
Proposed Resolutions for Core Language Issues 6, 14, 20, 40,
and 89

J16/99-0005 = WG21 N1182
William M. Miller (wmm1@flash.net)

February 23, 1999

ISSUE 6

This issue deals with describing conditions that allow copy operations to be eliminated by
a conforming implementation. 12.8¶15 currently describes two such situations. The
Committee agreed that a third such optimization would also be desirable: suppression of
the copy from an argument to a non-reference parameter in a call to an inline function.
However, wording to describe when such an elision would be allowed has not been
produced.

Analysis

The “as-if” rule (1.9¶1) allows an implementation to eliminate operations if it can be
determined that the observable behavior of the program will not be affected by the
optimization. However, because copy constructors and destructors can have side effects
that do alter the program’s observable behavior, copy operations cannot in general be
elided under the as-if rule alone. 12.8¶15 relaxes the requirements of the as-if rule by
allowing an implementation to optimize away certain copy operations, even if side effects
in the no-longer-called copy constructor and destructor would have produced different
observable behavior. Nevertheless, apart from the absence of these side effects, the
remaining semantic constraints must be honored.

For the situations currently described in 12.8¶15, these constraints boil down to the
requirement that the copy constructor be accessible and unambiguous. In the function
parameter optimization, however, additional constraints apply. In particular, none of the
operations of the function can be allowed to change the value of the object passed as an
argument. Furthermore, changes to a volatile object passed as an argument must not
affect the value of the parameter during the execution of the function.

A couple of considerations regarding modification of the argument (pointed out by Erwin
Unruh in reflector email) are worthy of special mention. First, it is not only assignment
operations in the function itself that must be considered as possibly changing the argument
value; if the address is taken or a reference is bound to the argument or any of its non-
static data members, the argument might be modified by another function. The wording
below forbids such modification by any of the function’s dynamic descendants. If the
pointer or reference persists after the return of the function, using it to modify the
argument at that point would be undefined behavior anyway because of accessing (what
would have been) an object of automatic storage duration after its lifetime has ended.

Proposed Resolutions for Core Language Issues

page 2 J16/99-0005 = WG21 N1182

Consequently, the implementation is allowed to permit the program to modify the actual
argument under the “anything-goes” character of undefined behavior.

The second issue has to do with making the decision at run-time whether to perform the
optimization or not. Consider code like

struct S {
int i;

};
int f(S s, bool reset) {

if (reset)
s.i = 0;

return s.i;
}

This code is safe for the optimization if called with reset == false and not
otherwise. The proposed wording allows an implementation to avoid the copy in some
calls but not in others by applying the “no modification” requirement only to the
operations actually performed by the function.

Although the issue is written specifically to address inline functions, there seems to be no
reason to preclude applying the optimization to non-inline functions as well.

Proposed Resolution

Add the following bullet to the list of permissible optimizations in 12.8¶15. (The form of
this proposed change assumes the restructuring proposed below for the resolution of issue
20.)

• when an argument in a call to a function is a non-volatile lvalue of the same cv-
unqualified class type as its corresponding (non-reference) parameter, and none
of the operations performed by the function (including calls to other functions)
can change the value of any of the parameter’s non-static data members, the
copy operation can be omitted by treating the parameter as if it were a
reference to the argument instead of a copy

In addition, the example should be changed to reflect all three situations in which the
optimization can be applied:

[Example:

struct Thing {
Thing();
~Thing();
Thing(const Thing&);
int i;

};

Proposed Resolutions for Core Language Issues

J16/99-0005 = WG21 N1182 page 3

Thing f() {
Thing t;
return t;

}

int g(Thing tp) {
return tp.i;

}

Thing t2 = f();
int j = g(t2);

Here the criteria for elision can be applied to eliminate three calls to the copy
constructor of class Thing . In the initialization of t2 , the copying of the local
automatic object t into the temporary object for the return value of function f()
and the copying of that temporary object into object t2 can both be elided.
Effectively, the construction of the local object t can be viewed as directly
initializing the global object t2 , and that object’s destruction will occur at
program exit. Then the copy of t2 into g() ’s parameter tp can be eliminated, so
that the reference to tp.i in the function body is effectively a reference to t2.i .
--end example]

ISSUE 14

Issue 14 poses two questions, summarized in the following example:

extern “C” int f();
typedef int T;

namespace N {
extern “C” int f();
typedef int T;

}
using namespace N;
int i = f(); // “f” ambiguous?
T j; // “T” ambiguous?

Even though the declarations of f() and T declare the same function and type,
respectively, the name lookups find declarations in two distinct namespaces; is this fact
sufficient to cause ambiguity, or must the implementation “look through” the declarations
to decide the question of ambiguity?

Analysis

The Standard specifies the criteria for ambiguity in the presence of using-declarations in
7.3.4¶4:

Proposed Resolutions for Core Language Issues

page 4 J16/99-0005 = WG21 N1182

If name lookup finds a declaration for a name in two different namespaces, and the
declarations do not declare the same entity and do not declare functions, the use of
the name is ill-formed.

The issue regarding the function declarations is easily settled by reference to 7.5¶6:

Two declarations for a function with C language linkage with the same function
name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same function.

The two declarations of f() in the example thus satisfy the criterion of “[declaring] the
same entity,” so there is no ambiguity in its use.

The question of whether the two typedef declarations cause an ambiguity is more
involved. According to 3¶3,

An entity is a value, object, subobject, base class subobject, array element,
variable, function, instance of a function, enumerator, type, class member,
template, or namespace.

Conspicuously absent from this list is a typedef-name. Instead, a typedef-name is simply a
synonym for an entity (7.1.3¶1). Since both the typedef declarations declare the same
entity (type), once again there is no ambiguity in the use of the name.

Proposed Resolution

In order to make the treatment of typedef names clearer, a typedef should be added to the
example in 7.3.4¶4:

namespace A {
class X { };
typedef int T;
extern “C” int g();
extern “C++” int h();

}
namespace B {

void X(int);
typedef int T;
extern “C” int g();
extern “C++” int h();

}
using namespace A;
using namespace B;

void f() {
X(1); // error: name X found in two namespaces

Proposed Resolutions for Core Language Issues

J16/99-0005 = WG21 N1182 page 5

T I; // okay: name T refers to the same entity
g(); // okay: name g refers to the same entity
h(); // error: name h found in two namespaces

}

ISSUE 20

There are three related sub-issues in issue 20, all dealing with the elision of copy
constructors as described in 12.8¶15:

1) The text should make clear that the requirement that the copy constructor be accessible
and unambiguous is not relaxed in cases where a call to a copy constructor is elided.

2) It is not clear from the text that the two optimizations described can be applied
transitively, and, if so, the implications for the order of destruction are not spelled out.

3) The text should exclude applying the function-return optimization if the expression
names a static or volatile local object. (This comment was made verbally in Santa Cruz,
although it does not appear in the current text of the issue list.)

Analysis

After discussion in Santa Cruz, the core group decided that sub-issue #1 required no
change; the necessity of an accessible and unambiguous copy constructor is made clear in
12.2¶1 and need not be repeated in this text. The remaining two sub-issues appear to be
valid criticisms and should be addressed.

Proposed Resolution

The paragraph in question should be rewritten as follows. (Note: this restructuring is also
intended to facilitate the inclusion of the proposal to resolve issue 6.) In addition,
references to this section should be added to the index under “temporary, elimination of,”
“elimination of temporary,” and “copy, constructor elision.”

When certain criteria are met, an implementation is allowed to omit copying a class
object, even if the copy constructor and/or destructor for the object have side
effects. In such cases, the implementation treats the source and target of the
omitted copy operation as simply two different ways of referring to the same
object, and the destruction of that object occurs at the later of the times when the
two objects would have been destroyed without the optimization [footnote:
Because only one object is destroyed instead of two, and one copy constructor is
not executed, there is still one object destroyed for each one constructed. -- end
footnote]. This elision of copy operations is permitted in the following
circumstances (which may be combined to eliminate multiple copies):

Proposed Resolutions for Core Language Issues

page 6 J16/99-0005 = WG21 N1182

• in a return statement in a function with a class return type, where the
expression is the name of a non-volatile automatic object with the same cv-
unqualified type as the function return type, the copy operation can be omitted
by constructing the automatic object directly into the function’s return value

• when a temporary class object (12.2) would be copied to a class object with
the same cv-unqualified type, the copy operation can be omitted by
constructing the temporary object directly into the target of the omitted copy

[Example:

class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);

};

Thing f() {
Thing t;
return t;

}

Thing t2 = f();

Here the criteria for elision can be combined to eliminate two calls to the copy
constructor of class Thing : the copying of the local automatic object t into the
temporary object for the return value of function f() and the copying of that
temporary object into object t2 . Effectively, the construction of the local object t
can be viewed as directly initializing the global object t2 , and that object’s
destruction will occur at program exit. -- end example]

Issue 40

Issue 40 has two sub-issues. The first concerns the statement in 8.3¶1,

The id-expression of a declarator-id shall be a simple identifier except for the
declaration of some special functions (12.3, 12.4, 13.5) and for the declaration of
template specializations or partial specializations (14.7).

The second sub-issue is regarding another statement in the same paragraph:

A declarator-id shall not be qualified except for the definition of a member
function (9.3) or static data member (9.4) or nested class (9.7) outside of its class,
the definition or explicit instantiation of a function, variable or class member of a
namespace outside of its namespace, or...

Proposed Resolutions for Core Language Issues

J16/99-0005 = WG21 N1182 page 7

Analysis

The problem in the first sub-issue is that the wrong syntactic non-terminal is mentioned.
The relevant portions of the grammar are:

declarator-id:
id-expression
:: opt nested-name-specifieropt type-name

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

The exceptions in the citation from 8.3¶1 are all the non-identifier cases of unqualified-id:
12.3 is for conversion-function-ids, 12.4 is for destructors, 13.5 is for overloaded
operators, and 14.7 is for template-ids. If taken literally, this sentence would exclude all
qualified-ids, which it obviously is not intended to do. Instead, the apparent intent is
something along the lines of

If an unqualified-id is used as the id-expression of a declarator-id, it shall be a
simple identifier except...

However, it does not appear that this restriction has any meaning; all of the possible cases
of unqualified-ids are represented in the list of exceptions! Rather than recasting the
sentence into a correct but useless form, it would be better to remove it altogether.

The second sub-issue deals with the conditions under which a qualified-id can be used in a
declarator, including “the definition of a...nested class” and “the definition or explicit
instantiation of a...class member of a namespace.” However, the name in a class definition
is not part of a declarator; these constructs do not belong in a list of declarator contexts.

Proposed Resolution

Delete the third sentence (“The id-expression of a declarator-id shall be a simple
identifier...”) from 8.3¶1. Delete the words “or nested class (9.7)” and change “function,
variable or class member” to “function or variable member” in the fourth sentence of the
same paragraph.

Proposed Resolutions for Core Language Issues

page 8 J16/99-0005 = WG21 N1182

ISSUE 89

Issue 89 deals with construction of a new object in the same location as an existing object.
3.8¶9 makes this action undefined behavior if the object was const and either static or
automatic, presumably to allow optimizers to rely on the known value of such an object.
However, nothing is said about an object with a member of reference type; the issue
suggests that a similar restriction be applied for the same reason.

Analysis

When this issue was discussed in Santa Cruz, there was general agreement in the core
group that something should be done to make it undefined behavior to “rebind” a
reference member through reconstruction of its containing object. The issue suggests
amending 3.8¶9 to cover the reference case as well as the const case.

The proposal below, however, takes a different approach. The current 3.8¶9 seems more
intended to address the “ROM-ability” of an object than optimizer considerations. For
one thing, its applicability is limited only to static and automatic objects, which are more
susceptible to the kind of analysis required to determine if an object can be placed into
read-only memory than are objects that are dynamically allocated in free store and whose
lifetime is less easily determined. Furthermore, the restriction is not upon use of the value
of such an object after reallocation, which is where an optimizer would be expected to
encounter trouble; instead, it is the mere act of reallocation itself that produces undefined
behavior (just like any other attempt to modify a const object, per 7.1.5.1¶4).

3.8¶7 lists restrictions on using a pointer, reference, or name that previously referred to an
object to refer to a new object created in the same storage. Since the concern here is
optimization, in particular assumptions about the binding of a reference member whose
previous binding was known, it seems more natural to augment the restrictions of 3.8¶7 to
address the issue of reference members (i.e., placing a limitation on the use of the new
object in confusing ways rather than on its creation). In addition, this paragraph is not
limited to static and automatic objects, and there seems to be no reason to allow
“rebinding” of references in free-store objects, either.

Proposed Resolution

Add a new bullet to the list of restrictions in 3.8¶7, following the second bullet (“the new
object is of the same type...”):

• the type of the objects, if a class type, does not contain any non-static data
member whose type is const -qualified or a reference type, and

