
N1384=02-0042 10 September 2002

PME: Properties, Methods and Events

Borland Software Corp.
2003.09.09

N1384=02-0042

Introduction

Modern GUI frameworks have demonstrated the need for a more capable, dynamic
object model. Such a model is not incompatible with C++, requiring only a small addition
to its basic features. The name given to these additions is called “the PME model”, for
“Properties, Methods and Events”.

A property is a conceptual attribute of an object that can be queried and modified at
runtime. It differs from a regular data member in that the underlying value of the property
might be computed rather than stored. Standard C++ requires the use of getter and setter
methods to emulate this type of functionality, which are only useful at compile-time.

A method, as envisioned in the PME model, is not different from a C++ method. The
only extension is the idea of “introspection”, which allows an object’s methods to be queried
and invoked at run-time. Standard C++ requires pre-processing tools to achieve this.

The event part of the PME model refers to event handlers: a property of an object that
can hold a pointer to one or more functions, to be called whenever a particular event occurs.
The function called might be a member function on the same object, or a different object.
And while argument sets may vary, the argument set for a particular event should always
remain the same. Standard C++ requires the use of pre-processing tools to express this idea
in a scalable fashion1.

In order to allow Standard C++ to fully support the PME model, and hence provide
language facilities for want of which many companies have labored long and hard, we propose
a few changes to the standard C++ language. Some of these changes are prerequisite to more
complex concepts, while others are only a matter of syntax and can be accepted or rejected
without compromising the overall proposal.

Bound pointer to member

For a given argument set, a member function pointer for a particular instance requires
that that instance—and its type—be known to all callers of the function. A “bound pointer
to member” is a generalized member pointer that stores the type and pointer of that in-
stance, making the member function later callable without knowledge of either.

Here is an example of calling a member function through a pointer, without using bound
pointers:

1 Such as Qt’s signal/socket framework. Without such pre-processing tools, C++-only implementations,
which rely on a separate helper class for every type/argument-list combination, grow to an unwieldy
extent.

1



N1384=02-0042 10 September 2002

my_class x;

int foo(int (my_class::*bar)()) {
int local = (x.*bar)(); // set ‘local’ to the value

// returned by the bar method
}

Note two things: ‘foo’s function signature makes reference to ‘my_class’, and the call
itself uses an object of type ‘my_class’ to bind the call.

Here is the same example using a bound pointer:
int foo(int (::*bar)()) {
int local = bar();

}

In this case, neither ‘my_class’, nor any instances of type ‘my_class’, are necessary to
make the call. The logic in ‘foo’ can be written independently of such knowledge.

Bound pointers allow for abstraction in interfaces that wish to call arbitrary member
functions with a known argument set. It is possible, to a certain extent, to use templates to
achieve this kind of “type-less” call, but this forces: 1) a new template to be created for every
possible combination of function parameters, and 2) that each template be instantiated for
every possible type.

Event handlers

Without bound pointers, code wishing to make a member function call through a pointer
must know the parent type of the member function, and have a pointer to an instance of
that type. This is always required, whether or not the parent type has anything to do with
the logic of the calling code. One key idiom this causes problems with is event handlers.

In the case of event handlers, it is desirable for code to be able to call a set of functions
whenever a particular event occurs. Often, the user would like member functions from
several different objects to handle the event. However, because knowledge of the parent
type is required, event handlers must be bound to a pointer to an object of base type,
which all of the handling objects must derive from.

In the case of types which do not share a common base, this requirement can be alle-
viated somewhat by using smart pointer classes implemented as templates. However, this
method has one major drawback: Function parameter lists cannot be specified via a tem-
plate argument. Thus, not only is a template class necessary—to differentiate the parent
type of the object when the member function is used—but in addition a unique template
class must be generated for every possible combination of parameters:

template<typename Parent>
class event_i {
typedef void (Parent::*func_ptr)(int);
Parent * object;
func_ptr handler;

public:
explicit event_i(Parent *obj, func_ptr f) :

object(obj), handler(f) { }

2



N1384=02-0042 10 September 2002

void operator()(int i) {
(obj->*handler)(i);

}
};

event_i<SomeClass> event_hndlr((SomeClass *) SomeObject,
SomeClass::MyHandler);

event_hndlr(10);

As you can imagine, repeating this class declaration for every variation of ‘event_i’ gets
tiresome quickly, slows down compile time, and increases executable and debug information
sizes unnecessarily.

Worse, the type of the event handler continues to be part of the signature, requring all
event sending types to be recompiled. That problem can be addressed with another level
of indirection:

class event_base_i {
public:
virtual ~event_base_i() { }
virtual void operator()(int i) = 0;

};

// modify event_i<> to derive from event_base_i

class event_sender {
private:
event_base_i * event_handler;
void send_event() {

(*event_handler)(10);
}

public:
void set_handler(event_base_i *);

};

event_sender *s = init_from_somewhere();
s->set_handler(new event_i<SomeObject>(SomeObject,

&SomeClass::MyHandler);

We’ve now doubled the number of classes that need to be defined, and introduced addi-
tional costs in terms of run-time execution and memory management.

Using bound pointers-to-member, however, the parent type is abstracted, removing the
need for a template class. And since the event handler is now merely a call through a
pointer, the argument types are only specified once at the time of the pointer’s declaration.

void (::*handler)(int) = &SomeObject->MyHandler;
(*handler)(10);

class event_sender {
private:
void (::*event_handler)(int);

3



N1384=02-0042 10 September 2002

void send_event() {
(*event_handler)(10);

}
public:

void set_handler(event_base_i *);
};

event_sender *s = init_from_somewhere();
s->set_handler(&SomeObject->MyHandler);

Rationale

While member pointers are very useful, they impose a strict penalty on code wishing to
use them that does not require—or even want— knowledge of the parent type. Templates
provide a way to accommodate this requirement in some cases, but with an associated cost
that is unavoidable. It also results in algorithms that are cluttered with information that
has only to do with the vagaries of C++, and not the logic of the code itself.

If bound pointers were added to the language, it would create a general, abstract mech-
anism for referencing member functions, permitting user code to be written independently
of where the member function happens to be defined.

There is a cost for such convenience, of course, to the tune of double-width pointers.
But the flexibility gained is a necessity in certain circumstances, most particularly event
handlers. Additionally, this cost is going to be less than an implementation that is equally
flexible and type-safe.

Properties

Properties are another feature whose usefulness has been demonstrated by nearly every
GUI framework vendor. A property allows one to interact with an object in a natural, simple
fashion, hiding the underlying complexity of implementation from the user. Properties can
typically be queried at run-time, streamed into resource files, and manipulated using design
tools that support dynamic loading of objects.

Currently, Every vendor who has embraced the facility of properties does so using declar-
ative add-ons to the C++ language. These properties are very restrictive, syntactically
speaking. They do not participate as first-class language entities with respect to templates,
access adjustment, reference via a pointer-to-member, etc.

This section of our proposal offers a syntactic and semantic definition of properties that
fits the basic design goals of C++:

• Only those who use properties should pay for them.

• They should not interfere with current syntax and semantics.

• Declaration and usage should be intuitive to C++ users.

With respect to these goals, we see the following aspects as either necessary or useful
for defining true properties in the standard C++ language.

4



N1384=02-0042 10 September 2002

Basic syntax

The basic syntax of a property declaration is to declare a member with the special type
‘property’, whose template-style argument is the underlying type of the property.

class foo {
public:
property<int> bar;

};

Every property may also have attributes, which if present are declared along with the
property, and use an aggregate-style syntax:

class foo {
int get_value ();
int _bar;

public:
property<int> bar = {

read = get_value,
write = _bar

};
};

The two attributes currently defined are:

read The method called when a property is accessed, or the data member whose
contents will be accessed. If a reader is specified but no writer, attempts to write
the property at compile-time should result in a diagnostic, while attempts to
write to it at run-time should throw the exception ‘std::read_only_property’.

write The method called when a property is modified, or the data member whose con-
tents will be modified. If a writer is specified but no reader, attempts to read the
property at compile-time should result in a diagnostic, while attempts to read
from it at run-time should throw the exception ‘std::write_only_property’.

If neither attribute is specified, the default behavior is to define an unnamed member of
the same type as the property’s underlying type within the class, and both the “read” and
“write” attributes of the property will reference this unnamed member.

Getter/setter signatures

There are two types of getters/setters possible, depending on whether the property is
const or not. They are:

// the non-const case: getter returns by value since all modifications
// must be made through the setter

T (U::*getter)()
void (U::*setter)(const T&)

// the const case: there is no setter!

T (U::*getter)() const

5



N1384=02-0042 10 September 2002

Specialized diagnostics for properties

Along with each of these features comes the need for specialized diagnostics to help
identify errors in property usage. The following additional diagnostics would make property
declaration misuse much easier to debug:
• Attempts to use a reference type as the property’s underlying type.
• Declaring a property outside of a class.
• Using a function with an improper signature as getter/setter.
• Using a default value of the wrong type.
• Masking like-named properties in a base class.
• The underlying property type may not be void or a reference.

A benefit of bound pointers: Property collections

Bound pointers-to-member can allow users to manage sets of property references, using
collections of pointers to properties:

void foo(vector<property<int> (::*)>& bag) {
// ‘set_to_int’ is a hypothetical functor that sets each property
// to the integer value specified by the template argument list

std::transform(bag.begin(), bag.end(), set_to_int<10>())
}

Enriched RTTI

In order to properly support “introspection”1, it is necessary for users of a C++ object
to have run-time access to information about its properties and methods. This information
can be made accessible via specific enhancements to that object’s RTTI.

“Enriched RTTI” will only be generated for class members within a new ‘published’
access section. ‘published’ is semantically identically to ‘public’ in all respects, with the
additional meaning that a class member occuring in a ‘published’ section will have enriched
RTTI information generated for that member.2

The extensions will consist of expanding the definition of ‘type_info’ to include read-
only access to these published details of the type, as well as extending the underlying binary
information.

More details on this aspect of our proposal, as well as a sample implementation, are
under development and should be ready by the time of the committee’s meeting.

1 The ability to determine information about an object’s properties and methods at run-time.
2 This scheme allows the “using” keyword to be used for publishing base-class members within a derived

class.

6


