
page 1

Document No. J16/01-0016 = WG21 N1302
Date: 3 May, 2001
Reply to: William M. Miller

wmm@fastdial.net

Core WG Defect Resolutions

Issue 4: Does extern “C” affect the linkage of function names with internal
linkage?

1. Change the first sentence of 7.5 dcl.link paragraph 1 from

All function types, function names, and variable names have a
language linkage.

to

All function types, function names with external linkage, and
variable names with external linkage have a language linkage.

2. Change the following sentence of 7.5 dcl.link paragraph 4:

In a linkage-specification, the specified language linkage
applies to the function types of all function declarators,
function names, and variable names introduced by the
declaration(s).

to

In a linkage-specification, the specified language linkage
applies to the function types of all function declarators,
function names with external linkage, and variable names with
external linkage declared within the linkage-specification.

3. Add at the end of the final example on 7.5 dcl.link paragraph 4:

 extern "C" {
 static void f4(); // the name of the function f4 has
 // internal linkage (not C language
 // linkage) and the function's type
 // has C language linkage
 }
 extern "C" void f5() {
 extern void f4(); // Okay -- name linkage (internal)
 // and function type linkage (C
 // language linkage) gotten from
 // previous declaration.
 }
 extern void f4(); // Okay – name linkage (internal)
 // and function type linkage (C
 // language linkage) gotten from
 // previous declaration.
 void f6() {
 extern void f4(); // Okay -- name linkage (internal)
 // and function type linkage (C
 // language linkage) gotten from

page 2

 // previous declaration.
 }

4. Change 7.5 dcl.link paragraph 7 from

Except for functions with internal linkage, a function first
declared in a linkage-specification behaves as a function with
external linkage. [Example:
 extern "C" double f();
 static double f(); // error

is ill-formed (7.1.1 dcl.stc).] The form of linkage-specification
that contains a braced-enclosed declaration-seq does not affect
whether the contained declarations are definitions or not (3.1
basic.def); the form of linkage-specification directly containing
a single declaration is treated as an extern specifier (7.1.1
dcl.stc) for the purpose of determining whether the contained
declaration is a definition. [Example:
 extern "C" int i; // declaration
 extern "C" {

 int i; // definition
 }

—end example] A linkage-specification directly containing a
single declaration shall not specify a storage class. [Example:
 extern "C" static void f(); // error

—end example]

to

A declaration directly contained in a linkage-specification is
treated as if it contains the extern specifier (7.1.1 dcl.stc) for
the purpose of determining the linkage of the declared name
and whether it is a definition. Such a declaration shall not
specify a storage class. [Example:
 extern "C" double f();
 static double f(); // error
 extern "C" int i; // declaration
 extern "C" {

 int i; // definition
 }
 extern "C" static void g(); // error

—end example]

Issue 5: CV-qualifiers and type conversions

In 8.5 dcl.init, paragraph 14, bullet 4, sub-bullet 3, change

if the function is a constructor, the call initializes a temporary of the
destination type.

page 3

to

if the function is a constructor, the call initializes a temporary of the cv-
unqualified version of the destination type.

Issue 8: Access to template arguments used in a function return type and in
the nested name specifier

[Same resolution as Issue 45.]

Issue 9: Clarification of access to base class members

1. Add preceding 11.2 class.access.base paragraph 4:

A base class B of N is accessible at R, if

• an invented public member of B would be a public
member of N, or

• R occurs in a member or friend of class N, and an
invented public member of B would be a private or
protected member of N, or

• R occurs in a member or friend of a class P derived from
N, and an invented public member of B would be a
private or protected member of P, or

• there exists a class S such that B is a base class of S
accessible at R and S is a base class of N accessible at R.
[Example:
 class B {
 public:
 int m;
 };

 class S: private B {
 friend class N;
 };

 class N: private S {
 void f() {
 B* p = this; // OK because class S satisfies

the
 // fourth condition above: B is a

base
 // class of N accessible in f()

because
 // B is an accessible base class of S
 // and S is an accessible base class

of N.
 }
 };

—end example]

page 4

2. Delete the first sentence of 11.2 class.access.base paragraph 4:

A base class is said to be accessible if an invented public
member of the base class is accessible.

3. Replace the last sentence ("A member m is accessible...") by the following:

A member m is accessible at the point R when named in class N
if

• m as a member of N is public, or

• m as a member of N is private, and R occurs in a member
or friend of class N, or

• m as a member of N is protected, and R occurs in a
member or friend of class N, or in a member or friend of
a class P derived from N, where m as a member of P is
private or protected, or

• there exists a base class B of N that is accessible at R,
and m is accessible at R when named in class B.
[Example:...

Issue 10: Can a nested class access its own class name as a qualified
name if it is a private member of the enclosing class?

[Same resolution as Issue 45.]

Issue 16: Access to members of indirect private base classes

[Same resolution as Issue 9.]

Issue 44: Member specializations

In 14.7.3 temp.expl.spec paragraph 17, replace

If the declaration of an explicit specialization for such a member appears in
namespace scope...

with
In an explicit specialization for such a member...

Issue 45: Access to nested classes

1. Insert the following as a new paragraph following 11 class.access paragraph 1:

A member of a class can also access all names as the class of
which it is a member. A local class of a member function may
access the same names that the member function itself may
access. [Footnote: Access permissions are thus transitive and
cumulative to nested and local classes.]

2. Delete 11 class.access paragraph 6.

page 5

3. In 11.8 class.access.nest paragraph 1, change

The members of a nested class have no special access to
members of an enclosing class, nor to classes or functions that
have granted friendship to an enclosing class; the usual access
rules (clause 11 class.access) shall be obeyed.

to

A nested class is a member and as such has the same access
rights as any other member.

Change

 B b; // error: E::B is private

to

 B b; // Okay, E::I can access E::B

Change

 p->x = i; // error: E::x is private

to

 p->x = i; // Okay, E::I can access E::x

4. Delete 11.8 class.access.nest paragraph 2.

Issue 62: Unnamed members of classes used as type parameters

In 14.3.1 temp.arg.type paragraph 2, change

A local type, a type with no linkage, an unnamed type or a type compounded
from any of these types shall not be used as a template-argument for a
template type-parameter.

to

The following types shall not be used as a template-argument for a template
type-parameter:

• a type whose name has no linkage

• an unnamed class or enumeration type that has no name for linkage
purposes (7.1.3 dcl.typedef)

• a cv-qualified version of one of the types in this list

• a type created by application of declarator operators to one of the types
in this list

• a function type that uses one of the types in this list

page 6

Issue 70: Is an array bound a nondeduced context?

In 14.8.2.4 temp.deduct.type paragraph 4, add a third bullet:
• An array bound that is an expression that references a template-parameter

Issue 87: Exception specifications on function parameters

Change text in 15.4 except.spec paragraph 1 from:

An exception-specification shall appear only on a function declarator in a
function, pointer, reference or pointer to member declaration or definition.

to:

An exception-specification shall appear only on a function declarator for a
function type, pointer to function type, reference to function type, or pointer to
member function type that is the top-level type of a declaration or definition,
or on such a type appearing as a parameter or return type in a function
declarator.

Issue 124: Lifetime of temporaries in default initialization of class arrays

[Same resolution as Issue 201.]

Issue 201: Order of destruction of temporaries in initializers

Add to the end of 1.9 intro.execution paragraph 12:

If the initializer for an object or sub-object is a full-expression, the
initialization of the object or sub-object (e.g., by calling a constructor or
copying an expression value) is considered to be part of the full-expression.

Replace 12.2 class.temporary paragraph 4 with:

There are two contexts in which temporaries are destroyed at a different point
than the end of the full-expression. The first context is when a default
constructor is called to initialize an element of an array. If the constructor has
one or more default arguments, any temporaries created in the default
argument expressions are destroyed immediately after return from the
constructor.

Issue 208: Rethrowing exceptions in nested handlers

1. In 15.1 except.throw paragraph 4, change

When the last handler being executed for the exception exits by
any means other than throw; ...

to

page 7

When the last remaining active handler for the exception exits
by any means other than throw; ...

2. In 15.1 except.throw paragraph 6, change

A throw-expression with no operand rethrows the exception
being handled.

to

A throw-expression with no operand rethrows the currently
handled exception (15.3 except.handle).

3. Delete 15.1 except.throw paragraph 7.

4. Add the following before 15.1 except.throw paragraph 6:

An exception is considered caught when a handler for that
exception becomes active (15.3 except.handle). [Note: an
exception can have active handlers and still be considered
uncaught if it is rethrown.]

5. Change 15.3 except.handle paragraph 8 from

An exception is considered handled upon entry to a handler.
[Note: the stack will have been unwound at that point.]

to

A handler is considered active when initialization is complete
for the formal parameter (if any) of the catch clause. [Note: the
stack will have been unwound at that point.] Also, an implicit
handler is considered active when std::terminate() or
std::unexpected() is entered due to a throw. A handler is no
longer considered active when the catch clause exits or when
std::unexpected() exits after being entered due to a throw.

The exception with the most recently activated handler that is
still active is called the currently handled exception.

6. In 15.3 except.handle paragraph 16, change "exception being handled" to
"currently handled exception."

Issue 221: Must compound assignment operators be member functions?

Change the title of 5.17 expr.ass from "Assignment operators" to "Assignment and
compound assignment operators."

Change the first sentence of 5.17 expr.ass paragraph 1 from

There are several assignment operators, all of which group right-to-left. All
require a modifiable lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The result of the assignment operation is
the value stored in the left operand after the assignment has taken place; the
result is an lvalue.

to

page 8

The assignment operator (=) and the compound assignment operators all group
right-to-left. All require a modifiable lvalue as their left operand and return an
lvalue with the type and value of the left operand after the assignment has
taken place.

Issue 239: Footnote 116 and Koenig lookup

1. In 3.4.2 basic.lookup.koenig paragraph 2, change

If the ordinary unqualified lookup of the name finds the
declaration of a class member function, the associated
namespaces and classes are not considered.

to

If the ordinary unqualified lookup of the name finds the
declaration of a class member function, or a block-scope
function declaration that is not a using-declaration, the
associated namespaces and classes are not considered.

and change the example to:

 namespace NS {
 class T { };
 void f(T);
 void g(T, int);
 }
 NS::T parm;
 void g(NS::T, float);
 int main() {
 f(parm); // OK: calls NS::f
 extern void g(NS::T, float);
 g(parm, 1); // OK: calls g(NS::T, float)
 }

2. In 13.3.1.1.1 over.call.func paragraph 3 from:

If the name resolves to a non-member function declaration, that
function and its overloaded declarations constitute the set of
candidate functions.

to

If the name resolves to a set of non-member function
declarations, that set of functions constitutes the set of
candidate functions.

Also, remove the associated footnote 116.

Issue 246: Jumps in function-try-block handlers

Delete 15.3 except.handle paragraph 14.

