
tly

nda-

R

the

itial-
erived

idate

e to
e, and

ion
J16/00-0009
WG21/N1232
March 6, 2000

J. Stephen Adamczyk
jsa@edg.com

The core languageauto_ptr problem

In core issue 84, I described a remaining core language problem withauto_ptr . I raised that
issue near the end of 1998, and I was hoping that newer formulations ofauto_ptr might have
managed to avoid the trouble spot. Unfortunately, the version I got from Greg Colvin recen
(code at the end of this paper) still has the same problem.

I will try to explain the problem, and then recommend changes to deal with it. My recomme
tion, however, is effectively to do nothing, i.e., to leaveauto_ptr partially broken.

The Problem

In Greg’s example, the line that doesn’t work with EDG’s compiler is the one marked “ERRO
here”:

 Base::sink(source()); // ERROR here

This calls a static member function, passing an rvalue of typeauto_ptr<Derived> to a
parameter of typeauto_ptr<Base> .

Argument passing is done by copy-initialization, so this example is effectively the same as
declaration

 auto_ptr<Base> temp = (an rvalue of type auto_ptr<Derived>);

This is handled by 8.5p14, in the bullet beginning “Otherwise (i.e., for the remaining copy-in
ization cases),” because the source and destination types are not the same type or base/d
types (note thatauto_ptr<Derived> is not a derived class ofauto_ptr<Base>). That text
sends us to 13.3.1.4 to enumerate the constructors and conversion functions that are cand
functions:
• The converting constructors ofauto_ptr<Base> . There are two of these: a non-template

with parameter list(auto_ptr<Base> &) , and a template with parameter list
(auto_ptr<Y> &) . Neither of these is viable. The parameter in each case is a referenc
non-const, so it must be bound to an lvalue. The source expression, however, is an rvalu
there is no conversion function that could convert it to an lvalue.

• The conversion functions ofauto_ptr<Derived> that can convert to
auto_ptr<Base> or a derived class thereof. There is one of these: a conversion funct
template that converts toauto_ptr<Y> . This turns out to be viable, and is selected.

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 2

hich
ules

tor
ould

nver-

) by
is an
ave ref-
ysis:

t-
.1.3 to

a-

o

s

one
r two

uctor”
e the
tor.
So far, so good. Now, however, back in 8.5p14, we get to the words “The result of the call (w
is the temporary for the constructor case) is then used to direct-initialize, according to the r
above, the object that is the destination of the copy-initialization.”

This is the “copy” part of the copy-initialization, the part that is skipped when copy construc
elision is done. Generally, a programmer would expect that the copy would be elided, and w
therefore expect to be able to ignore it. A programmer might expect that the result of the co
sion function would be passed directly as the argument to thesink function.

That turns out to be overly simplistic. In the normal case, the copy is done (or would be done
calling a copy constructor. In this case, however, the result of calling the conversion function
rvalue, and therefore it cannot be copied by the available constructors, whose parameters h
erence-to-nonconst type. So we end up using another conversion function. Here’s the anal

We want to direct-initialize an entity of typeauto_ptr<Base> from an rvalue of type
auto_ptr<Base> . In 8.5p14, this falls under the bullet beginning “If the initialization is direc
initialization”, because the source and destination types are the same. We are sent to 13.3

enumerate the candidate functions, which are the constructors ofauto_ptr<Base> 1 :
• The constructor with parameter list(auto_ptr<Base> &) and the template constructor

with parameter list(auto_ptr<Y> &) cannot bind to an rvalue and therefore are not vi
ble.

• The constructor with parameter list(Base * = 0) is not viable because there is no way t
convert to that parameter type.

• The non-template constructor with parameter list(auto_ptr_ref<Base>) is viable
(maybe; more on this below): we can use a conversion function to convert the
auto_ptr<Base> rvalue to anauto_ptr_ref<Base> rvalue, then use the implicitly-
declared copy constructor ofauto_ptr_ref<Base> to pass the by-value parameter. Thi
is, once again, copy-initialization.

That means that to pass the argument for the original example, we call
• a conversion function fromauto_ptr<Derived> to auto_ptr<Base>,
• a conversion function fromauto_ptr<Base> to auto_ptr_ref<Base> ,
• a copy constructor to copy anauto_ptr_ref<Base> , and
• a constructor to make anauto_ptr<Base> from anauto_ptr_ref<Base> .

This bothers me, because I have always believed that it is a rule of C++ that no more than
user-defined conversion will be called to do an implicit conversion, and this case calls eithe
or three, depending on how you count.

By the way, because 12.8p15 says copy constructor elision is allowed when a “copy constr
is called, and not on an arbitrary copy, a standard-conforming compiler is not allowed to elid
copy in the above and must call at least the two conversion functions and the final construc

1. The suggested change for core issue 152 would make this just theconverting constructors. That has no
effect on the analysis here.

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 3

-

nglis
n an
it’s

 think
, but

 those
fined
ady

rgu-
nver-

ate by
ses,

ot cov-
fined

ers
rgu-
, e.g.,

ht be
until
 con-
The Recommended Solution

I recommend that we make changes to reaffirm the common-law rule that at most one user
defined conversion is allowed in an initialization.

If you squint the right way, it might be possible to read the standard that way already. Derek I
has pointed out that 13.3.1p6 says “because only one user-defined conversion is allowed i
implicit conversion sequence, …”, and there’s similar wording in 13.3.3.1. His position is that
already clear that at most one user-defined conversion is allowed in cases like the above. I
it’s clear that only one user-defined conversion is allowed in an implicit conversion sequence
the rules for copy-initialization lead to two passes through overload resolution, and each of
involves a separate implicit conversion sequence, thus (unfortunately) allowing two user-de
conversions. I agree with Derek’s desired outcome; I just don’t agree that the standard alre
says that.

The wording that needs to be changed to address this is 13.3.3.1p4:

In the context of an initialization by user-defined conversion (i.e., when considering the a
ment of a user-defined conversion function; see 13.3.1.4, 13.3.1.5), only standard co
sion sequences and ellipsis conversion sequences are allowed.

What I’d really like to see this changed to is

When considering the argument of a user-defined conversion function that is a candid
13.3.1.3 when invoked for copy-initialization, or by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all ca
only standard conversion sequences and ellipsis conversion sequences are allowed.

(Paragraph 3 of the same section would have to be reworded to make it apply to all cases n
ered by paragraph 4, because the simple “Except in the context of an initialization by user-de
conversion” would no longer be specific enough.)

This is what, I believe, we should have done when we were working on the standard. It diff
from the current wording in that it does not allow conversion functions to be called on the a
ments of a constructor used to do a copy-initialization from the same type or a derived type

 Base b = Base();
 Base bb = Derived();

Declarations like the above would be accepted if and only if there is a constructor (which mig
a template) that would allow the copying. No conversion functions would be tried. Note that,
theauto_ptr trick, it was not thought that it would ever be necessary or desirable to call a
version function if you already had the right type.auto_ptr , however, deliberately has no copy
constructor that can copy and rvalue, and has a conversion function to the helper class
auto_ptr_ref so that anauto_ptr rvalue can be “copied” by converting it to
auto_ptr_ref and back toauto_ptr .

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 4

ram-

that

e sec-

ate by
y-ini-

most
This, as I say, it what I’d like to see done. However, that change would close the loophole
exploited byauto_ptr and makeauto_ptr not work at all. I believe it would break nothing
at all exceptauto_ptr and any other classes developed in the last couple of years by prog
mers who saw theauto_ptr trick and thought it is really “cool”. I believe that’s not very much
code, given that I implemented the loophole in EDG’s compiler at the end of 1998, and before
I never got any complaints about this aspect.

But I suspect that the committee will prefer a more modest change, which simply closes th
ondary use of the loophole:

When considering the argument of a user-defined conversion function that is a candid
13.3.1.3 when invoked for the copying of the temporary in the second step of a class cop
tialization, or by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only standard conversion
sequences and ellipsis conversion sequences are allowed.

This would make the example quoted above invalid, and enforce the general principle that at
one user-defined conversion is invoked implicitly, while still preserving most of theauto_ptr
functionality.

Code for auto_ptr (from Greg Colvin via e-mail, Dec. 11, 1999)

namespace std {

 class auto_ptr_base {
 template<typename Y> friend struct auto_ptr;
 template<typename Y> friend struct auto_ptr_ref;
 void* p;
 };

 template <typename X> class auto_ptr_ref {
 template<typename Y> friend struct auto_ptr;
 auto_ptr_ref(X* p, auto_ptr_base& r) : r(r), p(p) {}
 X* release() const { r.p = 0; return p; }

 auto_ptr_base& r;
 X* const p;
 };

 template<typename X> struct auto_ptr : auto_ptr_base {
 typedef X element_type;

 explicit auto_ptr(X* px =0) throw() { p = px; }
 auto_ptr(auto_ptr& r) throw() { p = (void*)r.release(); }
 template<typename Y> auto_ptr(auto_ptr<Y>& r) throw() {
 X* px = r.release();
 p = (void*)px;

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 5
 }
 auto_ptr& operator=(auto_ptr& r) throw() {
 reset(r.release());
 return *this;
 }
 template<typename Y> auto_ptr& operator=(auto_ptr<Y>& r)

throw() {
 reset(r.release());
 return *this;
 }
 ~auto_ptr() { delete get(); }

 X& operator*() const throw() { return *get(); }
 X* operator->() const throw() { return get(); }

 X* get() const throw() { return static_cast<X*>(p); }
 X* release() throw() { X* px = get(); p = 0; return px; }
 void reset(X* px=0) throw()

{if (px != get()) delete get(), p = (void*)px; }

 auto_ptr(auto_ptr_ref<X> r) throw() {
 p = (void*)r.release();
 }
 auto_ptr& operator=(auto_ptr_ref<X> r) throw() {
 reset(r.release());
 return *this;
 }
 template<typename Y> operator auto_ptr_ref<Y>() throw() {
 return auto_ptr_ref<Y>(get(),*this);
 }
 template<typename Y> operator auto_ptr<Y>() throw() {
 return auto_ptr<Y>(release());
 }
 };
}

///
#include <stdio.h>
#include <memory>
using namespace std;

struct MemoryTracker
{
 MemoryTracker(void* newMem)

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 6
 : memory(newMem), next(list) { list = this; }

 static bool StopTracking(void* oldMem) {
 for (MemoryTracker* p = list; p != 0; p = p->next) {
 if (p->memory == oldMem) {
 p->memory = 0;
 return true;
 }
 }
 ++nFailure;
 puts(“Bad delete”);
 return false;
 }

 static int CheckAllDeleted() {
 for (MemoryTracker* p = list; p != 0; p = p->next) {
 if (p->memory != 0)
 ++nFailure, puts(“not deleted”);
 }
 return nFailure;
 }

private:
 void* memory;
 MemoryTracker* next;
 static int nFailure;
 static MemoryTracker* list; // linked list of all memory
 // trackers
};

int MemoryTracker::nFailure = 0;
MemoryTracker* MemoryTracker::list = 0;

struct Base
{
 virtual ~Base() {} // So we can delete a Derived through a
 // Base*

 // To test passing auto_ptr<Derived> as auto_ptr<Base>
 static void sink(auto_ptr<Base>) {}

 void* operator new(unsigned n) {
 void* p = ::operator new(n);
 new MemoryTracker(p);
 return p;
 }

The core languageauto_ptr problem (J16/00-0009 = WG21/N1232) 7
 void operator delete(void* p) {
 if (MemoryTracker::StopTracking(p));
 ::operator delete(p);
 }

 char dummy; // force this class to occupy space
};

// A dummy base class
struct ForceOffset {
 char dummy; // force this class to occupy space
};

// Trying to force Derived and Base to have different addresses
struct Derived : ForceOffset, Base {
 // To test passing auto_ptr<Derived> as auto_ptr<Derived>
 static void sink(auto_ptr<Derived>) {}

 char dummy; // force this class to occupy space
};

auto_ptr<Derived> source() {
 return auto_ptr<Derived>(new Derived);
}

void test() {
 // Test functionality with no conversions
 auto_ptr<const Derived> p(source());
 auto_ptr<const Derived> pp(p);
 Derived::sink(source());
 p = pp;
 p = source();

 // Test functionality with Derived->base conversions
 auto_ptr<const Base> q(source());
 auto_ptr<const Base> qp(p);
 Base::sink(source()); // ERROR here
 q = pp;
 q = source();
}

int main() {
 test();
 return MemoryTracker::CheckAllDeleted();
}

	The Problem
	The Recommended Solution

