vendors (EDG, Metrowerks,
GCC) provide atypeofoperator as an extension with reference-dropping semantics. As described in Section 4, this
appears to be ideal for expressing the type of variables. On the other hand, the reference-dropping semantics fails
to provide a mechanism for exactly expressing the return types of generic functions, as demonstrated by Strous-
trup [Str02]. This implies that a reference-droppingtypeofwould cause problems for writers of generic libraries. A
reference-preservingtypeofhas been proposed to return a reference type if its expression operand is anlvalue. How-
ever, such semantics could easily confuse programmers and lead to surprises. For example, in the above examplea is
declared to be of typeint, but under atypeofreflecting "lvalueness",typeof(a)would beint& . It seems that variants
of both semantics are required, thus suggesting the need for two differenttypeof-like operators. We believe, however,
that just onetypeofoperator is enough.

In the standard text, ‘type of an expression’ refers to the non-reference type, Section 5(6)1:

If an expression initially has the type “reference toT” (8.3.2, 8.5.3), the type is adjusted toT prior to
any further analysis, the expression designates the object or function denoted by the reference, and the
expression is an lvalue.

For example:

int x;
int xx = x; // type of the expression x is int
int& y = x;
int yy = y; // type of the expression y is int
int& foo();
int zz = foo(); // type of the expression foo() is int

The lvalueness of an object is expressed separate from its type. However, in the program text, a reference is clearly
part of the type of an expression. From here on, we refer to the type in the program text as thedeclared typeof an
object.

int x; // declared type of x is int
int& y = x; // declared type of y is int&
int& foo(); // declared type of foo() is int& (because the declared return type of foo is int&)

The first line above demonstrates that lvalueness of an object does not imply that the declared type of the object is
a reference type. In this proposal, the semantics of the operator that provides information of the type of expressions
reflects the declared type. Therefore, we propose the operator to be nameddecltype.

1The standard is not always consistent in this respect, in some occasions reference is part of the type.

Doc. no: N1478=03-0061 4

3 Thedecltypeoperator

The syntax ofdecltypeis:

unary−expression
...
decltype (unary−expression)
decltype (type−id)
...

We require parentheses (as opposed tosizeof’s more liberal rule) to keep the syntax simple and to keep the door open
for inquiry operations on the results ofdecltype, e.g. decltype(T).is_reference(). However, we do not propose any
such extensions. The semantics of thedecltypeoperator are described as:

1. If e is a name of a variable in namespace or local scope, a static member variable, or a formal parameter of a
function,decltype(e)is the declared type for that variable or formal parameter. Particularly,decltype(e)results
in a reference type only if the variable or formal parameter is declared as a reference type.

2. If e is an invocation of a function or operator, either user-defined or built-in,decltype(e)is the declared return
type of that function. The standard text does not list the prototypes of all built-in operators. For the operators
and expressions whose prototypes are not listed, the declared type is a reference type whenever the return type
of the operator is specified to be an lvalue.

3. decltypedoes not evaluate its argument expression.

4. Thedecltypetaking a type parameter is an identity function:decltype(T)is equal toT for any type expression
T.

The last rule is for consistency with thesizeofoperator. However, it would have the effect of allowing a type expression
containing commas to be passed into a macro as a single macro argument, without enclosing the expression into
parenthesis (which are not allowed around type expressions in many context). For example:

SOMEMACRO(pair<int, int>) // two arguments
SOMEMACRO(decltype(pair<int, int>)) // one argument

In the following we give examples ofdecltypewith different kinds of expressions:

• Function invocations:

int foo();
decltype(foo()) // int

float& bar(int);
decltype (bar(1)) // float&

decltype(1+2) // int

int i;
decltype (i = 5) // int&, because the "declared type" of integer assignment is int&

class A { ... };
const A bar();
decltype (bar()) // const A

const A& bar2();
decltype (bar2()) // const A&

• Variables in namespace or local scope:

Doc. no: N1478=03-0061 5

int a;
int& b = a;
const int& c = a;
const int d = 5;
const A e;

decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // const int
decltype(e) // const A

• Formal parameters of functions:

void foo(int a, int& b, const int& c, int∗ d) {
decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // int∗
...

}

• Function types:

int foo(char);
decltype(foo) // int(char)
decltype(&foo) // int(∗)(char)

Note that objects of function types cannot exist:

decltype(foo) f1 = foo; // error, we can’t have a variable of type int(char)
decltype(foo)∗ f2 = foo; // fine: f2 is an int(∗)(char)
decltype(foo)& f3 = foo; // fine: f3 is an int(&)(char)

• Array types:

int a[10];
decltype(a); // int[10]

• Pointers to member variables and member functions:

class A {
...
int x;
int& y;
int foo(char);
int& bar() const;

};

decltype(&A::x) // int A::∗
decltype(&A::y) // error: pointers to reference members are disallowed (8.3.3 (3))
decltype(&A::foo) // int (A::∗) (char)
decltype(&A::bar) // int& (A::∗) (char) const

• Member variables:

Member variables are handled according to clause 5.1 (7) in the standard:

Within the definition of a nonstatic member function, an identifier that names a nonstatic member is
transformed to a class member access expression (9.3.1).

Doc. no: N1478=03-0061 6

The type given bydecltypeis thus the return type specified for member access expressions, and is a reference
type whenever the return type is an lvalue. Also, const and volatile qualifiers of the member function will be
added to the member variable type as described in Section 5.2.5 in the standard. Static member variables are
treated as variables in namespace scope.

class A {
int a;
int& b;
static int c;

void foo() {
decltype(a); // int&
decltype(b); // int&
decltype(c); // int

}

void bar() const {
decltype(a); // const int&
decltype(b); // int&
decltype(c); // int

}
...
};

A an_A;
decltype(an_A.a) // int&
decltype(A().a) // int

The expressionan_A is an lvalue, and thus, according to 5.2.5(4), the expressionan_A.a is also an lvalue.
Consequently, rule 2 above implies that the declared type isint& . The expressionA(), on the other hand, is an
rvalue, soA().a is an rvalue as well. The declared type of this expression is thusint.

Whether member variable names used outside of member function bodies should be considered to be member
access expressions or not is not an issue; member variable names are not in scope in the class declaration scope:

class B {
int a;
enum { b };

decltype(a) c; // error, a not in scope
static const int x = sizeof(a); // error, a not in scope

decltype(this−>a) c2; // error, this not in scope
decltype(((B∗)0)−>a) hack; // ok

decltype(a) foo() { ... }; // error, a not in scope
fun bar() −> decltype(a) { ... }; // still an error

decltype(b) enums_are_in_scope() { return b; } // ok
...

};

Should this be seen as a serious restriction, we can consider relaxing it, but we see no current need for that.

• this:

class X {
void foo() {
decltype(this) // X∗
decltype(∗this) // X&

Doc. no: N1478=03-0061 7

...
}
void bar() const {
decltype(this) // const X∗
decltype(∗this) // const X&

...
}

};

• Literals:

5.1(2) states that string literals are lvalues, all other literals rvalues. Consequently, thedecltypeof a string literal
is a references, and all other literals are non-reference types:

decltype("decltype") // const char(&)[9]
decltype(1) // int

Catering to library authors The semantics ofdecltypedescribed above allow to return types of forwarding func-
tions to be accurately expressed in all cases. Thetraceand matrix addition examples in Section 1 work as expected
with this definition ofdecltype.

Catering to novice users The rules are consistent; ifexpr in decltype(expr)is a variable or formal parameter the
programmer can trace down the variable’s or parameter’s declaration, and the result ofdecltypeis exactly the declared
type. If expr is a function invocation, the programmer can perform manual overload resolution; the result of the
decltypeis the return type in the prototype of the best matching function. The prototypes of the built-in operators are
defined by the standard, and if some are missing, the rule that an lvalue has a reference type applies.

4 Auto

Stroustrup brought up the idea of reviving theauto keyword to indicate that the type of a variable is to be deduced
from its initializer expression [Str02]. For example:

auto x = 1; // x has type int

auto is faced with the same questions as the mechanism for querying the type of an expression. Should refer-
ences be preserved or dropped? Shouldauto be defined in terms ofdecltype(i.e., is auto var = exprequivalent to
decltype(expr) var = expr)? We suggest that the answer to that question be "no" because the semantics would be sur-
prising, non-ideal for the purpose of initializing variables, and incompatible with current uses oftypeof. Instead, we
propose that the semantics ofauto follow exactly the rules of template argument deduction. Theauto keyword can
occur in any deduced context in an expression. Examples (the notationx : T is read as “x has typeT”):

int foo();
auto x1 = foo(); // x1 : int
const auto& x2 = foo(); // x2 : const int&
auto& x3 = foo(); // x3 : int&: error, cannot bind a reference to a temporary

float& bar();
auto y1 = bar(); // y1 : float
const auto& y2 = bar(); // y2 : const float&
auto& y3 = bar(); // y3 : float&

A major concern in discussions ofauto like features has been the potential difficulty in figuring out whether the
declared variable will be of a reference type or not. Particularly, is unintentional aliasing or slicing of objects likely?
For example

// ...
auto b = d; // is this casting a reference to a base or slicing an object?
b.f(); // is polymorphic behavior preserved?
auto x = y; // is this value semantics (copying) or reference semantics?

Doc. no: N1478=03-0061 8

A unconditionally reference-preservingauto (e.g. anauto directly based ondecltype) would favor an object-oriented
style of use to the detriment of types with value semantics. Basingautoon template argument deduction rules provides
a natural way for a programmer to express his intention. Controlling copying and referencing is essentially the same
as with variables whose types are declared explicitly. For example:

A foo();
A& bar();
...
A x1 = foo(); // x1 : A
auto x1 = foo(); // x1 : A

A& x2 = foo(); // error, we cannot bind a non−lvalue to a non−const reference
auto& x2 = foo(); // error

A y1 = bar(); // y1 : A
auto y1 = bar(); // y1 : A

A& y2 = bar(); // y2 : A&
auto& y2 = bar(); // y2 : A&

Thus, as in the rest of the language, value semantics is the default, and reference semantics is provided through
consistent use of& . The type deduction rules extend naturally to more complex definitions:

std::vector<auto> x = foo();
std::pair<auto, auto>& y = bar();

The declaration ofx would fail at compile time if the return type of foo was not an instance ofstd::vector. Analogously,
the return type ofbar must be an instance ofstd::pair. Declaring such partial types for variables can be seen as
documenting the intent of the programmer. Here, the compiler can enforce that the intent is satisfied.

Stroustrup [Str02] points out that anauto like facility is primarily for declaring local variables, but unless deliber-
ately restricted, can be used in other contexts as well:

template <class T> void f(T a, auto b = a+2);

We do not yet have a clear picture, whether it would be beneficial, harmful, or neither, to allow such uses ofauto.
Thus, the current proposal restricts its use to variable declarations. The rules can be relaxed later.

4.1 Implicit templates

By defining the semantics ofauto in terms of initialization, we automatically open the door for allowingauto in every
context where a type is deduced through the initialization rules. Usingauto as a mechanism forimplicit template
functionswas presented in [Str02] and has been discussed within the Evolution Working Group. We do not propose to
allow implicit template functions, at least not as the first step. Nevertheless, the proposed semantics ofautoprovides a
consistent basis for implicit templates: every occurrence ofautocan be regarded as a new unique template parameter.
For example:

void foo(auto a, auto& b, const auto& c, pair<int, auto> d, auto∗ e);

can be defined as being equivalent to:

template<class __A, class __B, class __C, class__D, class __E>
void foo(__A a, __B& b, const __C& c, pair<int, __D> d, __E∗ e);

Going further in this direction,autocould be used as the return type of a function:

auto add(auto x, auto y) { return x + y; }

The return type would be deduced as the typeret in the expression:auto ret = x + y. Any deduced context would be
allowed:

const auto∗ foo(...);
auto& bar(...);
vector<auto> bah(...);

Doc. no: N1478=03-0061 9

Again, we do not currently propose allowing the use ofauto in the return type. We mention it to demonstrate the
generality of the proposed mechanism and semantics. For completeness, we document some of the issues concerning
auto return types:

• Multiple return statements are a problem. The two solutions are either not allowingauto in the return type of a
function with more than one return statement, or applying type deduction rules similar to ones used for deducing
the type of the conditional operator invocation. The former solution seems more plausible.

• Missing return statement. Should the return type bevoid, or should such a function definition be an error?

• To be able to deduce the return type from the body of the function, the body needs to be accessible, which
would restrict a function with anauto return type to be callable only from the compilation unit that contains the
definition of the function.

5 New function declaration syntax

We can anticipate that a common use for thedecltypeoperator is to specify return types that depend on the types
of function arguments. Unless their argument names are in scope in the return type expression, this task becomes
unnecessarily complicated. For example:

template <class T, class U> decltype((∗(T∗)0)+(∗(U∗)0)) add(T t, U u);

The expression(∗(T∗)0) is a hackish way to write an expression that has the typeT and doesn’t requireT to be default
constructible. If the argument names were in scope, the above declaration could be written as:

template <class T, class U> decltype(t+u) add(T t, U u);

To allow the argument names to be in scope in the return type expression, several syntaxes that move the return type
expression after the argument list are discussed in [Str02]. If the return type expression comes before the argument
list, parsing becomes difficult and name lookup may be less intuitive; the argument names may have other uses in an
outer scope at the site of the function declaration.

It is not strictly necessary to have the argument names in scope: Every return type expression that can be written
using the argument names can also be written using only the types of the arguments — at the cost of verbosity and
loss of readability.

From the syntaxes proposed in [Str02], and discussed within the evolution group in the Oxford-03 meeting, we
suggest adding a new keywordfun to express that the return type is to follow after the argument list. The return
type expression is preceded by−> symbol, and comes after the argument list (and potential cv-qualifiers in member
functions) but before the exception specification:

template <class T, class U> fun add(T t, U u)−> decltype(t + u);
class A {

fun f() const−> int throw ();
};

We refer to [Str02] for further analysis on the effects of the new function declaration syntax2 and expect a more detailed
paper addressing issues such as pointers to functions to be written.

6 Conclusions

In C++2003, it is not possible to express the return type of a function template in all cases. Furthermore, expressions
involving calls to function templates commonly have very complicated types, which are practically impossible to write
by hand. Hence, it is often not feasible to declare variables for storing the results of such expressions. This proposal
describesdecltypeandauto, two closely related language extensions that solve these problems. Intuitively, thedecltype
operator returns the declared type of an expression. For variables and parameters, this is the type the programmer finds

2Adding a new keyword is a drastic measure. Looking at the future, however,fun can serve as part of the syntax for defining unnamed functions.
No formal proposal of such extension exists at the moment, though.

Doc. no: N1478=03-0061 10

in the program text. For functions, the declared type is the return type of the definition of the outermost function called
within the expression, which can also be traced down and read from the program text (or in the standard in the case of
built-in functions). The semantics ofauto is unified with template argument deduction, which gives a natural means
to declare variables whose types are deduced from their initializer expressions.

We recognize the order of importance of the features discussed in this proposal:

1. decltype. The lack ofdecltypeis a source of frustration in generic programming, and has lead to extremely
complicated and brittle library solutions, which can only (poorly) approximate a built-indecltypeoperator.

2. auto. Givendecltype, auto can be (poorly) emulated. However, because of the subtlety of such emulation and
its difference from current practice in expressing declarations, we regardautoas important asdecltype.

3. New function declaration syntax. It is convenient to be able to use function parameters within adecltypeoperator
in return type expression. This necessitates new function declaration syntax, where the return type comes after
the parameter list. The new syntax is not strictly necessary; again, at the expense of increased complexity and
verbosity, all return types can be expressed without the new syntax.

4. Implicit templates usingauto. Can be safely left to be considered again in the future. We do not see reasons
why this extensions would be particularly difficult to implement.

5. Allowing the use ofauto in the return type expression. Can be safely left to maybe be considered again in the
future.

Finally, the main goal of the proposal is to define the semantics ofdecltypeandauto, rather than completely discuss
the syntax. However, we do consider the proposed syntax, the best (or at least the least bad) among alternatives.

7 Acknowledgements

We are grateful to Gary Powell, Mat Marcus, Daveed Vandevoorde, David Abrahams, Andreas Hommel, Jeremiah
Willcock, and Paul Mensonides for their valuable input in preparing this proposal. Clearly, this proposal builds on
input from members of the EWG as expressed in face-to-face meetings and reflector messages.

References

[Dim01] Peter Dimov.The Boost Bind Library. Boost, 2001.http://www.boost.org/libs/bind .

[Gre03] Douglas Gregor. A uniform method for computing function object return types. C++ standards committee
document N1437=03-0019, February 2003.

[JP02] Jaakko Järvi and Gary Powell.The Boost Lambda Library, 2002. http://www.boost.org/libs/
lambda .

[JPL03] Jaakko Järvi, Gary Powell, and Andrew Lumsdaine. The Lambda Library : unnamed functions in C++.
Software—Practice and Experience, 33:259–291, 2003.

[Str02] Bjarne Stroustrup. Draft proposal for "typeof". C++ reflector message c++std-ext-5364, October 2002.

[Vel] Todd Veldhuizen. Blitz++ home page.http://oonumerics.org/blitz .

[WK02] Jörg Walter and Mathias Koch.uBLAS Library. Boost, 2002. http://www.boost.org/libs/
numeric .

http://www.boost.org/libs/bind
http://www.boost.org/libs/lambda
http://www.boost.org/libs/lambda
http://www.boost.org/libs/numeric
http://www.boost.org/libs/numeric

	Introduction
	Motivation

	Design alternatives for [basicstyle=]typeof
	The [basicstyle=]decltype operator
	Auto
	Implicit templates

	New function declaration syntax
	Conclusions
	Acknowledgements

