
Proposal for adding tuple types into the standard library
Programming Language C++
Document no: N1403=02-0061

Jaakko Järvi
Indiana University

Pervasive Technology Laboratories
Bloomington, IN

jajarvi@cs.indiana.edu

November 8, 2002

1 Motivation

Tuple types exist in several programming languages, such as Haskell, ML, Python and Eiffel, to name
a few. Tuples are fixed-size heterogeneous containers. They are a general-purpose utility, adding to the
expressiveness of the language. Some examples of common uses for tuple types are:

• Return types for functions that need to have more than one return type.

• Grouping related types or objects (such as entries in parameter lists) into single entities.

• Simultaneous assignment of multiple values.

This proposal describes tuple types for C++. The standard library provides the pair template which
is being used throughout the standard library, demonstrating the usefulness of tuple-like constructs. The
proposed tuple type is basically a generalization of the pair template from two to an arbitrary number of
elements. In addition to the features and functionality of pairs, the proposed tuple types:

• Support a wider range of element types (e.g. reference types).

• Support input from and output to streams, customizable with specific manipulators.

• Provide a mechanism for ‘unpacking’ tuple elements into separate variables.

2 Impact on the standard

All features described in this document can be implemented in a library, without requiring any core language
changes. However, the implementation would benefit from a set of core language changes:

• Adding support for variable-length template argument lists.

• Making a reference to a reference to some type T equal to a reference to T (core language issue 106).

• Allowing default template arguments for function templates (core language issue 226).

• Ignoring cv-qualifiers that are added to function types (core language issue 295).

• Adding support for templated typedefs.

1

Doc. no: N1403=02-0061 2

The proposal is written in such a way that it leaves room for a built-in tuple type, or for a tuple template
with special support from the compiler, which we see as being worth considering. Compared to built-in tuple
types in other languages, a library solution still falls short in some aspects. For instance, in the programming
language Python, the function argument list is implicitly a tuple. This is a feature that cannot be added to
C++ as a library, but would be most useful.1

The concrete additions and changes to the standard are:

• A new section describing the requirements for the tuple template.

• Backwards-compatible changes to pair to allow pairs to act as tuples.

• A utility class and two utility function templates to be used in passing reference arguments through a
pass-by-copy interface. These templates have uses outside of tuples we suggest then to be included in
section 20.2 (Utility components).

We propose a new new standard header <tuple>. Operators for reading tuples from a stream and writing
tuples to a stream introduce a dependency to <istream> and <ostream>, so it is a quality-of-implementation
issue to not include definitions from these headers unnecessarily.

3 Tuples in a nutshell

The purpose of this section is to give an informal overview of the features that the tuple types provide. The
feature set is largely based on the Boost Tuple Library [2, 3].

3.1 Defining tuple types

The tuple template can be instantiated with any number of arguments from 0 to some predefined upper
limit. In the Boost Tuple library, this limit is 10. The argument types can be any valid C++ types. For
example:

typedef tuple<A, const B, volatile C, const volatile D> t1;
typedef tuple<int, int&, const int&, const volatile int&> t2;
typedef tuple<void, int()(int)> t3;

Note that even types of which no objects can be created (cf. void, int()(int)), are valid tuple elements.
Naturally, an object of a tuple type with such an element type cannot be constructed.

3.2 Constructing tuples

An n-element tuple has a default constructor, a constructor with n parameters, a copy constructor and a
converting copy constructor. By converting copy constructor we refer to a constructor that can construct a
tuple from another tuple, as long as the type of each element of the source tuple is convertible to the type
of the corresponding element of the target tuple. The types of the elements restrict which constructors can
be used:

• If an n-element tuple is constructed with a constructor taking 0 elements, all elements must be default
constructible. For example:

tuple<int, float> a; // ok
class no_default_constructor { no_default_constructor(); };
tuple<int, no_default_constructor, float> b; // error
tuple<int, int&> c; // error, no default construction for references

1Truly generic forwarding functions that could take any number of parameters would be supported. For example, one
constructor definition in a derived class could cover a large set of base class constructors with different arities and argument
types.

Doc. no: N1403=02-0061 3

• If an n-element tuple is constructed with a constructor taking n elements, all elements must be copy
constructible and convertible (default initializable) from the corresponding argument. For example:

tuple<int, const int, std::string>(1, ’a’, "Hi")
tuple<int, std::string>(1, 2); // error

• If an n-element tuple is constructed with the converting copy constructor, each element type of the
constructed tuple type must be convertible from the corresponding element type of the argument.

tuple<char, int, const char(&)[3]> t1(’a’, 1, "Hi");
tuple<int, float, std::string> t2 = t1; // ok

Construction works from std::pair as well. For example:

tuple<int, int> t3 = make_pair(’a’, 1); // ok

3.3 make_tuple

Tuples can also be constructed using the make_tuple (cf. make_pair) utility function templates. This makes
the construction more convenient, saving the programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));

}

By default, the element types are plain non-reference types. E.g., the make_tuple invocation below creates
a tuple of type tuple<A, B>:

void foo(const A& a, B& b) {
...
make_tuple(a, b);
...

}

This default behavior can be changed with to utility functions ref and cref. An argument wrapped with
ref will cause the element type to be a reference to the argument type, and cref will similarly cause the
element type to be a reference to the const argument type. For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // constructs tuple<const A&, B>(a, b)
make_tuple(ref(a), b); // constructs tuple<A&, B>(a, b)
make_tuple(ref(a), cref(b)); // constructs tuple<A&, const B&>(a, b)
make_tuple(cref(ca)); // constructs tuple<const A&>(ca)
make_tuple(ref(ca)); // constructs tuple<const A&>(ca)

Note that make_tuple cannot be made to accept references to function types without the ref wrapper,
unless core language issue 295 is resolved.

3.4 Assignment

The assignment operation is defined as element-wise assignment. Consequently, two tuples are assignable as
long as they are element-wise assignable. For example:

tuple<char, int, const char(&)[3]> t1(’a’, 1, "Hi");
tuple<int, float, std::string> t2;
t2 = t1; // ok

Analogously to the converting copy constructor, assignment is defined from pairs as well.

Doc. no: N1403=02-0061 4

3.5 The tie function templates

The tie functions are a short-hand notation for creating tuples where all element types are references. A
tie call corresponds to an invocation of make_tuple where all arguments have been wrapped with ref.
For example, the tie and make_tuple invocations below both return the same type of tuple object, namely
tuple<int&, char&, double&>:

int i; char c; double d;
tie(i, c, d);
make_tuple(ref(i), ref(c), ref(d));

A tuple that contains non-const references as elements can be used to ‘unpack’ another tuple into variables.
For example:

int i; char c; double d;
tie(i, c, d) = make_tuple(1, ’a’, 5.5);

After the assignment, i == 1, c == ’a’ and d == 5.5. A tuple unpacking operation like this is found, for
example, in ML and Python. It is convenient when calling functions which return tuples.

3.5.1 Ignore

The library provides an object called ignore which allows one to ignore elements in an assignment to a
tuple. Any assignment to ignore is a no-operation. For example:

char c;
tie(ignore, c) = make_tuple(1, ’a’);

After this assignment, c == ’a’.

3.6 Number of elements

The number of elements in a tuple type is accessible as a compile-time constant:

tuple_size<tuple<int, int, int, int> >::value; // equals 4

3.7 Element type

The type of the Nth element of a tuple type is accessed using the tuple_element template:

tuple_element<2, tuple<int, char, float, double> >::type // float

Indexing is zero-based. The index must be an integral constant expression and using an index that is out of
bounds results in a compile time error.

3.8 Element access

Let t be a tuple object. The expression get<N>(t) returns a reference to the Nth element of t, where N is
an integral constant expression.

tuple<int, float, char>(1, 3.14, ’a’) t;
get<2>(t); // equals ’a’

Indexing is zero-based. Using an index that is out of bounds results in a compilation error.

Doc. no: N1403=02-0061 5

3.9 Relational operators

Tuples implement the operators ==, !=, <, >, <= and >= using the corresponding operators on elements. This
means that if any of these operators is defined between all elements of two tuples, the same operator is
defined between the tuples as well.

The operator== is defined as the logical AND of the element-wise equality comparisons. The operator!=
is defined as the logical OR of the element-wise inequality comparisons. The operators <, >, <= and >= each
define a lexicographical ordering. An attempt to compare two tuples of different lengths results in a compile-
time error. The comparison operators are “short-circuited”: elementary comparisons start from the first
elements and are performed only until the result is known. Elements after that are not accessed. For
example:

tuple<int, float, char> t(1, 2, ’a’);
tuple<int, char, int> u(1, 1, 1000);
t < u; // ok, false

tuple<int, int, int, int> x;
tuple<int, int, int> y;
x < y; // error, different sizes

tuple<int, int, complex<double>, int> x;
tuple<int, int, string, int> y;
x < y; // error, no operator< between complex<double> and string

3.10 Input and output

The library overloads the streaming operators << and >> for tuples. Output is implemented by invoking
operator<< for each element, and input similarly with invocations of operator>>. When writing a tuple to
a stream, opening and closing characters are written around the body of the tuple. Additionally, a delimiter
character is written between each two consecutive elements. Similarly, the opening, closing and delimiter
characters are expected to be present when extracting a tuple from an input stream. The default delimiter
between the elements is a space, and the default opening and closing characters are the parentheses. For
example:

cout << make_tuple(1, ’a’, "C++");

outputs (1 a C++).
The library defines three formatting manipulators for tuples, tuple_open, tuple_close and tuple_-

delimiter to change, respectively, the opening, closing and delimiter characters for a particular stream. For
example:

cout << tuple_open(’[’) << tuple_close(’]’)
<< tuple_delimiter(’,’)
<< make_tuple(1, ’a’, "C++");

outputs the same tuple as: [1,a,C++].
Note that in general it is not guaranteed that a tuple written to a stream can be extracted back to a

tuple of the same type, since the streamed tuple representation may not be unambiguously parseable. This
is true, for instance, for tuples with string or C-style string element types.

3.11 Performance

Based on the experience with the Boost Tuple library, it is reasonable to expect an optimizing compiler to
eliminate any extra cost of using tuples compared to using hand-written tuple-like classes. Inlining and copy
propagation are the optimizations required to attain this goal.

Doc. no: N1403=02-0061 6

Concretely, accessing tuple members should be as efficient as accessing a member variable of a class.
Further, constructing a tuple should have no other cost than the cost of constructing the elements as separate
objects. The same should be true for assignment.

Text in the standard
Text enclosed with brackets and typeset in sans serif is a comment, not proposed standard text [This is a
comment].

4 Annex B: Implementation quantities

[Add to the list of implementation quantities (which specifies the recommended minima for implementation
quantities).]

— Number of elements in one tuple type [10].

5 Tuple library

This clause describes the tuple library that provides a tuple type as the class template tuple that can be
instantiated with any number of arguments. An implementation can set an upper limit for the number of
arguments. The minimum value for this implementation quantity is defined in Annex B. Each template
argument specifies the type of an element in the tuple. Consequently, tuples are heterogeneous, fixed-size
collections of values.

Doc. no: N1403=02-0061 7

Header <tuple> synopsis

template <class T1 = implementation-defined,
class T2 = implementation-defined,
...,
class TM = implementation-defined> class tuple;

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator==(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator!=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator<(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator<=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator>(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator>=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);

template <class T> class tuple_size;

template <int I, class T> class tuple_element;

template <int I, class T1, class T2, ..., class TN>
RI get(tuple<T1, T2, ..., TN>&);

template <int I, class T1, class T2, ..., class TN>
PI get(const tuple<T1, T2, ..., TN>&);

template<class T1, class T2, ..., class TN>
tuple<V1, V2, ..., VN >
make_tuple(const T1&, const T2& , ..., const TN&);

template<class T1, class T2, ..., class TN>
tuple<T1&, T2&, ..., TN&> tie(T1&, T2& , ..., TN&);

template<class CharType, class CharTrait, class T1, class T2, ..., class TN>
basic_ostream<CharType, CharTrait>&
operator<<(basic_ostream<CharType, CharTrait>&, const tuple<T1, T2, ..., TN>&);

template<class CharType, class CharTrait, class T1, class T2, ..., class TN>
basic_istream<CharType, CharTrait>&
operator>>(basic_istream<CharType, CharTrait>&, tuple<T1, T2, ..., TN>&);

tuple manip1 tuple_open(char type c);
tuple manip2 tuple_close(char type c);
tuple manip3 tuple_delimiter(char type c);

Doc. no: N1403=02-0061 8

Class template tuple

M is used to denote the implementation-defined number of template type parameters to the tuple class
template, and N is used to denote the number of template arguments specified in an instantiation.

[Example: Given the instantiation tuple<int, float, char>, N is 3. –end example]

template <class T1 = implementation-defined,
class T2 = implementation-defined,
...,
class TM = implementation-defined> class tuple {

public:
tuple();
explicit tuple(P1, P2, ..., PN); // iff N > 0

tuple(const tuple&);

template <class U1, class U2, ..., class UN>
tuple(const tuple<U1, U2, ..., UN>&);

template <class U1, class U2>
tuple(const pair<U1, U2>&);

tuple& operator=(const tuple&);

template <class U1, class U2, ..., class UN>
tuple& operator=(const tuple<U1, U2, ..., UN>&);

template <class U1, class U2>
tuple& operator=(const pair<U1, U2>&);

};

Construction

tuple();

Requires: Each tuple element type Ti can be default constructed.
Effects: Default initializes each element.

tuple(P1, P2, ..., PN);

Where, if Ti is a reference type then Pi is Ti, otherwise Pi is const Ti&.
Requires: Each tuple element type Ti is copy constructible.
Effects: Copy initializes each element with the value of the corresponding parameter.

tuple(const tuple& u);

Requires: all types Ti shall be copy constructible.
Effects: Copy constructs each element of *this with the corresponding element of u.

template <class U1, class U2, ..., class UN>
tuple(const tuple<U1, U2, ..., UN>& u);

Requires: Each type Ti shall be constructible from the corresponding type Ui.
Effects: Constructs each element of *this with the corresponding element of u.

[In an implementation where one template definition serves for many different values for N, enable if can be
used to make the converting constructor and assignment operator exist only in the cases where the source

Doc. no: N1403=02-0061 9

and target have the same number of elements. Another way of achieving this is adding an extra integral
template parameter which defaults to N (more precisely, a metafunction that computes N), and then defining
the converting copy constructor and assignment only for tuples where the extra parameter in the source is
N.]

template <class U1, class U2> tuple(const pair<U1, U2>& u);

Requires: T1 shall be constructible from U1, T2 shall be constructible from U2. N == 2.
Effects: Constructs the first element with u.first and the second element with u.second.

tuple& operator=(const tuple& u);

Requires: All types Ti are assignable.
Effects: Assigns each element of u to the corresponding element of *this.
Returns: *this

template <class U1, class U2, ..., class UN>
tuple& operator=(const tuple<U1, U2, ..., UN>& u);

Requires: Each type Ti shall be assignable from the corresponding type Ui.
Effects: Assigns each element of u to the corresponding element of *this.
Returns: *this

template <class U1, class U2> tuple& operator=(const pair<U1, U2>& u);

Requires: T1 shall be assignable from U1, T2 shall be assignable from U2. N == 2.
Effects: Assigns u.first to the first element of *this and u.second to the second element of *this.
Returns: *this

[There seem to exist (rare) conditions where the converting copy constructor is a better match than the element-
wise construction, even though the user might intend differently. An example of this is if one is constructing a
one-element tuple where the element type is another tuple type T and if the parameter passed to the constructor
is not of type T, but rather a tuple type that is convertible to T. The effect of the converting copy construction
is most likely the same as the effect of the element-wise construction would have been. However, it it possible to
compare the ’nesting depths’ of the source and target tuples and decide to select the element-wise constructor if
the source nesting depth is smaller than the target nesting-depth. This can be accomplished using an enable if
template or other tools for constrained templates.]

Tuple creation functions

template<class T1, class T2, ..., class TN>
tuple<V1, V2, ..., VN>
make_tuple(const T1& t1, const T2& t2, ..., const TN& tn);

where Vi is X&, if the cv-unqualified type Ti is reference_wrapper<X>, otherwise Vi is Ti.

Returns: tuple<V1, V2, ..., VN>(t1, t2, ..., tn).
Notes: The make_tuple function template must be implemented for each different number of arguments
from 0 to the maximum number of allowed tuple elements.

[Example:

int i; float j;
make_tuple(1, ref(i), cref(j))

creates a tuple of type

tuple<int, int&, const float&>

–end example]

Doc. no: N1403=02-0061 10

template<class T1, class T2, ..., class TN>
tuple<T1&, T2&, ..., TN> tie(T1& t1, T2& t2, ..., TN& tn);

Returns: tuple<T1&, T2&, ..., TN&>(t1, t2, ..., tn)
Notes: The tie function template must be implemented for each different number of arguments from 0 to
the maximum number of allowed tuple elements.

[Example:

tie functions allow one to create tuples that unpack tuples into variables. ignore can be used for elements
that are not needed:

int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");
// i == 42, s == ”C++”;

–end example]

Valid expressions for tuple types

tuple_size<T>::value

Requires: T is an instantiation of class template tuple.
Type: integral constant expression.
Value: Number of elements in T.

tuple_element<I, T>::type

Requires: 0 ≤ I < tuple_size<T>::value. The program is ill-formed if I is out of bounds.
Value: The type of the Ith element of T, where indexing is zero-based.

Element access
template <int I, class T1, class T2, ..., class TN>
RI get(tuple<T1, T2, ..., TN>& t);

Requires: 0 ≤ I < N. The program is ill-formed if I is out of bounds.
Return type: RI. If TI is a reference type, then RI is TI, otherwise RI is TI&.
Returns: A reference to the Ith element of t, where indexing is zero-based.

template <int I, class T1, class T2, ..., class TN>
PI get(const tuple<T1, T2, ..., TN>& t);

Requires: 0 ≤ I < N. The program is ill-formed if I is out of bounds.
Return type: PI. If TI is a reference type, then PI is TI, otherwise PI is const TI&.
Returns: A const reference to the Ith element of t, where indexing is zero-based.

[Constness is shallow. If TI is some reference type X&, the return type is X&, not const X&. However, if the
element type is non-reference type T, the return type is const T&. This is consistent with how constness is defined
to work for member variables of reference type.]

[Implementing get as a member function of tuple, would require using the template keyword in invocations
where the type of the tuple object is dependent on a template parameter. For example: t.template get<1>();
]

Equality and inequality comparisons

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator==(const tuple<T1, T2, ..., TM>& t,

const tuple<U1, U2, ..., UM>& u);

Requires: tuple_size<tuple<T1, T2, ..., TM> >::value == tuple_size<tuple<U1, U2, ..., UM>
>::value == N. For all i, where 0 <= i < N, get<i>(t) == get<i>(u) is a valid expression returning

Doc. no: N1403=02-0061 11

a type that is convertible to bool.
Return type: bool
Returns: true iff get<i>(t) == get<i>(u) for all i. For any two zero-length tuples e and f, e == f
returns true.
Effects: The elementary comparisons are performed in order from the zeroth index upwards. No comparisons
or element accesses are performed after the first equality comparison that evaluates to false.

template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator!=(const tuple<T1, T2, ..., TM>& t,

const tuple<U1, U2, ..., UM>& u);

Requires: tuple_size<tuple<T1, T2, ..., TM> >::value == tuple_size<tuple<U1, U2, ..., UM>
>::value == N. For all i, where 0 <= i < N, get<i>(t) != get<i>(u) is a valid expression returning
a type that is convertible to bool.
Return type: bool
Returns: true iff get<i>(t) != get<i>(u) for any i. For any two zero-length tuples e and f, e != f
returns false.
Effects: The elementary comparisons are performed in order from the zeroth index upwards. No comparisons
or element accesses are performed after the first inequality comparison that evaluates to true.

<, > comparisons

template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
bool operator<(const tuple<T1, T2, ..., TN>&, const tuple<U1, U2, ..., UN>&);

template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
bool operator>(const tuple<T1, T2, ..., TN>&, const tuple<U1, U2, ..., UN>&);

Requires: tuple_size<tuple<T1, T2, ..., TM> >::value == tuple_size<tuple<U1, U2, ..., UM>
>::value == N. For all i, where 0 <= i < N, get<i>(t) � get<i>(u) is a valid expression returning
a type that is convertible to bool, where � is either < or >.
Return type: bool
Returns: The result of a lexicographical comparison with � between t and u, defined equivalently to:

(bool)(get<0>(t) � get<0>(u)) || !((bool)(get<0>(u) � get<0>(t)) && ttail � utail,
where rtail for some tuple r is a tuple containing all but the first element of r. For any two zero-length
tuples e and f, e � f returns false.

<= and >= comparisons

template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
bool operator<=(const tuple<T1, T2, ..., TN>&, const tuple<U1, U2, ..., UN>&);

template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
bool operator>=(const tuple<T1, T2, ..., TN>&, const tuple<U1, U2, ..., UN>&);

Requires: tuple_size<tuple<T1, T2, ..., TM> >::value == tuple_size<tuple<U1, U2, ..., UM>
>::value == N. For all i, where 0 <= i < N, get<i>(t) � get<i>(u) is a valid expression returning
a type that is convertible to bool, where � is either <= or >=.
Returns: The result of a lexicographical comparison with � between t and u, defined equivalently to:

(bool)(get<0>(t) � get<0>(u)) && (!((bool)(get<0>(u) � get<0>(t)) || ttail � utail),
where rtail for some tuple r is a tuple containing all but the first element of r. For any two zero-length
tuples e and f, e � f returns true.

Notes: The above definitions for comparison operators do not impose the requirement that ttail (or utail)
must be constructed. It may be even impossible, as t (or u) is not required to be copy constructible. Also,
all comparison operators are short circuited to not perform element accesses beyond what is required to
determine the result of the comparison.

Doc. no: N1403=02-0061 12

Input and output

template<class CharType, class CharTrait, class T1, class T2, ..., class TN>
basic_ostream<CharType, CharTrait>&
operator<<(basic_ostream<CharType, CharTrait>& os,

const tuple<T1, T2, ..., TN>& t);

Requires: For all i = 0, 1, ..., N-1 in os << get<i>(t) is a valid expression.
Effects: Inserts t into os as Lt0dt1d...dtnR, where L is the opening, d the delimiter and R the closing
character set by tuple formatting manipulators. Each element ti is output by invoking os << get<i>(t).
A zero-element tuple is output as LR and a one-element tuple is output as Lt0R.
Returns: os

template<class CharType, class CharTrait, class T1, class T2, ..., class TN>
basic_istream<CharType, CharTrait>&
operator>>(basic_istream<CharType, CharTrait>& is,

tuple<T1, T2, ..., TN>& t);

Requires: For all i = 0, 1, ..., N-1 in is >> get<i>(t) is a valid expression.
Effects: Extracts a tuple of the form Lt0dt1d...dtnR, where L is the opening, d the delimiter and R
the closing character set by tuple formatting manipulators. Each element ti is extracted by invoking
is >> get<i>(t). A zero-element tuple expects to extract LR from the stream and one-element tuple
expects to extract Lt0R. If bad input is encountered, calls is.set_state(ios::failbit) (which may
throw ios::failure (27.4.4.3)).
Returns: is
Notes: It is not guaranteed that a tuple written to a stream can be extracted back to a tuple of the same
type.

Tuple formatting manipulators

The library defines the following three stream manipulator functions. The types designated tuple manip1,
tuple manip2 and tuple manip3 are implementation-specified.

tuple manip1 tuple_open(char_type c);
tuple manip2 tuple_close(char_type c);
tuple manip3 tuple_delimiter(char_type c);

Returns: Each of these functions returns an object s of unspecified type such that if out is an instance
of basic_ostream<charT,traits>, in is an instance of basic_istream<charT,traits> and char_type
equals charT, then the expression out << s (respectively in >> s) sets c to be the opening, closing, or
delimiter character (depending on the manipulator function called) to be used when writing tuples into out
(respectively extracting tuples from in).
Notes: Implementations are not required to support these manipulators for streams with sizeof(charT)
> sizeof(long); out << s and in >> s are required to fail at compile time if out and in are such streams
and the implementation does not support tuple formatting manipulators for them.

[The constraint stated in the above Notes section allows an implementation where the delimiter characters
are stored in space allocated by xalloc, which allocates an array of longs. A more general alternative is to
store pointers to the delimiter characters in the xalloc-allocated array, and register a callback function (with
ios_base::register_callback) for the stream to take care of deallocating the memory. If this approach is
taken, the delimiters could be chosen to be strings instead of single characters. This might be worthwhile, such
as to allow delimiters like ", ".]

6 Utility components

The library provides the class template reference_wrapper that stores a reference to an object in a Copy-
Constructible wrapper, and two reference_wrapper construction functions that allow the user to express
the intent in storing a reference instead of a copy.

Doc. no: N1403=02-0061 13

template<typename T>
class reference_wrapper {
public:
typedef T type;

explicit reference_wrapper(T &);

operator T& () const;
T& get() const;

};

explicit reference_wrapper(T& t));

Postconditions: this->get() is equivalent to t.
Throws: will not throw.

operator T& () const;

Returns: this->get()
Throws: will not throw.

T& get() const;

Returns: the stored reference.
Throws: will not throw.

template<typename T> reference_wrapper<T> ref(T& t);

Returns: reference_wrapper<T>(t)
Throws: will not throw.

template<typename T> reference_wrapper<T const> cref(const T& t);

Returns: reference_wrapper<T const>(t)
Throws: will not throw.

The library provides the class swallow_assign:

struct swallow_assign {
template <class T>
swallow_assign& operator=(const T&) { return *this; }

};

The library provides an object ignore of type swallow_assign.
extern swallow_assign ignore;

7 Pairs

[Additions to pair to work with tuples]

template<class T1, class T2>
struct tuple_size<pair<T1, T2> > {
static const int value = 2;

};

Doc. no: N1403=02-0061 14

template<class T1, class T2>
struct tuple_element<0, pair<T1, T2> > {
typedef T1 type;

};

template<class T1, class T2>
struct tuple_element<1, pair<T1, T2> > {
typedef T2 type;

};

template<int I, class T1, class T2>
P& get(pair<T1, T2>&);

template<int I, class T1, class T2>
const P& get(const pair<T1, T2>&);

Return type: If I is 0 then P is T1, if I is 1 then P is T2, otherwise the program is ill-formed.
Returns: If I == 0 returns p.first, otherwise returns p.second.

8 Acknowledgements

The author is indebted to Jeremiah Willcock, Douglas Gregor and Gary Powell, as well as to Jeremy Siek
and Dave Abrahams for their invaluable help in preparing this document. The Boost Tuple Library, the basis
of this proposal, has benefited from suggestions by many in the Boost community, including Jens Maurer,
William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, and Hartmut Kaiser.

References

[1] The Boost Type Traits library. www.boost.org/libs/type_traits, 2002.

[2] Jaakko Järvi. The Boost Tuple Library. www.boost.org/libs/tuple, 2001.

[3] Jaakko Järvi. Tuple types and multiple return values. C/C++ Users Journal, 19:24–35, August 2001.

[4] John Maddock. A Proposal to add Type Traits to the Standard Library. C++ Standards Committee
Doc. no. J16/02-0003 = WG21/N1345, March 2002.

[5] John Maddock and Steve Cleary. C++ type traits. Dr. Dobb’s Journal, October 2000.

