Binder Problem and Refer ence Proposal (Revised)

Bjarne Sroustrup (bs@research.att.com)

AT&T Labs
Florham Park, NJ, USA

ABSTRACT

Binders don’t work for functions that take reference arguments. The reason isthat the
bound argument value is stored as a reference. That reference is of type argument to the
argument type (which is itself areference). This note first discusses the problem and a
few possible ways of addressing it. The suggested solution is to define T&& to mean T&.
This solution is discussed in some detail and suggested modifications of the standards
text are presented.

1 TheProblem

Here iswhat appears to be an interesting example sent to me by Chuck Allison:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
using namespace std;

struct Person

{
string name;
int year;
int month;
int day;
Person() : name("") { year = month = day = 0; }
Person(const string& nm, int y, int m, int d) : name(nm) { year =y, month=m; day=d; }
b
bool operator==(const Person& pl, const Person& p2)
{
return pl. name==p2. name && pl. year==p2. year && pl. month==p2. month && p1l. day==p2. day;
}
ostream& operator<<(ostream& 0s, const Person& p)
{
0s<< ' {’ <<p.name<<’,” <<p.month<<’ /" <<p.day <<’/ <<p.year<<'}’;
return os,
}
bool byName(const Person& p, const string& s) /1 note: arguments passed by reference
{

return p. name==s;

}

int main()
{
Person a[] = {
Person(" Albert", 1901, 1, 20);
Person(" Charles', 1897, 3, 11);
Person(" Horatio", 1835, 12, 6);
i
int n=sizeof a/ sizeof a] 0];
Person* past =a+ n;
Person v(" Charles', 1897, 3, 11);

Person* p =find_if(a, past, bind2nd(ptr_fun(byName), " Charles')); // error: string& &
if (p! = past)

cout << "found" <<*p<<" in position" << p- a<<endl,
else

cout << " item not found\n";

}

This seems like a reasonable thing to do. However, it doesn't compile. The reason is that bind2nd()
stores a reference to the argument it needs to bind (in a binder2nd). In the case of byName, that argument
isareference argument so that binder2nd’ s constructor triesto create areference to areference.

Y ou can get the same compile time error with this smplified main() :

int main()

bind2nd(ptr_fun(byName), " Chuck"); /1 error: cannot create const string& &
}

The definition of binder2nd (20.3.6.3, [lib.binder.2nd]) is:

template <class Operation>
class binder2nd : public unary_function<typename Operation: : first_argument_type,
typename Operation: : result_type> {
protected:
Operation op;
typename Operation: : second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation: : second_argument_type& y);
typename Operation: : result_type operator()
(const typename Operation: : first_argument_type& x) const;
b
The problem is binder2nd() 's argument of type Operation: : second_argument_type&. In the case of
byName, Operation: : second_argument_type is const string&. Had we managed to create a binder2nd,
we would have to face the same problem for operator() s argument.
We cannot bind an argument of a function taking a reference argument!

2 What To Do

| see three obvious approaches to this problem:

[1] Tell users*‘then, just don’t do that.”” | don’t think thisisrealistic. Arguments passed by reference —
and in particular by const reference — are common and recommended. Often, a user has no control
over the definition of such predicate functions and even less control over (or understanding of) the
details of binder implementations. This problem must be solved — the questions are ‘‘how?”’,
“‘when?’, and ‘‘who by?"’

[2] Add more binders. Unfortunately, | don’t see how we can do that without adding new binder names.
To define another (overloaded) version of bind2nd() to cope with reference arguments, we would
somehow have to overload or specialize based on the difference between a reference and a non-
reference. Adding new names would complicate a user interface that already causes eyes of many
average-to-good programmersto glaze over.

[3] Have binder2nd store a copy of its bound argument. This would change semantics and would

introduce serious memory and run-time overhead in exactly the cases where we recommend using
reference argument rather than pass-by-value.
| (clearly) don't find any of these alternatives attractive. Furthermore, the problem occurs in many other
contexts where people write function objects. Thus, changes to the standard-library binders do not address
the fundamental problem and would fail to address the larger problem. We must therefore consider a more
genera alternative:
[4] Define T&& to mean T&. This variant of the pointer-to-function rule (f means &f and pf() means
(*pf) ()) seemsto solve this problems in general. It isaso smilar to the rule that allows const T
for aT that isalready aconst type.

3 Discussion and Proposal

| presented the problem and my proposed solution at the Dublin meeting. There, the library group agreed
that it was best approached as a core language issue. The core group then discussed it, liked equating T&&
with T& was the best solution and voted to ‘*let it soak for a while to see if anyone finds problems with it.””’
Further thought and discussion on reflectors and el sewhere did not bring up new problems or new solutions.
The question was asked whether *‘ reference to reference’’ should be allowed syntactically or only when

it occur as the result of applying the declarator operator & to atype that is areference. For example:

int x;

int&& =x; // legal?

On principle, | prefer accepting a construct unless there is compelling reason not to. In this case, | do not
see a compelling reason for aban. However, | don’t see any major advantage from accepting it either, and
there is a trap: && is the logical-and operator rather than two & reference-declarator operators. Thus the
example would have to be written using an extra space.

int x;
int&& = x; // syntaxerror!
int& & = x; /1 legal?

By analogy, const cannot be (syntactically) repeated in a declaration:

const const int a; // error
typedef const int ClI;
const ClI; /1 ok

Consequently, the Dublin session of the core group recommended that & should not be allowed to be
repeated in adeclaration, and that’s what I’ m proposing.
The construct can arise in two ways, through template parameters:

template<class T> class X{ f(const T&); /* ...*/ };
X<int&> X;

and through typedefs:
int i;
typedef int& RI;
Rl r1=i;
RI&T =1i;

To handle the typedef case, add to the end of 7.1.3 ** The typedef specifier’’ [dcl.typedef]:
““If atypdef TD names areference type, then TD& names that same reference type. [Example:
int i;
typedef int& RI;
Rl r1=i;
RI&r =i; // r hasthetypeint&

-end example].”’
To handle the template argument case, add to the end of 14.3.1 ‘‘Template type arguments’

[temp.arg.type]:
““If a template-argument for a template-parameter T names a reference type, then T& names that same

referencetype. [Example:

template<class T> class X{ f(const T&); /* ...*/ };
X<int&> X; /1 X<int&>::f has the argument type const int&

-end example].”’
Note that I'm not proposing a change to 14.4 ** Type Equivalance’’ [temp.type]. Thisimplies that X<int&>
and X<int> are different types independently of the definition of the template X. It also follows that
X<T&> and X<T> are the same type when T names a reference type. Because the ‘‘ref ref rule”’ is
expressed in terms of what a name names, the rules for template instantiation, template specialization, etc.
are unaffected by the new rule.

4 Acknowledgements

Thanks to Chuck Allison for sending me this problem and to Andrew Koening for helping with this analy-
sisand proposal .

