
Doc. no. WG21/N1448
J16/03-0031

Date: 05 April 2003
Reply-To: Mat Marcus

Adobe Systems
801 North 34th Street
Seattle, WA 98103-8882
Fax: 206 675 6825
Email: mmarcus@emarcus.org

and
Gabriel Dos Reis
INRIA Sophia Antipolis
2004 route des Lucioles — BP 79
06902 Sophia-Antipolis — France
Fax: 334 92 38 79 78
Email: gdr@acm.org

Controling Implicit Template Instantiation
This paper proposes an extension to the explicit template instantiation

mechanism that would make it possible to control where a template is in-
stantiated, even when implicit instantiation would have otherwise been
possible under the inclusion model.

1 Need for Suppressing Template Instantiation

In industrial settings it is often desirable to be able to control the location of
template instantiations. Consider for example a system that consists of an
executable dynamically linked with a large number of shared libraries. If
the compiler is allowed to implicitly instantiate commonly used template
specializations then template code bloat — or even duplicate symbol defi-
nitions at link time — can ensue. Even in systems without shared libraries
such control can be desirable in order to reduce build times. Consider this
simplified example:

Example: Template code bloat. Let’s say that we have a system with one
executable named Consumer and one shared library Supplier . In the
source for Supplier we have a file supplier.cpp that instantiates MyVector<int>
and provides it for use by clients that dynamically link to Supplier

--- MyVector.h ---
// use inclusion model
template <class T>

1



2

class MyVector {
// some stuff goes here

};
--- Supplier.cpp---
#include "MyVector.h"
// MyVector<int> is to be made available
// to clients of the shared library
template class MyVector<int>;

Now, consider the executable, Consumer : it dynamically links to Supplier .
In the source for Consumer we have various source files that use MyVector<int> ,
one of which is consumer.cpp:

--- Consumer.cpp ---
#include "MyVector.h"
void foo(MyVector<int>& v)
{

// use v here, causing some implicit
// instantiation of MyVector<int>.

}

But we don’t want implicit instantiation to occur here. Instead we want to
share the code provided by the Supplier .

What options do we have today? We could separate the header into
two: one piece for declarations only, and one for definitions. But that hardly
leads to a maintainable solution in the case of header files that are provided
by the standard library or other third party libraries. And even if that were
feasible, there could be other compiler generated artifacts such as vtables
whose instantiation cannot portably be controlled using this idiom.

2 Absence of Syntax to Express Semantics

Usually, a forward declaration helps to break circular name use dependen-
cies. For ordinary function, it takes the form

int foo(int);

So, one might think that just putting the template keyword in front of
a forward-declaration might express a “forward declaration of a function
template specialization”, but it does not; the reason is that the declaration

template int bar(int);

is the syntax to request an explicit instantiation, not that of a mere declara-
tion.

So what to try next? Putting the keyword extern before the explicit in-
stantiation syntax in order to suppress the actual definition is not currently
allowed by 7.1.1/1

Controling explicit template instantiation WG21/N1448



3

[...] A storage-class-specifier shall not be specified in an explicit
specialization (14.7.3) or an explicit instantiation (14.7.2) direc-
tive.

Finally, one might think that sticking a pair of angle-branckets after the
template keyword might express the original intent, but it does not; the
reason is that now

template<> int bar(int);

is declararing an explicit specialization, i.e. something different.
What is needed is a syntax to say “do not implicitly instantiate this special-

ization here”. A workable solution would be to instantiate the template once
in a common shared library shared by the others. This proposal satisfies
the following extension desirability criteria

• improve support for library building – Yes

• improve support for generic programming – Somewhat

• remove embarrassments — Maybe — doesn’t it look like extern
template should just work?

3 Proposed Resolution

3.1 Basic Cases

We propose to address the problems mentioned in the preceding section
by allowing explicit template instantiations to be declared as extern . For
example, we might add an explicit extern instantiation of MyVector<int>
to consumer.cpp in the example above to obtain.

--- Consumer.cpp ---
#include "MyVector.h"

// Suppresses implicit instantiation below --
// Will be explicitly instantiated later.
extern template class MyVector<int>;

void foo(MyVector<int>& v)
{

// use the vector in here
}

In this case the “extern template ” declaration directs the compiler not
to instantiate MyVector<int> , in consumer.cpp.

Controling explicit template instantiation WG21/N1448



4

3.2 Advanced Cases

In the interest of offering users finer control of template instantiation under
the inclusion model, there is another issue that is worth mentioning. Com-
pilers vary in their aggressiveness when instantiating associated types to a
given template instantiation. Some take a shallow approach while others
try to recursively instantiate all related types. The extern template exten-
sion does finally give users a means to prevent instantiation of these associ-
ated types, but it can require a good deal of manual labor. Perhaps it would
be worth spending some additional time to try to reduce the user’s burden
in this case.

In the case of an extern explicit class template instantiation, it is desir-
able that generation of all other class related artifacts be suppressed, e.g.
vtables.

4 Interactions and Implementability

4.1 Interactions

The ”extern template” construct, as proposed by the current paper, is meant
to be applicable only to instantiations of non-exported templates. We be-
lieve that, except for the greedy instantiation issue, controling implicit tem-
plate instantiation is less of an issue for exported templates.

This extension provides a syntax to express semantics that already ex-
ist for non-template functions, but is missing for specializations of non-
exported templates:

• Remove the last sentence (quoted in §2) from 7.1.1/1.

• Change 7.1.1/5 to:

The extern specifier can be applied only to the names of objects,
functions and explicit template instantiations. The extern specifier
cannot be used in the declaration of class members or function param-
eters. For the linkage of a name declared with an extern specifier,
see 3.5. When used to declare an explicit instantiation, the declara-
tion shall appear at namespace scope (3.3.5). The extern specifier
used to declare an explicit instantiation of a class template only sup-
presses explicit instantiations of definitions of member functions and
static data members not previously specialized in the translation unit
containing the declaration.

The extern storage class specifier is usually viewed as the “opposite”
of static ; this proposal does not make any provision for the semantics of
applying the storage class specifier static in lieu of extern as discussed
above.

Controling explicit template instantiation WG21/N1448



5

4.2 Implementability

This feature has been implemented in compiler front ends offered by Edi-
son Design Group, GCC, IBM, Metrowerks, and Microsoft.

5 References

This proposal also addresses an issue raised by Steve Clamage on the Core
Working Group reflector — see message c++std-core-9243 .

Controling explicit template instantiation WG21/N1448


	Need for Suppressing Template Instantiation
	Absence of Syntax to Express Semantics
	Proposed Resolution
	Basic Cases
	Advanced Cases

	Interactions and Implementability
	Interactions
	Implementability

	References

