
 Doc No: X3J16/97-0016R1
 WG21/N1054
 Date: 31 March, 1997
 Project: 738-D (PL C++)
 Reply to: William M. Miller
 wmm@ziplink.net

 ANSI PUBLIC REVIEW COMMENTS ON CD2, Rev. 1

Attached are all the comments received from the ANSI public review of
Committee Draft #2. The official public review ran through March 18;
however, one comment was received after that time and is also
included.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #01/DeRocco" follows >>>>>>
Date: January 10, 1997

To: Deborah Donovan

I know it's been discussed, but I'd like to add my encouragement for a
variant of #include that automatically suppresses previously included
files. I'd suggest calling it #header. It should be required to detect
the duplicate if the names pass a straight string comparison, case
insensitive if that's appropriate for the OS, and if they're found in
the same directory in the search path. Anything fancier shouldn't be
required.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #02/DeRocco" follows >>>>>>
Date: January 10, 1997

To: Deborah Donovan

Currently, an empty exception-specification merely indicates that a
function will not throw an exception. There are two possible, and
competing, interpretations of this. Either it's a command that the
function must be prevented from throwing an exception, thus requiring
the compiler to add code to trap any that do occur; or it's a hint that
the function cannot possibly throw an exception anyway, so the compiler
can take out code that deals with exceptions.

These compete in that if you care about efficiency, you need to know
which it means. If it means the latter, you will be eager to tack
"throw()" onto all those functions that won't throw exceptions, because
doing so will potentially make the program more efficient. If it means
the latter, you will be reluctant to, because doing so will do just the
opposite.

My compiler (Borland) interprets it in the former manner, which seems
reasonable, but isn't particularly useful to me. I'd like to suggest an
additional syntax, namely "throw(void)", that would be defined as a hint
that callers could assume no exceptions. Compilers would be allowed to
ignore this specification, but would be prohibited from enforcing it.

Here's a situation where it could aid optimization:

unsigned func(unsigned a, unsigned b) throw(void) {
 return a + b; // really can't throw any exceptions
 }

class foo {
 // ...
 ~foo(); // has a destructor
 };

void test() {
 foo f; // create a foo
 // ...
 x = func(y, z); // can't throw anything
 // ...
 } // destroy the foo

In the absence of the empty exception-specification, an exception
context would need to be set up in order to guarantee the destruction of
f. So, I'd like to put "throw()" onto the function to eliminate this
overhead. However, with my current compiler (and probably most
compilers), this results in far more inefficiency inside func() than it
saves inside test(), so it's not worth it. I therefore never use
"throw()". If I had "throw(void)" as an alternative construct, I'd
actually use it, and it would do some good.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #03/DeRocco" follows >>>>>>
Date: January 10, 1997

To: Deborah Donovan

One of the things that C and C++ lacks that is hard to work around is
fractional numeric types. These are essential in non-floating-point DSP
algorithms. In particular, it is important to be able to do fractional
multiplication, where the high half of the result is used instead of the
low half. The only way to do fractional arithmetic currently is to use
in-line assembler, which is non-portable, or function calls to assembly
language library routines, which are inefficient.

I'd like to suggest a "fractional" modifier that could be applied to any
numeric type (except "bool") which would cause it to be interpreted as
having a [0,1) or [-0.5,0.5) range. There would be no conversions
between integers and fractions, but there would be the obvious ones
between floats and fractions. The only arithmetic operations that would
allow integers and fractions to be combined would be:

i = i * f f = f * i
i = i / f f = f / i

The only oddity is that i * f would have a different type from f * i.

The usual rules for promoting shorter types to longer ones would apply,
except that numbers would be lengthened by zero-filling on the right.

Also, as usual, unsigned would override signed.

I would suggest that casting from a fraction to an integer or vice versa
would simply reinterpret the bits, since there is no other useful
conversion.

There would be no need to introduce a new kind of literal. Fractional
literals could be written by casting float literals.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #04/DeRocco" follows >>>>>>
January 10, 1997

To: Deborah Donovan

I'd like to suggest a new operator, a colon, perhaps called the "else"
operator. The expression x:y would be defined as x?x:y, except that x
would never be reevaluated if it is true. This is actually very useful
in cases where x either has side effects or is textually long, and it
wouldn't break any existing code. Since ?: isn't overloadable, :
wouldn't be either.

One could also imagine a "then" operator consisting of a question mark.
In other words, x?y would be defined as x?y:0. This isn't nearly as
useful, though, since :0 is pretty easy to write, and doesn't provide
any additional optimization. Besides, if there's a binary : operator,
having a binary ? operator would make the ternary ?: operator ambiguous.

Perhaps it would have been nice if && and || worked this way from the
beginning. That is, x&&y could have been x?y:0, and x||y could have been
x?x:y without reevaluating x. But it's too late for that. However, a
simple binary : operator would be pretty easy to add.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #05/DeRocco" follows >>>>>>
Date: January 10, 1997

To: Deborah Donovan

Here are a few of _trivial_ additions to the token syntax that wouldn't
break any existing C++ programs, but would increase clarity:

1) Allow binary numbers to be written with a 0y prefix. A bit mask like
0y11011111 is much easier to comprehend than 0xDF. (One might prefer 0b
to 0y, because y might be mistaken for x, but b might be mistaken for a
hex digit. I like y because it is the last letter of binary, just as x
is the last letter of hex.)

2) Allow embedded underscores within numbers, which would be ignored.
1_000_000_000 is a lot clearer than 1000000000, and
0y1111_1000_0111_1111 is a lot clearer than 0y1111100001111111.

3) In a string or character constant, define \e as an escape, since it's
such a common control character.

These are so easy and harmless that I see no excuse for not putting them
in.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #06/Lilley" follows >>>>>>
January 16, 1997

To: Deborah Donovan

Hello,

This is a summary of a recent newsgroup discussion from comp.std.c++, in
which we could find no definitive language to answer the question "is a
class template instantiated as a result of calling delete on a pointer to
an
incomplete template specialization?" There is a related question
concerning
operator&() when applied to a reference-to-incomplete-template-
specialization.

Let's start with an example:

template <class T> class A {
 A* operator&() { return this; }
public:
 void operator delete(void*) { ... }
};

void f(A<int>* ap) {
 delete ap; // #1
 A<int>* ap2 = &(*ap); // #2
}

The two relevant questions are:

On #1, is A<int>::operator delete() instantiated, or the default operator
delete used, leading to undefined behavior?

On #2, is A<int>::operator&() instantiated (leading to an access
violation),
or is the default operator&() used?

The following language suggests the "undefined behavior" interpretation for
both #1 and #2:

With regards to #1:
 section 5.3.5, para 5
 "If the object being deleted has incomplete class type at

 the point of deletion and the complete class has a
 non-trivial destructor or a deallocation function, the
 behavior is undefined."

With regards to #2:
 section 5.3.1, para 4:
 "The address of an object of incomplete type can be taken,
 but if the complete type of that object is a class type
 that declares operator&() as a member function, then the
 behavior is undefined..."

However, there is some additional language that suggests that the template
should be instantiated:

 section 14.7.1, para 3:
 "If a class template for which a definition is in scope
 is used in a way that involves overload resolution,
 conversion to a base class, or pointer-to-member conversion,
 the class template specialization is implicitly instantiated."

 section 13.3, para 2:
 "Overload resolution selects the function call in seven
 distinct contexts within the language...
 --invocation of the operator referenced in an expression..."

 section 13.3.1.2, para 2:
 "If either operand has a type that is a class or an
 enumeration, a user-defined operator function might be
 declared that implements this operator...
 In this case, overload resolution is used..."

It seems to me that deleting an object involves overload resolution,
because
the operator delete is overloaded at the global scope and can be overloaded
at the class scope. However, this is not completely supported by the
language of 13.3.1.2/2, because the operand to delete is not of class type
but of type pointer-to-class. It seems that it should be clear from other
contexts that operator delete does indeed involve overloading, but the
explicit language does not confirm that conclusion.

The case for instantiating a template when operator&() is involved is more
clear, because operator& is applied to an operand of type class.

In my opinion, given that comp.std.c++ could reach no definite conclusion
given the existing draft language, some explicit clarification on these
matters is desirable.

Thank you for your consideration.

John Lilley

jlilley@empathy.com

Nerds for Hire, Inc.
4270 Evans Dr.
Boulder, CO 80303
phone: 303-543-9115
==
	John Lilley GUIs phone: 303-543-9115	
	Nerds for Hire, Inc. Parsers fax: 303-543-6069	
	http://www.empathy.com jlilley@empathy.com	
==

ˇ
<<<<<< Attached TEXT file named "Pr Cmt #07/Lilley" follows >>>>>>
January 18, 1997

To: Deborah Donovan

Hello,

I have been recently attempting the implementation of templates in my
parser, and have found that the dec96 draft has not completely cleared up
some issues concerning the definition of "dependency on a template
parameter".

The last draft I obtained (may96) contained side-comments to the effect
that
additional clarification was needed for the exact definition of "depends
on", and I notice that some additional work has been done. I am
comfortable
with the current definition of dependency (14.6.2.1, 14.6.2.2), but not
with
its use in the examples illustrating ill-formed templates resulting from
such dependency (14.6.2/2, 14.6.2/3). To the contrary, I believe that
conclusions drawn about the examples given are unsupportable.

Consider the example in 14.6.2/3. It is claimed that the call g(1) is
dependent on the template type argument only when the type argument is
"int". However, this is not supported by the definition of dependency.
14.6.2/1 claims that a postfix expression such as g(1) is dependent on a
type parameter "if and only if any of the expressions in the epression-list
is a type dependent expression", which I take to mean that the literal "1"
must be type-dependent for g(1) to be type-dependent. The unintuitiveness
of this idea aside, 14.6.2.2/5 explicitly says that a literal is never
type-dependent, so that example is incorrect.

The problem is that the examples given demonstrate a dependency on a
template *argument*, whereas the dependency rules define dependency in
terms
of template *parameters*. Dependency on a template argument implies that
any declaration or expression involving use of a type that *happens to be
the same* as a type used as a template argument is fair game for being
rendered "dependent" (or not) at the time of template instantiation. This
in turn implies that all declarations may be rebound during the
instantiation, given the right context.

Dependency on a template-argument cannot be defined statically because one
cannot know what is dependent on a template-argument until one sees the
template argument used in the instantiation -- dependency, in that context,
is not a static property of the template declaration, but rather a property
of the environment in which the template is instantiated, combined with the
template declaration.

In my opinion, the best solution is to completely remove dependency on a
template *arguments* and limit dependency to template *parameters*. That
would make it possible to determine statically which names and expresions
are dependent. This is especially true considering the new language of
14.6.2/5 concerning dependent base classes.

If this were adopted, then the practical result would be that no
declaration
or expression could be considered dependent unless it depends on the formal
template parameter, and this in turn is known when the template declaration
is processed. The fact that an expression or declaration involves a type
that *happens to be the same as* one of the template arguments encountered
later would not be considered.

This may indeed be the intent of the dec96 draft -- perhaps the examples
that I referred to were not intended to conflict with other language.

Note that my suggestion would still allow for overloading of functions
declared after the template, as long as the call to the overloaded function
involved a template parameter. For example:

 void g(long);
 template <class T> class A {
 T t;
 void f() {
 g(t); // dependent on T
 }
 }
 void g(int);
 A<int> ai;
 ai.f(); // calls g(int);

If this were, done, then the rules concerning when a name may or may not be
re-bound would be much clarified.

respectfully submitted,

John Lilley

jlilley@empathy.com

Nerds for Hire, Inc.
4270 Evans Dr.
Boulder, CO 80303
phone: 303-543-9115

==
	John Lilley GUIs phone: 303-543-9115	
	Nerds for Hire, Inc. Parsers fax: 303-543-6069	
	http://www.empathy.com jlilley@empathy.com	
==
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #08/Lilley" follows >>>>>>
January 20, 1997

To: Deborah Donovan

Hello,

I have some more comments regarding dependency on a template parameter when
the template parameter is involved in the base class. 14.6.2/5 clarifies
dependency on a template parameter when the template parameter is used as a
base class, but I think there are a couple of cases that require
clarification.

First, consider a template parameter as an *indirect* base class:
 struct A {
 struct B { /*...*/ };
 int a;
 int Y;
 };
 template <class T> struct AA : public T {};
 int a;
 template <class T> struct Y : public AA<T> {
 struct B { /*...*/ };
 B b; // B defined in Y ??

 void f(int i) { a = i; } // ::a ??
 Y* p; // Y<T> ??
 }
 Y<A> ya;
In short, can the conclusions of 14.6.2/5 still be drawn when the template
parameter is an indirect base class?

The second example is a bit more complex and has to do with template
partial
specializations:
 template <class T> struct A {};
 template <> struct A<int> {
 struct B { /*...*/ };
 int a;
 int Y;
 };
 int a;
 template <class T> struct Y : public A<T> {
 struct B { /*...*/ };
 B b; // B defined in Y ??
 void f(int i) { a = i; } // ::a ??
 Y* p; // Y<T> ??
 }
 Y<int> ya;
In short, can the conclusions of 14.6.2/5 still be drawn when the template
parameter is involved in the selection of a base class which is a template
specialization (or partial specialization for that matter)?

The case involving a template specialization as a base class is more
difficult, because on one hand you want declarations of a "normal" base
class to override declarations where appropriate, but you don't want
members
of indeterminate base classes to override.

I suggest that the language of 14.6.2/5 be amended to read something like:
 "If a base class of a class template is one of:
 -- a template-argument.
 -- a template-id whose argument list contains a
 template-argument, where the correct specialization
 of template-id cannot be chosen until the
 template-argument is known.
 -- a template-id whose argument list contains a
 template-argument, and which has a base class
 falling into one of the two cases above.
 then a member of that base class cannot hide a name declared
 with a template, or a name from the template's enclosing scopes."

respectfully submitted,

John Lilley

jlilley@empathy.com

Nerds for Hire, Inc.
4270 Evans Dr.
Boulder, CO 80303
phone: 303-543-9115

==
	John Lilley GUIs phone: 303-543-9115	
	Nerds for Hire, Inc. Parsers fax: 303-543-6069	
	http://www.empathy.com jlilley@empathy.com	

==
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #09/Owen" follows >>>>>>
Date: January 27, 1997

To: Deborah Donovan

I would like to request that the "string" class be fully integrated into
the C++ standard libraries as a total replacement for null-teriminated
character arrays.

For instance all functions that take char* as input should take a string,
instead, such as file name inputs for file stream classes. This is probably
obvious and is fully backwards compatible.

But in addition, I feel that almost all functions that presently use a
char* argument for output should use a reference to a string, instead. This
includes the getline() and str() methods associated with all iostream
classes. This will not be backwards compatible, but this seems a small
price to pay for the gain in robustness and self-consistency we would gain.

Then one could eliminate the "getline" global function, which seems to be a
hack to work around the lack of integration of "string" into the standard
libraries.

Presently there seems to be no obvious and simple way to extract all
remaining data from a stringstream into a string. If true, this is a very
serious oversight and one I hope will be addressed. The solution I suggest
is to allow getline to accept an "int" for the terminating character
(presently it requires a "char"). Then one could use getline (...,
traits::eof()) to extract the data.

Thank you for your consideration,

-- Russell

Russell E. Owen
owen@astro.washington.edu University of Washington
phone: 206-543-2859 Astronomy
fax: 206-543-9850 Box 351580
 C321 Physics/Astronomy Bldg (non
USPS)
http://rowen.astro.washington.edu/ Seattle, WA 98195-1580
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #10/Owen" follows >>>>>>
Date: January 27, 1997

To: Deborah Donovan

Please consider providing a C++ flavor of "assert" that throws an
exception.

I realize that writing such a thing manually is possible, but making such
important core tools standard has obvious benefits.

I can see several solutions:
- Simply change the existing "assert" so that it throws an exception. This
would simplify the programmer's life for new code, as there would only be
one way to do this obvious and useful thing. However, it may cause trouble
for existing code.
- Provide a new function with a name similar to "assert", but not
identical. This would be safest for existing code, but adds clutter.
- A compromise wherein a #define determines the behavior. This is my least
favorite solution, though it is still arguably an improvement.

-- Russell

Russell E. Owen
owen@astro.washington.edu University of Washington
phone: 206-543-2859 Astronomy
fax: 206-543-9850 Box 351580
 C321 Physics/Astronomy Bldg (non
USPS)
http://rowen.astro.washington.edu/ Seattle, WA 98195-1580
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #11/Owen" follows >>>>>>
Date: January 27, 1997

To: Deborah Donovan

I am writing to beg the C++ committee to require STL to have bounds
checking and generally be robust against programmer error.

If necessary for performance issues, it should be possible to disable the
bounds checking (possibly by setting a compiler option, pragma or #define;
it need not be trivial). But the default should have bounds checking ON. C
and C++ programmers and the users of their code have suffered enough in the
cause of performance.

Thanks for your consideration, on what is possibly a tender topic.

-- Russell

Russell E. Owen
owen@astro.washington.edu University of Washington
phone: 206-543-2859 Astronomy
fax: 206-543-9850 Box 351580
 C321 Physics/Astronomy Bldg (non
USPS)
http://rowen.astro.washington.edu/ Seattle, WA 98195-1580
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #12/Girod" follows >>>>>>
Date: February 6, 1997

To: Deborah Donovan

Hello!

Please find some comments on the committee draft for the C++ language
standard.

I sent them as well to the Australian standard body, which forwarded
at least part of them to the editor <c++std-edit@research.att.com>.

My coordinates are to be found in my "signature" below.

Best Regards
Marc Girod

* In [temp.friend] (14.5.3 (4)), 2nd line: remove the word "function"

 template class. In this case, the corresponding member function of
 ^^^^^^^^

 The "member of a class template" is not necessariliy a member
 "function". In the example, one member is a nested class.

* In [temp.friend] (14.5.3 (4)): add an example for a typedef member,
 using the typename keyword.

* In [dcl.type.elab] (7.1.5.3 (3)): add one line (and optionally the
example)
 friend typename identifier ;
 [Example:
 template <class T> class Y {
 typedef T::Session S;
 friend typename S;
 };
]

* In [dcl.type.elab] (7.1.5.3 (4)): add one line (and optionally the
example)
 friend typename nested-name-specifier identifier ;
 [Example:
 template <class T> class Y {
 friend typename T::Session;
 };
]

 Rationale: these are implicitly made legal by [temp.friend], since
 nested typedefs are class "members". It raises thus an ambiguity
 that these cases are missing from the lists of explicitly allowed
 ones.

* A related issue: in [temp.explicit] (14.7.2 (2)), it is not clear
 whether the use of a typedef is allowed or not. I suggest to
 explicitly allow it, and to provide an example such as:

 typedef deque<Callback*, allocator> dCa;
 template class dCa;

* Also in [temp.explicit] (14.7.2 (2)), there is no syntax for
 explicitly instantiating specific members of a template class.
 This means that in some cases, implicit instantiation may succeed,
 where explicit instantiation is impossible...

 The syntax could be:

 [Example:
 template void deque<Callback*, allocator>::deallocate_at_begin();
]

--
Marc Girod Kilo RD 4 Phone: +358-9-511 27703
Nokia Telecommunications P.O. Box 370 Fax: +358-9-511 27432
00045 NOKIA Group Finland marc.girod@ntc.nokia.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #13/Brasfield" follows >>>>>>
Date: February 21, 1997

To: Deborah Donovan

In the December 1996 draft C++ standard, in section 13 Overloading,
the following text can be found at 13.3.1.2.9:

 13.3.1.2 Operators in expressions [over.match.oper]
. . .
9 If the operator is the operator ,, the unary operator &, or the opera-
 tor ->, and overload resolution is unsuccessful, then the operator is
 assumed to be the built-in operator and interpreted according to
 clause _expr_.

As I read the above, I wonder if "unsuccessful" is what was meant.
Earlier, (at 13.3[4]) the phrase "overload resolution succeeds" is
said to occur when a best viable overload exists and is unique,
(resulting from finding the best viable overload on each argument).

This seems to defeat the purpose of generally making ambiguity an
error in C++. Under the usual regime, where ambiguity is an error,
if I add an overload that creates an (unintended!) potential ambiguity,
and I use it in a way that creates an actual ambiguity, the result is
an error and I have to decide what I really meant to occur. But with
the above rule, where the overload reverts to the built-in operator
upon "unsuccess", which can result from adding an overload that
gives rise to an ambiguity, I can get a silent change in behavior
due to the ambiguity.

I suggest that the phrase "and overload resolution is unsuccessful"
of section 13.3.1.2.9 should be "and no viable overloads can be
found for the operator". At the very least, the meaning of the word
"succeeds" in this context needs to be qualified.

--Larry Brasfield
Above views are mine alone.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #14/Finney" follows >>>>>>
February 22, 1997

To: Deborah Donovan

Page 2_3. Paragraph (3) says "Each ? that does not begin one of the
trigraphs
listed above is not changed." but paragraph (4) says that "?????????"
becomes
"???" which implies that ??? is a trigraph and is replaced by ?, but that
contradicts paragraph (3).

Michael Lee Finney
114 Old Wiggington Road
Lynchburg, Va. 24502-4669
804/385-4468
mfinney@lynchburg.net
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #15/Horwat" follows >>>>>>
February 24, 1997

To: Deborah Donovan
Cc: wluk@ansi.org

I'd like to submit a short comment to the 2 Dec 1996 draft of the C++
programming language (ISO/IEC 2nd CD 14882).

The issue is the interaction of template instantiation and partially
defined classes. Consider the following example:

#include <list.h>

struct S
 {
 int a;
 list<S> b;
 };

Is this meant to be legal C++? The answer depends on whether the expansion
of the list template tries to allocate a field of type S in the class

list<S>. If so, it would violate paragraph 9.2.8 which states that
non-static members of a class must be objects of previously defined
classes. However, I couldn't find anything in the draft standard that
states that list<S> may or may not expand into a class with a field of type
S.

Please specify the behavior of definitions of all container templates
(list, vector, etc.) in the standard library with respect to template
parameters that are partially defined.

 Dr. Waldemar Horwat
 individual
 976-1 Alpine Ter.
 Sunnyvale, CA 94086
 408-749-9708
 waldemar@acm.org
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #16/Aldridge" follows >>>>>>
February 25, 1997

To: Deborah Donovan
Cc: jpsa@uk.gdscorp.com

Name: John Aldridge
Company: Graphic Data Systems

Address: Wellington House
 East Road
 Cambridge
 CB1 1BH
 ENGLAND

Phone: +44 1223 371925
E-mail: jpsa@uk.gdscorp.com

I cannot find wording in the draft which unambiguously says
whether the following example should compile:

 class A {
 public:
 void B ();
 private:
 enum X {X1, X2, X3};
 };

 void A::B ()
 {
 struct Z {X x; int i;};
 }

Section 11.8 (Nested classes) says:

 The members of a nested class have no special access to
 members of an enclosing class ...

but I cannot find an equivalent statement about the access rights
of local classes.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #17/Bau" follows >>>>>>
February 25, 1997

To: Deborah Donovan

Paragraph 2.3.1 + 2.3.4, Trigraph Sequences:

2.3.1 contains a list of trigraph sequences that should be replaced by
single characters; 2.3.4 contains further rules and an example
explaining these rules.

The example in 2.3.4 does not make any sense. It only makes sense if I
assume that the sequence ??? should be replaced by a single question
mark ?. However, the sequence ??? is not mentioned in 2.3.1.

Either 2.3.1 must be changed to include that the sequence ??? is
replaced by ?, or the example in 2.3.4 must be changed.

Christian Bau
Insignia Solutions Ltd.
EMail: christian.bau@isltd.insignia.com
Phone: +44-1496-453435
ˇ
<<<<<< Attached TEXT file named "PR Cmt #18/Ward" follows >>>>>>
February 25, 1997

To: Deborah Donovan
Cc: wluk@ansi.org

Requestor: Judy Ward
Company: Digital Equipment Corporation
Address: ZK02-03/N30
 110 Spitbrook Road
 Nashua, NH 03062-2642
 USA
Telephone: 603-881-2687
Email: j_ward@decc.enet.dec.com

ANSI C++ Public Review Comment:

The standard fstream classes are missing a key feature that most existing
fstream classes have, namely the ability for users to access the
association
between an streambuf and the underlying C file descriptor/pointer.

For example, most iostream classes have these member functions to create or
attach a C file to a C++ fstream:

filebuf::filebuf(int file_descriptor,...)
filebuf* filebuf::attach(int file_descriptor, ...);

Most existing iostream classes have a way to access the underlying C file
descriptor or pointer given the fstream, i.e:

int filebuf::fd() const;

We think this functionality is essential for C++ users who need to work
with
other C library features, i.e. sockets, extensions to stdio for special
file
types, etc.

We understand that file descriptors are not in the C standard, but C FILE*
pointers are included. So changing the above functions to accept or return
C
FILE pointers would be fine.

We also understand that this would require implementors to use the
underlying
C input/output libraries to implement iostreams. We don't know of any
vendor
who does not plan to do that anyway.

Alternatively, one could consider writing a stdiobuf class to encapsulate
these conversion functions (to connect a streambuf to a FILE *), but it's
probably too late for that.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #19/Whitman & Ward" follows >>>>>>
February 25, 1997

To: Deborah Donovan
Cc: wluk@ansi.org

Public Review Comment ISO/IEC 2nd CD 14882,C++ Language:
 C library names should be removed from namespace std

We believe that C library names should be removed from namespace std.
The draft currently states (Clause 17, Annex D) that the C++ Standard
library will provide 18 ISO C library headers in a <cname> form which
brings ISO C names into the namespace std and a <name.h> form which
bring ISO C names into both the std and global namespace (excluding
macros).

We believe that the implementation for this is highly error prone,
leading to unmaintainable C headers and serious bugs. Some of our
major concerns are:

 o maintaining duplicate copies of the .h headers, one supplied by
 C and one by C++.
 o adding complex macros to headers to avoid nested namespaces.
 o ensuring that names are consistently available (or not) in
 namespace std regardless of the order of header file inclusion
 in a user program.
 o coordinating an effort to modify, rewrite, reorganize C headers
 supplied by a C development environment which is outside of the scope
 of the C++ environment.

We believe that in practice the benefits of putting ISO C names into
namespace std do not outweigh the increased complexity required for
compliance. The burden of this support is not limited to C++
compiler/library vendors. It will impact any independent C++
library/tool vendor and operating system provider all of which will
need to ensure that the correct C/C++ header interfaces are in place.

This was discussed in depth on the library reflector. For details
see messages 4598-4611,4614-4615,4618-4626,4628,4630,4632-4636,
4638-4641,4643,4645-4647,4650-4656,4662-4664,4666,4676,4689,4690

The resolution is to change the Working Paper as follows:
 o 17.3.1.2 table 12, C++ Headers for C Library Facilities
 delete the leading "c" from header names and append ".h".
 o Remove 17.3.1.2 paragraph 4, 7 and footnote 153. Add
 the ".h" headers place all their names into the global
 namespace.
 o Delete from Annex D the [.depr.c.headers] section.
 o Change references to std::ISO-C-name to ISO-C-name

Requestor: Sandra Whitman, Judy Ward
Company: Digital Equipment Corporation

Address: ZK02-03/N30
 110 Spitbrook Road
 Nashua, NH 03062-2642
 USA
Telephone: 603-881-2687
Email: whitman@tle.enet.dec.com
 j_ward@decc.enet.dec.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #20/Sachs" follows >>>>>>
February 25, 1997

To: Deborah Donovan; wluk@ansi.org
Cc: David Sachs

Comments about 1996 C++ Draft standard ISO/IEC JTC1/SC22

David Sachs
1069 Rainwood Drive
Aurora, Illinois 60506-1351
Email: sachs@fnal.fnal.gov

to: X3 Secretariat
Attn.: Deborah J. Donovan,
1250 Eye Street, NW,
Suite 200,
Washington, DC 20005,
Email: ddonovan@itic.nw.dc.us.

cc: ANSI
Attn.: BSR Center
1 West 42nd Street
New York, NY 10036
Email: wluk@ansi.org

These comments will be sent both by Email and via the U. S. postal system.

1) Trigraphs

I do not understand the trigraph examples in section 2.3, page 2-3
of the draft standard. These examples act as if there were a 10th
trigraph sequence ("???" replaced by "?") in addition to the 9 listed
sequences. However the draft standard explicitly denies that there are
any unlisted sequences,

The example in question, Section 2.3 paragraph 4 reads:

[Example: The sequence "???=" becomes "?=" not "?#". The sequence
"?????????" becomes "???", not "?". -- end example]

2) Direct and indirect copies of same base class

Paragraph 3 of section 10.1 (page 10-2) of the draft standard
specifically declares the following construct to be well-formed
(irrelevant lines omitted):

class L { public int next; /* */ };
class A : public L { /* */ };
class D : public A, public L { void f(); /* */ }; // well-formed

The class D is presented as if it were a perfectly normal, usable class.
The only restriction on such a class anywhere in the draft standard is
in section 12.6.2 paragraph 2 (page 12-13), which disallows a mem-

initializer for the duplicated base class if there is an indirect
virtual copy and the direct copy is not virtual.

In fact, unless the standard is changed such as by allowing a direct
base class to hide an indirect copy of the same base, any attempt to
access the direct copy of the duplicated base class or its members,
except by methods best suited for use in obfuscated C++ contests, is
ambiguous and causes a compile time error.

As a minimum the text of the standard should warn of the very limited
usability of such a class.

3) Recursive exceptions

I can find nothing in chapter 15 of the draft C++ standard either
permitting or prohibiting recursive exceptions.

I use the term "recursive exception" for the situation described in the
following paragraphs:

After an exception is thrown, the runtime stack is unwound while
searching for a proper handler. As part of the unwinding process
destructors are called for class objects in the stack.

Suppose that a destructor called in this manner, or a function called
from such a destructor contains a try block. If something within the
scope of such a try block throws an exception, then at that point, there
are 2 uncaught exceptions being processed.

I call the second exception a "recursive exception". There probably is a
better term for this.

Obviously, the second exception must be caught and processed by an
exception handler within the destructor or a function it calls; the
standard properly specifies that having the destructor terminate by
throwing an exception requires terminate() to be called.

The draft standard does not specify whether a properly caught recursive
exception is standard-conforming.

Messages in the comp.std.c++ newsgroup indicate that it is apparently
the intent of the standards committee that standard conforming compilers
are required to support recursive exceptions as described above.

4) Ambiguous mem-initializer-id

The draft standard section 12.6.2 paragraph 2 declares that a mem-
intializer that is ambiguous because its mem-initializer-id designates
both a direct non-virtual base and an inherited virtual base class is
ill-formed.

There is no similar statement for a mem-initializer-id, that designates
both an initializable base and a class member. If such a mem-initialer
is not ill formed, what does it initialize?

5) Throwing an exception example

The example in section 15.1 paragraph 1 needs to be changed slightly
because of the recent change of the type of string literals from char*
to const char*. It currently reads:

... throw "Help!"; can be caught by a handler of some char* type ...

char* probably should be changed to const char*. The sample code
following this sentence does properly use const char*.

** The Klingons' favorite food was named by the first earthling to see it
**
David Sachs - Fermilab, MSSG MS369 - P. O. Box 500 - Batavia, IL 60510
Voice: 1 630 840 3942 Department Fax: 1 630 840 3785
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #21/Dimm" follows >>>>>>
February 25, 1997

To: Deborah Donovan; wluk@ansi.org; billd@gim.net

 February 25, 1997

Comments ISO/IEC CD 14882, December 2, 1996,
"Working Paper for Draft Proposed International Standard for
Information Systems-Programming Language C++"

From:
 Bill Dimm
 275 Bryn Mawr Ave. Apt. M14
 Bryn Mawr, PA 19010
 (610)995-1570
 billd@gim.net or billd@mop.com
 Employer: BNP/Cooper Neff, Inc.

1) p. 2-6, Table 3 - Missing "export"
 The table of keywords is missing the "export" keyword
described on page 14-1.

2) section 21.3 - Add basic_string::push_back
 The basic_string class should have a push_back member
function (as in Table 69, p. 23-5) to make it more
compatible with the other container classes.

3) p. 23-23 and p. 23-25 - vector::resize Pass by Value?
 The second argument for vector::resize is passed by
value (instead of reference to const object). In the
absence of a compelling reason for pass by value, this
should be changed to use a reference to const (for
greater efficiency and more uniformity in the library).
Page 23-25 defines vector::resize in terms of
vector::insert (which uses a reference), so it is
surprising to see that the two functions treat their
arguments differently.

4) section 23.2.4.3 - vector::insert under specified
 The draft makes no statement about whether or not
pointers/references remain valid DURING (not after)
vector::insert. Since the value being inserted is a
reference to const object, it is unclear whether or not
you can insert an element of a vector into another
location of that vector. For example (recalling from p.
23-5 Table 69 that push_back is defined in terms of
insert):
 vector<int> v(100);
 v.push_back(v[0]); // is this well defined?
The library implementations that I have seen do
accommodate the code above because (when capacity must be

increased) they fill-in the new memory region completely
before destroying the objects in the original memory. I
would suggest that the committee require that references
into the vector remain valid during (but not after) the
insertion. If such a restriction is not imposed, I would
suggest that the standard explicitly say that code like
the example above is undefined.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #22/Morse" follows >>>>>>
February 25, 1997

To: Deborah Donovan; wluk@ansi.org

The following comments are being submitted by email with follow up to the
X3
Secretariat and a copy to ANSI during the public review period for ISO/IEC
CD
14882 (X3J16).

NOTE: These comments are based on the 24 September 1996 draft and thus may
vary from the final draft.

ITEM 1:

Section 16.1 Paragraph 4 states "The resulting tokens comprise the
controlling constant expression which is evaluated according to the rules
of
5.19 ..."
Section 5.19 deals with general constant expressions in the language
including several features which are not usable in constant expressions for
#if. Among these features are: sizeof, casts, enumeration types, and
floating types. Further, paragraph 1 of section 5.19 contains several
forward
references to other paragraphs but does not contain a reference to section
16.1.

Recommendations:
1. Add a forward reference to paragraph 16.1 in section 5.19 paragraph 1.
2. Add language to section 16.1 paragraph 4 which enumerates those items of
section 5.19 which do not apply (e.g. casts, sizeof, etc). Alternatively,
add language to section 5.19 to accomplish the same objective.

ITEM 2:

Section 16.3.2 paragraph 1 first sentence states "a parameter is
immediately
preceded by a # preprocessing token". It is my experience with current
compilers that is it acceptable to have white space tokens between the #
and
the parameter.

Recommendations:
Add language to section 16.3.2 to indicate that white space can appear
between the # and parameter if this is the intent of the standard.

ITEM 3:

Section 16.3.4 deals with rescanning and further replacement. My literal
reading of this section does not seem to address one of the examples given
in
section 16.3.5 paragraph 5. The latter portion of the first example
includes the string "% t(t(g)(0) + t)(1)" resulting in the string "% f(2
*
(0)) +t(1)". The parameter of the first t macro expands to "f(2 * (0) +

t)".
 A literal reading of section 16.3.4 would suggest that this expanded
parameter should be inserted, rescanned and expanded again resulting in
"f(2*(2*(0) + t))(1)". Section 16.3.4 does suggest that nested macros are
not expanded, however, the current wording does not seem to cover the case
where the macro was expanded in the parameter expansion. Section 16.3.1
suggests that parameters are fully expanded and substituted while 16.3.4
covers rescanning without any suggestion of an interaction between the two.

Recommendations:
Section 16.3.4 paragraph 2 sentence 2 reads "Further, if any nested
replacements encounter the name of the macro being replaced, it is not
replaced." After this sentence I suggest adding: "Any nested replacements
encountered during parameter expansion continue to be unavailable for
further
expansion after parameter substitution and subsequent rescanning."

Submitted By:

Peter L Morse
177 Telegraph Rd #501
Bellingham, WA 98226
Phone: (520) 574-5446 or (206) 952-0494
Email: MorseRover@aol.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #23/Parker" follows >>>>>>
February 26, 1997

To: Deborah Donovan

Attn:
X3 Secretariat, Deborah J. Donovan, 1250 EyeStreet, NW, Suite 200,
Washington, DC 20005, Email: ddonovan@itic.nw.dc.us

Re: Public Review Comments on December 1996 Draft C++ Working Paper.

Name: Brian Parker
Business Name: Voxel Graphics Research
Email: bparker@gil.com.au
Postal Address:
14 Jules Av,
Rochedale South,
Brisbane QLD 4123,
Australia

Phone: +61 7 32992807

Comments by section follow.

-

Page 14-22 Sec 14.6.2 Clause 2 has an example

template<class T> class Z {
public:

void f() const {
 g(1);
}

};
void g(int);

and states that this is ill-formed because g(1) is not type-dependent and
so
is looked up
at template definition. This is confirmed in an example in Sec 14.6.3.

However, the example
goes on to state that if Z had been instantiated with an int, then g(1)
would become
type-dependent and hence the example would be well-formed. My understanding
was that
g(T(1)) would be required to make g(1) type-dependent. Earlier in the
example, three ways
a function call can be type-dependent are listed and the second seems to
imply that g(1) is
type-dependent for T an int. The third is a (non-template) example that in
a
template class
would seem to me _not_ to be type-dependent.

-

Page 14-26 Sec 14.6.5 Clause 2 and footnote 126 states that a friend
declaration in a
template class does not inject the name into any scope. It then gives an
example of

a = gcd(a,b) and states that gcd is looked up inside number<double>
by
the
argument-dependent lookup rules in 3.4.2. By my reading, however, 3.4.2
states that lookup
starts in the enclosing namespace, not inside the template class.

-

Page 14.30 Sec 14.7.2 gives examples with two syntaxes for an explicit
instantiation
of a template function where all the arguments can be deduced i.e.

template void sort(Array<char>&);
or

template void sort<>(Array<char>&);
Are these equivalent by design?
This same issue arises in explicit specialization Sec 14.7.3

-

Page 5-23 Sec 5.9 Clause 2 describes how comparing two (non-null/ non-void)
pointers
converts them to a composite pointer type similar to one of them, but
doesn't state
which one. I think this should state that it is the pointer that has an
implicit conversion
from the other one (if it exists).

-

Page 3-20 Sec 3.5 Clause 6
In the example, why does extern int i have external linkage and not the
internal linkage of
the earlier static i definition?

-

Page 18-15 Sec 18.5.1 Clause 7 defines type_info::name() as
implementation-defined, so
a conforming implementation could simply return a null string for all
types,
effectively
making name() unusable. Ideally, it should be defined to return the type
name in some

canonical form e.g. a fully-qualified elaborated type-id with no redundant
spaces (although
e.g. pointer non-type template parameters would require further
specification). This would
allow name() to be used to label types in a persistence library (e.g. a
recent Microsoft
Systems Journal described such a library). Failing this, I think that at
least name() should
be defined to return a unique string for each type to allow type_info to be
used as a hook
to further user-defined type information (as envisaged by Dr Stroustrup in
D&E.)
In D&E page 318, it is suggested that typeid(*p).name() or &typeid(*p)
could
be used as an
index into a map for this purpose, but currently neither expression is
defined to be unique
for different types.

-

Page 18-14 Sec 18.5.1
A significant limitation of the current draft C++ is that given a pointer
(or reference) to
some type or derived type, it is impossible to make a copy of the
most-derived object.
e.g.

template<class Allocator>
class Myclass{
public:
const Allocator* local_copy;

Myclass(const Allocator& alloc = Allocator())
// The passed in alloc may be a default temporary or a

user-allocated
// derived object. Make a local copy in either case.

: local_copy(clone_ptr(&alloc)) // Oops, no such clone_ptr
function
exists

{}

~Myclass() {delete local_copy;}
...

};

Therefore, one can only make local copies for types that have explicitly
added clone()
virtual functions to the base-class (and maintained them in all derived
classes).

If, however, class std::type_info was extended with the member function
clone as follows-

class type_info {

... rest as per the draft standard

virtual void* clone(const void* const p) const = 0;
};

where clone() is overridden for the type that the type_info represents such
that
clone() copy-constructs a copy of p on the heap

e.g. for type_info representing type T, this would be overridden by the
implementation as...

T* type_info::clone(const void* const p) const
{

return new T(*(const T* const)p); // undefined behaviour if p not
a T*
}

(If the copy constructor of the object is inaccessible a function that
returns a null pointer
would be generated instead).

Given the above function, one can now define the following (in std
namespace)
type-safe template function-

// return new heap copy of object pointed to by ptr
template<class T>
T* clone_ptr(const T* const ptr)
{

return typeid(*ptr).clone(ptr);
}

This new member function of type_info would be easy to implement given the
current type_info
implementation and shouldn't add any code size overhead (the function would
only be generated
if used).

In fact, just clone_ptr() could be defined in the standard and the
definition
of
the member function in the type_info class could be left as an
implementation detail.

Another advantage of this function is that it allows a value semantics,
polymorphic smart pointer
template to be written that works on any (copyable) type which would
simplify the design
of classes using dynamic memory allocation.

(Note 1: I have a comment about covariant return types.
As written, the declaration of type_info::clone() is incorrect according to
the draft std
as the covariant return type must be derived from the return type of the
base class, but
in the spirit of void* being viewed as the base of all pointers (i.e. all
pointers can be
implicitly cast to void*) might it not be more consistent to allow derived
class return
types of any pointer type to override void* returns in the base class?
In any case, this doesn't impact the above function; just define the
function in derived
classes to return void* and later (safely) cast the returned void*.)

(Note 2: If a type_info member that gave the sizeof the type was available,
then
type_info::clone could alternately be written using placement new and
clone_ptr() could
actually allocate the memory. This would be a more flexible scheme.)

-

Page 20-5 Sec 20.2.1
Rather than putting the relational operators in a nested namespace
"rel_ops"
it may be
better to put them in a class-
template<typename T>
class rel_ops {

friend bool operator!=(const T& lhs, const T& rhs){
return !(lhs == rhs);

}

... and so on for >, >= & <=
};

Then the names could be injected for the required type where required by
explicit template
instantiation-
template rel_ops<Mytype>;

or by deriving from rel_ops<T>

-

Page 14-34 Sec 14.7.3 Clause 16
The example isn't of a member template as stated.

-

Page 18-10 Sec 18.4
Throughout this section, various placement delete functions are described
as
being called
by a delete-expression. My understanding was that the placement delete
functions were only
called if an exception was thrown during a new expression. When are the
"nothrow" placement
delete functions called. Page 18-13 Sec 18.4.1.3 Clause 8 states that
operator
delete(void* ptr, void*) is the "default function called for a placement
delete expression".
What is a placement delete expression?

-

Page 18-17 Sec 18.6.2.2 Clause 2
Section 15.5.2 states that the unexpected() function can throw any
exception
and those not
in the function's exception specification will be converted to
bad_exception
if that is in
the exception specification. This section, however, states that a user
supplied
unexpected_handler must not throw exceptions not on the exception
specification. What is the
reason for this restriction?

-

Various trivial editorial changes:
Grammar page A-5: There are two identical id-expression productions.
Page 5.79 Sec 5.2.7 Clause 9: last two dynamic casts in void g() should be
from &d not &dr.

Page 14-26 Sec 14.6.4.2: "not just considered" to "not just considering".
Page 14-34 Sec 14.7.3 Clause 16: "specialized class is not be" to "
specialized class is not".
Page 14.34 Sec 14.8 Clause 2 "Each function template" to "each function
template specialization".
Page 14-41 footnote 128: "non-teplate" to "non-template"
Page 13-24 Sec13.6 Clause 15: There is no footnote 123.
Page 17-8 Sec 17.3.1.3 Clause 2: "implementation has has" to
"implementation
has"
Page 23-20 Top of page "nmespace" to "namespace"

-

End of file.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #24/Moore" follows >>>>>>
February 27, 1997

To: Deborah Donovan
Cc: dlmoore@ix.netcom.com

Comments from:

David L Moore
Advantest America R & D
3201 Scott Boulevard
Santa Clara CA 95054

(408) 727 2222 x386

d.moore@advantest.com

The following are my personal remarks concerning the Draft C++ standard.
Although these problems have mostly been discovered during the course of my
work, they do not represent a position of my employer.

Part A deals with what appears to be a serious problem.

Part B deals with points that I believe could be clarified. The lack of
clarity may arise from my lack of familiarity with the standard rather than
actual problems. Alternatively it may be felt that the possibility of
divergent implementations caused by these difficulties is small.

Possibly, these points should be addressed in an annotation to the standard
in a similar vein to that for Ada if the benefits of clarification are felt
to
be outweighed by the delay that would be caused.

Part A. Serious Problems.

1/ Exceptions.

The current language appears to not correctly specify the order of
searching for an exception handler. Consider the following code
fragment:

 try {
throw 2;
}

 catch (int i)
 {

throw 2.0;

}
 catch (double a)

{
cout << "what am I doing here";

 }

According to the draft standard, this will print "what am I doing here".
I believe that this is not the desired semantics. Indeed, these new
semantics makes rethrowing exceptions impossible.

The reasoning for my claim is as follows:

i) Note that this entire construct is a try block. From 15, para 1:

try-block: try compound_statement handler-seq

ii) From 15.1[2]

 When an exception is thrown, control is thrown to ... the handler whose
 try block was most recently entered by the thread of control and not
 yet exited.

We have not yet exited the above try block as, according to the syntax,
the handlers are part of the try block.

SUGGESTED FIX:

change the grammar to:

try-block: try-protected-statements handler-seq
try-protected-statements: try compound-statement

and replace the words "try block" in 15.1 (2) by "try protected
statements".

Part B. Clarifications Desirable.

1/ What happens when a destructor throws an exception while we are
 unwinding the stack in preparation for entering a handler?

 Suppose that in the process of unwinding the stack in preparation for
 entering a handler[15.2 para 1], an exception is thrown. What are the
semantics?

2/ Should it be possible to catch a throw of '0' with a handler
that catches void *?

try {
 throw 0;
 }
catch (void *)
 {
 cout << "At least some compilers print this\n";
 }

Many compilers allow this. The section 15.3(3) references 4.10
which discusses the fact that 0 can be converted to a pointer
type. However, as it is not of a pointer type, the language of
15.3(3) :

the handler is of type cv1 T* cv2 and E is a pointer type...

appears to prohibit this behaviour. This case should be
clarified.

3/ The "unexpected" procedure.

 Can this be declared static:

 static void unexpected();

 If not, is it an error to declare such a function? The implication
 of the manual appears to be that this cannot be static, but it
 is possible that this is wishful thinking on my part as an implementor.

 BTW 18.6.2 is empty. Is this intentional?

4/ bad_alloc.

 5.3.14 para 16:

The allocation function can indicate failure ...

 Does can here mean "may" or does it mean "shall"? One of these words
 should be substituted for "can". There is at least one other instance
 where can is used when may or shall should have been used.

5/ Elision of temporaries.

 At various points, the statement is made that temporaries can be
 removed when removing them causes no semantic changes "except for
 calling constructors and destructors".

 Does this mean that any code in those constructors and destructors
 can be ignored when deciding that the temporary need not be
 created. For example, can a temporary for the following class
 fragment always be deleted:

 class X
 {
 public:
 static int i;
 X(X& x) {i++;}
 ~X() {i++;}

 note that not creating and destroying a temporary reduces i by 2.

 (I believe this should be the case since, in my view, the above code
 should not be considered well formed)
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #25/Parker" follows >>>>>>
February 27, 1997

To: Deborah Donovan

Attn:
X3 Secretariat, Deborah J. Donovan, 1250 EyeStreet, NW, Suite 200,
Washington, DC 20005, Email: ddonovan@itic.nw.dc.us

(N.B. I have recently submitted comments on the language component of the
standard. These are my comments on the library portion. They weren't
included
with the original submission due to time constraints. My apologies for any
inconvenience this causes.)

Re: Public Review Comments on December 1996 Draft C++ Working Paper

Library.

Name: Brian Parker
Business Name: Voxel Graphics Research
Email: bparker@gil.com.au
Postal Address:
14 Jules Av,
Rochedale South,
Brisbane QLD 4123,
Australia

Phone: +61 7 32992807

Comments by section follow.

-

Page 24-23 Sec 24.5.3.2 Clause 3
Earlier it is stated that class proxy was for exposition only and need not
be supplied, but here a constructor taking it is required.

-

Page 23-22 Sec 23.2.4 [lib.vector]
>From the definition of vector<T> given, it appears that an implementation
can only ever grow a vector and never reclaim its storage. At the least, a
user of the class can not assume otherwise. For example,

void f()
{

vector<int> v1(1000000), v2(1000000); // initially large vectors
vector<int> v3(1); // initially small vector

int* pi = &v1[1];
v1.erase(v1.begin()+1, v1.end());
// v1.capacity() >= 1000000, v1.size() == 1 here as the standard

(necessarily)
// specifies that storage is not reallocated so *pi remains valid

... other operations on v1

// at this point we know there are no iterators or references that
need
to
remain

// valid so we would like to reclaim storage on v1
v1.reserve(1); // This won't work, reserve() is defined to only

increase
capacity()

// not decrease it.

v1.resize(1); // This won't work, resize() is defined in terms of
erase()
which

// is defined not to reallocate.

v1.compact(); // Ideally, an operation like this would be defined
such
that

// (for the default allocator at least) v1.capacity()
will be

// equal to vector<int>(v1.size()).capacity() i.e. the
same storage

// overhead as a newly initialized vector of the same

size.

v1.clear() // One would expect that this would free all allocated
memory

// but clear() is defined in terms of erase() and so
this is not

// guaranteed. clear() should be defined such that
// v1.clear().capacity() == vector<int>().capacity() is

a post-condition
// (at least for default allocator) i.e. it has only the

same storage
// overhead as a newly initialised default empty vector.

v2 = v3; // One would expect that v2 now only allocates as much
memory

// as required, but this is not guaranteed by the
standard. It could

// still have v2.capacity() >= 1000000. Ideally
assignment would

// be specified for vector such that
// (v2 = v3).capacity() ==

vector<int>(v2.size()).capacity() is
// a post-condition .

}

The post-conditions discussed above should be easy to guarantee for the
default allocator- the allocator storage overhead is implementation-
specific
but deterministic. At the minimum, they could degrade to suggested
behaviour
for user-supplied allocators.

In summary, I think that at least clear() should be defined with the
post-condition above to give the user some explicit control over memory
leakage. Preferably, the function compact() would be added (or
v1.resize(v1.size()) defined to do the same) and the assignment behaviour
specified as above. The container classes' definitions are careful
to give time complexity guarantees without which they would not be usable
in
many situations. I think that some minimum guarantees on space complexity
are
also required.

Note: these comments also apply to basic_string.

-

Various trivial editorial changes:
Page 21-4 Sec 21.1.3 Clause 8 "derived classed" to "derived classes"
Page 23-6 Sec 23.1.2 Clause 4 "equal keys" to "equivalent keys"
Page 23-38 Sec 23.3.4 Clause 2 "the a_eu operations" to "the a_eq
operations"
Page 24-20 Sec 24.5.1.1 Clause 3 "a copy of s" to "a copy of x"

-

End of file.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #26/Clark" follows >>>>>>
February 27, 1997

To: Deborah Donovan
Cc: 'wluk@ansi.org'

My comment concerns try-blocks within exception handlers. I would like
to see the C++ Standard clarify the behavior that should be expected
when an exception is re-thrown in a try-block within an exception
handler.

Using exception handling in my programs, I have found the handlers
generally have a lot of common error processing code such as closing
and/or releasing objects, resetting the object state and logging. In an
effort to eliminate this redundancy, I attempted a programming structure
which consolidated the common code in a single catch-all handler. This
handler contains another try-block where the exception is re-thrown and
caught by a more specific handler.

 1: try
 2: {
 3: // exception prone code here
 4:
 5: }
 6: catch(...)
 7: {
 8: // common error code here
 9:
10: try
11: {
12: throw; // re-throw to more specific handler
13: }
14: catch(ExceptA&)
15: {
16: // handle ExceptA here
17: }
18: catch(ExceptB&)
19: {
20: // handle ExceptB here
21: }
22: catch(...)
23: {
24: // handle unknown exception
25: }
26: throw;
27: }

Unfortunately, the wording in the standard is not sufficient to
determine whether the above example is legitimate. I am not aware of a
compiler which generates an error or a warning when compiling this code.
 However, the question of when the temporary exception object should be
deleted is apparently subject to various interpretations among compiler
vendors.

Jack Reeves was kind enough to research and discuss this example in "C++
Report", Jan. '97 Vol. 9/No. 1. If the inner handlers exit without
re-throwing the exception, the state of the exception object is subject
to the compilers interpretation of the Standard. The throw statement at
line 26 may fail because the compiler destroyed the exception when the
inner handler was exited. If the throw statement on line 26 is
commented out, an error may occur at line 27 if the compiler attempts to
destroy the exception object a second time. (The Microsoft VC++ 4.2
compiler exhibits both of these behaviors. In contrast, the HPUX and
SunSoft SPARCWorks compilers execute this example without error.)

The two relevant sections of the current Draft C++ Standard appear to be
section 15.1 item 4 - "The memory for the temporary copy of the
exception being thrown is allocated in an unspecified way, except as
noted in 3.7.3.1. The temporary persists as long as there is a handler

being executed for that exception..." and section 15.1 item 6 - "... An
exception is considered finished when the corresponding catch clause
exits or when unexpected() exits after being entered due to a throw.".
Neither of these definitively resolve the situation out-lined above. In
fact, it can be legitimately argued these statements contradict each
other in this instance.

Item 4 does specifically address exiting a handler by re-throwing the
exception, therefore, if the inner handlers re-throw the exception, the
above example is valid. I would like to see the standard address, with
similar clarity, exceptions re-thrown in a try-block within an exception
handler. I believe the following questions need to be answered.

1. Should undefined behavior be expected in this instance?
2. Should the inner handler destroy the exception object even though the
outer handler is still executing?

3. If the inner handler destroys the exception object,
a. Should the compiler generate an error if there is an attempt to use
or re-throw the exception in the outer handler?
b. Should the outer handler also try to destroy the exception object?
c. Should the compiler recognize an invalid situation and generate an
error?

Now that the problem has been explained sufficiently, I would like to
turn to justifying the committees attention on the problem. First, as
stated above, the rules are ambiguous in this instance and allow
programs to be compiled without error or warning and then execute in an
inconsistent manner.

Second, there have been newsgroup discussions about the need for adding
a Java style 'finally' clause to the C++ exception handling mechanism.
In fact, Robert Martin suggests this in his article in the same issue of
"C++ Report" mentioned above. The arguments for a 'finally' clause are
very valid except that C++ already allows a similar mechanism. Using
the programming construct I have described provides functionality
similar to the 'finally' clause. Common error logic is stated only once
within the exception handler.

I would even argue the C++ mechanism is superior because the logic for
exiting a successful routine does not have to be mixed with the logic
needed to exit the routine when an error occurs. These are quite often
very different and the C++ exception mechanism keeps them separated.
All of the logic for normal execution is in the try block and all of the
logic for error processing is in the handlers. These two execution
paths do not have to merge into a 'finally' clause. The logic for
normal execution can be coded without considering the error processing.
Exception handlers can then be added without having to change the code
for normal execution.

The problem is that most developers are not aware that the exception
mechanism in C++ allows this functionality. Jack Reeves suggests using
nested try-blocks as an alternative to my solution. Both approaches
achieve equivalent results and seem valid to me. The standard needs to
clarify the rules in this area so that valid alternatives to the
'finally' clause can be publicized and developers can choose the
appropriate solution.

Steve Clark
Federated Systems Group
295 Ecarte Ct.
Lilburn, Ga. 30247
(770) 925-3820
b06swc@federated-dept-stores.com

Thanks,
Steve Clark
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #27/Jones" follows >>>>>>
February 27, 1997

To: Deborah Donovan
Cc: wluk@ansi.org

While reviewing clause 2 Lexical conventions [lex] at the last J11/WG14
meeting as part of a proposal to adopt universal character names into C,
I noticed something that I thought should be brought to your attention:

In subclause 2.3 Trigraph sequences [lex.trigraph], either ??? is
missing from Table 1 - trigraph sequences or paragraph 4 is vacuous
(since none of the trigraph replacements can occur within a trigraph)
except for the example, which is completely wrong. Since ??? is not a
trigraph in C and introducing it in C++ would create a gratuitous
incompatibility, I suggest that paragraph 4 be deleted.

Larry Jones
SDRC
2000 Eastman Dr.
Milford, OH 45150
513-576-2070
larry.jones@sdrc.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #28/Robison/Nelson" follows >>>>>>
February 28, 1997

To: Deborah Donovan

Arch Robison (robison@kai.com)
David Nelson (david@kai.com)
Kuck & Associates, Inc.
1906 Fox Drive
Champaign, IL 61820
(217) 356-2288

We wish to submit the following comments concerning the recently
released C++ Committee Draft. Thank you for your consideration of
these issues.

--
In 26.4.1 [lib.accumulate], the requirements for class T are not specified.
The user is left wondering what properties class T has to have to work.
For example, does class T have to allow assignment? Clearly there
are (recursive) implementations of accumulate that would not require
assignment. But are implementors required to handle the case where
T does not allow assignment. The standard should specify exactly
what properties class T has to have in order to work with the
accumulate template.

--

The example in 14.7.3 [temp.expl.spec] paragraph 6 contradicts the last
line
in 14.7.3 paragraph 16. The example shows the explicit specialization
syntax;
the last line says that the explicit specialization syntax should not be
used.

--

In 27.4.2.1.1 [lib.ios::failure], method what() has a more general
exception specification than the method that it is overriding.
27.4.2.1.1 says that std::ios_base::failure::what can throw any exception.
But 18.6.1 [lib.exception] says that std::exception::what cannot
throw any exception. This clearly contradicts 15.4 [except.spec],
paragraph 3, which requires that the overriding derived-class method throw
only exceptions allowed by the base-class method.
--

In 26.2.6 [lib.complex.ops], paragraph 15, operator<< inserts a NUL
character
when writing to an ostream stream. I.e., the "as if" code shown
inserts an ends, which is retained by the result of s.str() used.
Did you mean s.c_str() or should the ends not be appended?
Surely the intent was not to insert NUL characters into output.

--

Section 21.6.1.3 defines gcount() to return the number of characters
extracted by the last unformatted input function, e.g. getline(char_type
*s,
streamsize n). Should it also work for getline(basic_istream<charT, traits>
&is, basic_string<CharT, traits, Allocator> & str) defined in section
21.3.7.9?

--

In 27.6.1.3 paragraph 28, one would also expect eofbit to be set
if end-of-file is encountered before n characters are stored.

--

Considering section 27.8.1.4 paragraphs 1,2 and section 27.5.2.4.3
paragraphs 1-3. Should the return type of showmanyc be streamsize
instead of int. Consider the case when streamsize is a 32 bit long int
and int is 16 bits.

--

In section 5.3.4, what happens when the allocation function does not
throw an exception, but returns NULL instead. See paragraphs 16, 22
and section 18.4.1.3 and consider the following errant example:

T val;
T *p = NULL;
new (p) T(val);

--

In section 21.1.2 table 37, it seems that not_eof() should use
eq_int_type instead of eq(). What is the behavior for integer values
passed to not_eof() for which eq_int_type() returns false, but
eq() returns true. For example, consider the value 0x7FFF where
eof() returns 0xFFFF and a char is 8 bits.

--

In section 4.10 paragraph 1, the term "nul pointer constant" is used,
but in section 18.1 paragraph 4, the term "nul-pointer constant" is
used.

--

In 21.3.7.9 paragraph 1, start a new line before "After the last

character (if any) is".

--

Arch Robison (robison@kai.com) Kuck and Associates
David Nelson (david@kai.com) 1906 Fox Drive
http://www.kai.com/C_plus_plus Champaign, IL 61820
KAI C++ - Cross Platform C++ Compiler (217) 356-2288
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #29/Shaffer" follows >>>>>>
February 28, 1997

To: Deborah Donovan; wluk@ansi.org

Comments on the December 1996 C++ Draft Proposed International Standard

1) 2 Lexical conventions

 The allowed uses of universal character names are not clear.

 Are UCNis that name characters in the basic source character set
allowed?

 Are UCNis allowed in places other than: comments, identifiers,
 character-literals and string-literals?

2) 2.3 Trigraph sequences

 While Table 1 does not include the sequence i???i, paragraph 4 implies
that
this is a trigraph for i?i. The following example makes this explicit.

 In the ANSI/ISO C standard the i???i trigraph does NOT exist.

3) 2.11 Keywords
 Table 3

 The keyword "export" is not listed.

4) 3.6.1 Main function
 Perhaps the signatures like the following be allowed:

 int main(int argc, const char *const argv[]) { /* ... */ }

5) 3.9.1 Fundamental types
 Paragraph 1

 In order to match the language with the library (which treats all
characters as unsigned) plain char should be defined as unsigned.

 In order to avoid breaking existing non-portable code that assumes char
is
signed, individual implementations could, as an extension, have an option
to
treat char as signed.

6) 3.10 Lvalues and rvalues
 Paragraph 15

 This paragraph says that an object may be accessed through an aggregate
or
union that has a member of the correct type. It does NOT say that you must
access the object through the particular member that is of the correct

type.

7) 5.2.2 Function call
 Paragraph 7

 When a non-POD class type is passed as an ellipsis argument the program
should be ill-formed, rather than undefined. The point is to require a
diagnostic from the compiler n an extension to do something useful in this
case would still be possible.

8) 5.2.9 Static cast
 I feel that some additional pointer conversions should be allowed by a
static cast. These are conversions that are safer and more portable than
the
general reinterpret_cast. The conversions involved are:

 1. Pointer to int converted to or from pointer to unsigned int.
 2. Pointer to short converted to or from pointer to unsigned short.
 3. Pointer to long converted to or from pointer to unsigned long.
 4. Conversions between pointers to any two of char, signed char or
unsigned
char.

 The last case is the one I feel most strongly about. Due to the
undefined
 signed/unsigned status of char, it is often necessary to perform this
 type of cast.

 Aliasing of these types is explicitly allowed by 3.10 paragraph 15,
thus
it seems reasonable to allow the isafei new cast operator to perform the
cast.

9) 14 Templates
 The intended meaning of the keyword iexporti is somewhat obscure.

Darron J Shaffer
Sr. Software Engineer
BEA Systems
(972) 738-6137
Darron.Shaffer@beasys.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #30/Kuehl" follows >>>>>>
February 28, 1997

To: Deborah Donovan; wluk@ansi.org

Name: Dietmar Kuehl
Company: Universitdt Konstanz
Address: Fakultdt f|r Mathematik und Informatik
 Postfach 5560/D188

 D-78434 Konstanz
Telephone: (++49) 7531 / 88-4438
E-mail: dietmar.kuehl@uni-konstanz.de

Hi,

below I have attached a bunch of comments, most of editorial nature, to
the lib-locales section of the CD2. I hope that it is sufficient to
submit these comments via e-mail (if not please tell me such that I can
submit them by snail mail, too).

I don't know what format you would prefer. Thus, I used the following:
- first the location is specified

- the type of comment is specified
- the details follow

Regards,
 dk
--
<mailto:dietmar.kuehl@uni-konstanz.de>
<http://www.informatik.uni-konstanz.de/~kuehl/>
One of the moderators of <news:comp.lang.c++.moderated>

01. 22.1 Locales (lib.locales) minor bug
 The declarations of the non-member functions 'is*()' are declared
 to be 'const'. Although a gcc extension allows this, I don't think
 that it is sanctioned by the remainder of the current CD.

02. 22.1.1 Class locale (lib.locale) unnecessary restrition
 The type 'locale::category' is defined to be 'int'. I think, it
 should be defined to be any bitmask type defining the corresponding
 values.

03. 22.1.1 Class locale (lib.locale) section 2 documentation bug
 It is stated that 'use_facet' and 'has_facet' are member
 functions. This does not match the later definition of those two
 functions as non-member function templates.

04. 22.1.1 Class locale (lib.locale) section 3 example bug
 In the example, the object 'cerberos' of type
 'basic_ostream<...>::sentry' is constructed with a default argument
 but there is no default constructor for this type. Instead, it has
 to be constructed like
 typename basic_ostream<charT, traits>::sentry cerberos(s);
 The same situation appears in other example, too.

05. 22.1.1.1.2 class locale::facet (lib.locale.facet) section 1 omission
 It is missing in the definition of the static member 'id' that this
 member has to be either publically accessible or at least
 accessible to the class 'locale'. As stated, it would be legal to
 make the member 'private' which would not satisfy the intend (I
 think...).

06. 22.1.1.1.2 class locale::facet (lib.locale.facet) section 2 omission
 If 'refs == 0', does this imply that the 'locale' is supposed to
 delete the 'facet'? If this is the case, state that the 'facet' has
 to be a valid argument to 'delete' (or whatevery) like it is done
 for the pointer managed by 'auto_ptr'.

07. 22.1.1.1.2 class locale::facet (lib.locale.facet) section 2 omission
 If 'refs != 0', it is stated the the 'facet' is "deleted". This
 assumes that it is allocated by 'new' but I guess that the intent
 was to have the 'facet' be e.g. an object with static linkage: This
 would mean that "deleted" should be replaced by "destructed".

08. 22.1.1.2 locale ctors and dtors (lib.locale.cons) section 1 unclear
 It is stated at several points that the locale has a name if some
 conditions are given at construction time. However, it is not clear
 what this name should be. Is this intentional?

09. 22.1.2 locale globals (lib.locale.globals) section 1 bug
 In the "Throws" section 'this' is mentioned. This is rather strange
 for a global function. It should probably be replaced by 'loc'.

10. 22.1.3.1 Character classification (lib.classification) all bug
 The convenience functions are all globals and thus the 'const'
 specification is illegal (I think).

11. 22.2.1.1 template class ctype (lib.locale.ctype) all omission
 For some of the functions arguments are not named. This is no
 problem most of the time, just inconsistent. However, for the
 description of 'toupper()' I think it is an error: The [not named]
 argument is referenced in the description...

12. 22.2.1.1 template class ctype (lib.locale.ctype) all question
 Why is explicitly 'charT*' used instead of a more general iterator?
 This e.g. makes it impossible to apply those functions to
 'basic_string's directly since there the iterators are explicitly
 made "implementation defined".

13. 22.2.2.1.2 numget virtual functions (lib.facet.num.get.virtuals)
 section 1 documentation bug
 It is stated that the operation occurs in *two* stages. This
 statement is immediately followed by a description of *three*
 stages...

14. 22.2.2.1.2 numget virtual functions (lib.facet.num.get.virtuals)
 section 1 error
 The description of stage 2 ends with "If the character is
 neither discarded *nor* accumulated then in is advanced by ++in
 and processing returns to the beginning of stage 2." I think this
 is exactly the negation of the intended wording, i.e. this should
 become: "If the character is *either* discarded *or* accumulated
 then in is advanced by ++in and processing returns to the beginning
 of stage 2." I'm not 100% sure since I'm not a native English
 speaker...

15. 22.2.3.1.2 numpunct vritual functions (lib.facet.numpunct.virtuals)
 omission
 in 'do_decimal_pointer()', 'do_thousends_sep()', 'do_truename()',
 and 'do_falsename()' objects of type 'char' are returned as
 'char_type'. I think the objects returned have to be the results of
 'widen()', e.g. using 'use_facet<ctype<char_type>
 >(locale::global())' or the same facet from a 'locale' passed as
 argument.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #31/Mulhern" follows >>>>>>
February 28, 1997

To: Deborah Donovan; 'Steven.Clamage@Eng.Sun.com'; 'wluk@ansi.org'

February 26, 1997

Hi -

The enclosed comments pertain to the document "Information Technology -
Programming languages, their environments and system software interfaces -
Programming language C++", FINAL CD 14882, Document number X3J16/96 - 0225
WG21/N1043 dated 2 December 1996.

My comments stem from experience attempting to implement large portions of
the
(draft) standard library. The observations below primarily
concern the header <string> and the interconnection of that header to
other parts of the library. I will forward comments to the committee
regarding other standard library headers if I have time to finish
bringing them into compliance with CD 14882 prior to the closing of the
public comment period.

Overall, CD 14882 is an immense improvement over the previous public
comment draft. The library is significantly more coherent and many of
the details of library design have been worked out. I would like to
thank members of the library working group for their obvious effort and
care.

While implementing the header <string> I encountered the following two
significant issues where I felt the draft standard was ambiguous or
incorrect.

(The table numbers and paragraph numbers cited below follow those given
in the printed version of CD14882; these differ from the table and
paragraph numbering in the HTML version of the same document. For
example, Table 37 in the paper version is Table 2 (of the strings
library) in the HTML version.)

1) ISSUE: traits::eos() does not exist in Table 37, although it once was
a member of the traits class; traits::eos() is nevertheless still
referenced in several places in the strings library and in the I/O
library.

PROBLEM DESCRIPTION: traits::eos() is either explicitly referenced or an
undefined 'null character' is mentioned in the following places in the
draft standard.

**** explicit references to traits::eos() ******

21.3.4 basic_string element access [lib.string.access]
In the 'Returns:" section (Paragraph 2) for the functions:
const_reference operator[](size_type pos) const;
 reference operator[](size_type pos);

21.3.6 basic_string string operations [lib.string.ops]
In the 'Returns:' section(Paragraph 1) and the 'Notes:'
 section(Paragraph 3) for the function:
 const charT* c_str() const;

27.6.1.2.3 basic_istream::operator>> [lib.istream::extractors]
In the 'Effects:' section for the functions:
template<class charT, class traits>
 basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&
in, charT* s);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&
in, unsigned char* s);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&
in, signed char* s);
In Paragraph 7: "A null byte (traits::eos()) in the next position,
which may be the
 first position if no characters were
extracted."

27.6.1.3 Unformatted input functions [lib.istream.unformatted]
In the 'Effects:' section for the function:
basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim);
In Paragraph 20: "In any case, it then stores a null character (using
 traits::eos())
 into the next successive location of the
array."

27.6.2.7 Standard basic_ostream manipulators [lib.ostream.manip]

In the 'Effects:' section for the manipulator:
 template <class charT, class traits>
 basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>&
os);
Paragraph 3: "Inserts a null character into the output sequence: calls
os.put(traits::eos())."

traits::eos() is listed in the index (page 12) under 'eos,char_traits'

******* In addition to these explicit uses there are numerous references
in the library to null characters or null objects in the library where
traits::eos() would more clearly specify the intent. ******

21.3.5.7 basic_string::copy [lib.string::copy]
In the 'Effects:' section(Paragraph 3):
 "The function does not append a null object to the string
designated by s." -- null object undefined

27.6.1.2.3 basic_istream::operator>> [lib.istream::extractors]
In the 'Effects:' section(Paragraph 6) for the functions:
 template<class charT, class traits>
 basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&
in, charT* s);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&
in, unsigned char* s);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&
in, signed char* s);
 "Otherwise n is the number of elements of the largest array of
char_type that
 can store a terminating eos." -- eos not defined.

27.6.1.3 Unformatted input functions [lib.istream.unformatted]
In the 'Effects' section(Paragraph 8) for the function:
basic_istream<charT,traits>& get(char_type* s, streamsize n, char_type
delim);
"In any case, it then stores a null character into the next successive
 location of the array."
 --- 'null character' not defined.

21.1.1 Definitions [lib.char.traits.defs]
In the definition of NTCTS. Here the null character is defined as
charT(0).
NTCTS doesn't appear in the index nor is it used anywhere in the draft
standard.

21.1.2 Character traits requirements [lib.char.traits.require]
 In Table 37--Traits requirements, for the expression 'X::length(p)', the
Postcondition is:
"yields: the smallest i such that X::eq(p[i],charT(0)) is true." which
would imply that charT(0) was the 'null character' for all charT.

21.3.3 basic_string capacity [lib.string.capacity]
 For the function : void resize(size_type n);
 Paragraph 7: 'Effects resize(n,charT())." - would seem to imply that the
null character is charT().

Finally, the 'null character' is used throughout the strings library
indirectly in the form of references to traits::length().

FORCES:

We want to have a unique end-of-string character for all possible charT,
not just char and wchar_t.

Such an end-of string character is a throw back to null terminated
char*'s and we would prefer not to have to define it at all.

There should be only one definition of the null character, not the
current three: charT(), charT(0) and traits::eos().

RESOLUTION:

To my mind traits::eos() provides the appropriate level of generality
that should exist in the standard library. I believe charT() and charT(
0) references should be replaced by references to traits:eos().
 traits::eos() will have to be added to the requirements for traits in
Table 37. If traits::eos() was
included in the traits requirements users of the library could redefine
traits::eos() to be other than the expected 0-character for basic_string<
char >, thus enabling strings with embedded 'nulls' for special
applications. In Table 37, X::eos() should be a user defined
end_of_string character. Only the char_traits specializations for char
and wchar_t should define eos() to be (char)0 or (wchar_t)0, as
appropriate. Users can override the default with their own traits
classes.

Whatever definition the committee settles upon for the 'null character',
the draft standard should use that definition consistently and replace
the conflicting definitions.

2) ISSUE: basic_string< charT, traits, Allocator >::npos is used in
expressions where max_size() should be used.

EXAMPLE:

21.3.1 basic_string constructors [lib.string.cons]
For the constructor:
basic_string(const charT* s, size_type n, const Allocator& a =
Allocator());
Paragraphs 6 & 7 are:
 "Requires:
 s shall not be a null pointer and n < npos.
 Throws:
 out_of_range if n == npos."

Should be:

"Requires:
 s shall not be a null pointer and n <= max_size().
 Throws:
 out_of_range if n > max_size()."

Comments: If you look in '21.3.3 basic_string capacity
 [lib.string.capacity]' at the function void resize(size_type n, charT
c) you'll see that this same thing done correctly (once) in the current
draft. For this resize function the implementation is described in part
as: "Requires: n <= max_size() Throws: length_error if n > max_size()."
 Moreover, there doesn't seem to be any particular reason to prohibit 'n
== npos' specifically other than the fact that it won't succeed. The
real limit on allocation is max_size(). One supposes that this is six of
one and half a dozen of another, that is, if the condition for throwing
an out_of_range exception involves npos as is currently stated in the
draft then the user will inevitably get a bad_alloc exception for all n >
max_size() if not an out_of_range exception. I believe that the
expression should involve max_size() as shown above to be an effective

error indication.

OTHER INSTANCES: The same reasoning applies to the following instances
of conditions on a throw statement, in addition to the instance cited
above.

21.3.1 basic_string constructors [lib.string.cons]
For the constructor:
basic_string(size_type n, charT c, const Allocator& a = Allocator());
Paragraphs 12 & 13 contain:
 "Requires:
 n < npos
 Throws:
 length_error if n == npos."

Should be:

"Requires:
 n < = max_size()
 Throws:
 length_error if n > max_size()."

21.3.5.2 basic_string::append [lib.string::append]
For the function:
basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str, size_type pos, size_type
n);
In Paragraph 4: "The function then throws length_error if size() >= npos
 - rlen."

Should be

"The function then throws length_error if size() > max_size() - rlen."

21.3.5.4 basic_string::insert [lib.string::insert]
For the function:
basic_string<charT,traits,Allocator>& insert(size_type pos1,
 c
onst basic_string<charT,traits,Allocator>& str,
 s
ize_type pos2, size_type n);
In Paragraph 4: "Then throws length_error if size() >= npos - rlen."

Should be:

"Then throws length_error if size() > max_size() - rlen."

21.3.5.6 basic_string::replace [lib.string::replace]
For the function:
basic_string<charT,traits,Allocator>& replace(size_type pos1, size_type
n1,

 const basic_string<charT,traits,Allocator>& str,

 size_type pos2, size_type n2);
In paragraph 4: "Throws length_error if size() - xlen >= npos - rlen."

Should be: "Throws length_error if size() - xlen > max_size() - rlen."

With the above issues out of the way, I would indulge in a modest
enhancement to class basic_string and some of the container classes. The
current definition of the class basic_string contains the member function
'basic_string<charT,traits,Allocator>& erase(size_type pos = 0, size_type
n = npos)' which reduces the size() of a string. It also contains the
member function 'void resize(size_type n,
charT c)' which for 'n < size()' has the same effect as if 'erase(n,
npos)' were called. Thus we have redundant ways to reduce the size() of
a string. Meanwhile, for basic_string, and also for the sequences
vector, list and deque, we have the following dilemma: suppose, in the
basic_string case, that we want to read in variable length lines from a
text file into a basic_string< char >. In order to read in the lines of
the text file without incurring reallocation overhead I might want to
reserve() a large amount of memory up front for each string that I read
in. After reading in a string using, say, the global function getline()
I might want to 'shrink' the allocation down to the actual size() of the
string read. Right now the draft standard gives me no way to do this
with class basic_string. But, here comes the enhancement, if we added
language to the definition of resize() such that for 'n <= size()'
implementations were permitted to reduce the allocation for the string
such that capacity() might be reduced to as little as n. This
functionality might be even more useful with the sequences vector, list
and deque. Offhand, I can think of many occasions when I wanted this
shrinking capability for class vector when acquiring data from a
database. This enhancement does not effect any of the already stated
effects of resize() for any of the classes mentioned. That's all the
enhancements I have to offer.

Finally, a list of what I believe are cut and paste errors or typos:

1) 21.3.1 basic_string constructors [lib.string.cons]
 For the constructor:
 basic_string(const basic_string<charT,traits,Allocator>& str,
 size_type pos = 0, size_type n = npos,
 const Allocator& a = Allocator());
 In Table 39, remove the line "get_allocator() str.get_allocator()"
 This is a holdover from a previous version of this constructor which
didn't take its own Allocation& argument but instead used
str.get_allocator().

2) 21.3.5.6 basic_string::replace [lib.string::replace]
 Missing template parameters on the return value basic_string's.
 The function "basic_string& replace(iterator i1, iterator i2,
const basic_string& str);"
should be: "basic_string<charT,traits,Allocator>&
 replace(iterator i1, iterator i2, const basic_string&
str);"
The function "basic_string& replace(iterator i1, iterator i2, const
charT* s, size_type n);"
should be: "basic_string<charT,traits,Allocator>&
 replace(iterator i1, iterator i2, const charT* s,
size_type n);"
The function "basic_string& replace(iterator i1, iterator i2, const
charT* s);"
should be: "basic_string<charT,traits,Allocator>&
 replace(iterator i1, iterator i2, const charT* s);"
The function "basic_string& replace(iterator i1, iterator i2, size_type

n, charT c);"
should be: "basic_string<charT,traits,Allocator>&
 replace(iterator i1, iterator i2, size_type n, charT
c);"
The function "template<class InputIterator>
 basic_string& replace(iterator i1, iterator i2,
InputIterator j1, InputIterator j2); "
should be: "template<class InputIterator>
 basic_string<charT,traits,Allocator>&
 replace(iterator i1, iterator i2, InputIterator j1,
InputIterator j2); "

3) 21.3.6.8 basic_string::compare [lib.string::compare]
The function "int compare(const basic_string<charT,traits,Allocator>&
str)"
should be const as declared in '21.3 Template class basic_string
 [lib.basic.string]' at Paragraph 4.
The signature should be "int compare(const
basic_string<charT,traits,Allocator>& str) const"

4) 20.4.4.3 uninitialized_fill_n
 [lib.uninitialized.fill.n]
 template <class ForwardIterator, class Size, class T>
 void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
The 'Effects:' section is simply incorrect; currently it is:
 " Effects:
 while (n--)
 new (static_cast<void*>(&*result++))
 typename
iterator_traits<ForwardIterator>::value_type(*first++);"
This is erroneous. It must be:
" Effects:
 while (n--)
 new (static_cast<void*>(&*first++))
 typename
iterator_traits<ForwardIterator>::value_type(x);"

5) 27.4.2.3 ios_base locale functions
 [lib.ios.base.locales]
For the function 'locale imbue(const locale loc);'
There are extraneous characters in the 'Returns:' section at the line
"output operations.La Postcondition: loc == getloc()."
Remove the extraneous 'La'.

I hope these comments have been useful. I look forward to the completion
of the C++ Standard.

John Mulhern
Euler Solutions
945 Bayless Avenue
Saint Paul, Minnesota
55114
(612)525-8915
email: jfm@euler.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #32/Aldridge" follows >>>>>>
March 4, 1997

Name: John Aldridge
Company: Graphic Data Systems

Address: Wellington House
 East Road
 Cambridge

 CB1 1BH
 ENGLAND

Phone: +44 1223 371925
E-mail: jpsa@uk.gdscorp.com

The committee draft seems deficient in the statements it makes
about the validity of iterators and references into STL
containers. The only statements I can find are:

 23.2.1.3 on insert and erase in deques
 23.2.2.3 on insert and erase in lists
 23.2.4.2 on reallocation on vectors
 23.2.4.3 on insert & erase in vectors

I can find no statement on whether other methods on containers
result in the invalidation of iterators or references to
containers.

In particular, for associative containers, I'd expected (hoped)
to find a statement such as:

> insert does not affect the validity of iterators and references
> to the container, and erase invalidates only the iterators and
> references to the erased elements

which is taken from the Stepanov & Lee STL document, "The
Standard Template Library", dated October 31, 1995.

Together with one (applying to all containers) such as:

> Unless otherwise stated (either explicitly or by defining a
> function in terms of the application of other functions),
> invoking a member function of a container or passing a container
> as argument to a container library function will not cause
> references or iterators to that container to become invalid.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #33/Miller" follows >>>>>>
March 4, 1997

Name: Randy D. Miller
Company Name: Self
Address: 20684 SW Teton Ave, Tualatin, Oregon, 97062-8814, USA
Voice Phone: 503-692-2863
Email: tango@teleport.com

Comment:

 Section [dcl.stc]/2, last sentence, references section [stmt.expr]
because "expression statements" are mentioned. Proposal: it is more
important to reference section [stmt.ambig] because it is ambiguity
resolution that is specifically being discussed.

--- end ---
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #34/Miller" follows >>>>>>
March 4, 1997

Name: Randy D. Miller
Company Name: Self
Address: 20684 SW Teton Ave, Tualatin, Oregon, 97062-8814, USA
Voice Phone: 503-692-2863

Email: tango@teleport.com

Comment:

 The document is ambiguous whether functions and member functions
are "objects." Section [intro.defs] does not define "object" at all.
Section [intro.object] defines "object" as "a region of storage" which
is "created by a definition ... or by the implementation (12.2) when
needed." That would necessarily include functions. Nothing else in
[intro.object] excludes functions or member functions from being
objects." However, in [basic.types]/1, types are said to describe
objects, references, or functions, implying that the set of function
types is disjoint from the set of object types. Elsewhere in the
document, functions seem to be tacitly excluded when discussing
"objects."

 Suggestion: add language to make it clear if function types are
"objects" or not.

--- end ---
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #35/Miller" follows >>>>>>
March 4, 1997

Name: Randy D. Miller
Company Name: Self
Address: 20684 SW Teton Ave, Tualatin, Oregon, 97062-8814, USA
Voice Phone: 503-692-2863
Email: tango@teleport.com

Comment:

 Apparent typographical omission: to correct, insert the word "or"
immediately before the words "for the copy of an object thrown..."
in 3.7.3.1(4) [basic.stc.dynamic.allocation]/4.

--- end ---
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #36/Miller" follows >>>>>>
March 4, 1997

Name: Randy D. Miller
Company Name: Self
Address: 20684 SW Teton Ave, Tualatin, Oregon, 97062-8814, USA
Voice Phone: 503-692-2863
Email: tango@teleport.com

Comment:

 Propose that [expr.call]/9 be changed from

 "Recursive calls are permitted."

 to:

 "Recursive calls are permitted, except to the function
 named 'main' ([basic.start.main]/3])."

 This will resolve a contradiction between [basic.start.main]/3
which prohibits main() from being called from within a program, and
[expr.call]/9 which permits recursive calls.

--- end ---
ˇ

<<<<<< Attached TEXT file named "Pr Cmt #37/Holle" follows >>>>>>
March 5, 1997

Re: type_info::name()'s specification in ANSI C++ Draft

type_info::name()'s usefulness is _severely_ limited by the statement in
the standard that its return value is implementation defined. If it
were defined, then general, full-featured, cross-platform persistence
and storage mechanism could be easily implemented based on it. With
implementation defined behavior, however, it is not clear how this can
be achieved.

Allen Holub authored an MSJ article in June 96 showing how easy a
persistence mechanism would be if type_info::name() had standardized
behavior. He and I both agree, however, that his mechanism does not
work across 2 compilers according to the current draft.

I realize that the standardization of these return values is tedious and
annoying to the standard's committee, BUT it is imperitive to the
utility of this portion of the language! Allen is now using Java rather
than C++ for just such reasons. I would be too if native Java compilers
were available.

I therefore _strongly_ urge that type_info::name()'s return values are
standardized.

--
Jess Holle
Senior Software Engineer
Parametric Technology Corporation
(617) 398-5015
jessh@ptc.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #38/Lilley" follows >>>>>>
March 5, 1997

Hello,

I have some comments regarding the exception-specification clause for
functions and function-pointers. It seems that excluding the
exception-specification from the declarator for pointer-to-pointer-to-
function
opens up some loopholes for defeating the exception-specification checking
that occurs when function-pointers are assigned.

In particular, the throw(int) here is disallowed:
 int (**pf)() throw(int);

The reason, as far as I can tell, comes from 15.4.12:

"An exception-specification is not considered part of a function's type"

Since the exception-specification is not part of the type, it is pointless
to include the exception-specification in contexts that are only using the
type of the function. But that is inconsisent with the language that says
the exception-specification of pointers-to-functions *is* meaningful, and
must be checked during assignment from one function-pointer to another. In
my
opinion, it was a mistake to exclude the exception-specification from the
type
of the function. Making the exception-specification part of the
function type would have made things more consistent.

For example, this is a problem because it defeats the

exception-specification checking:

 void f_throw() throw(int);
 void f_nothrow();
 void (*fp_nothrow)();
 void (*fp_throw)() throw (int);
 void (**fpp)();

 fp_nothrow = f_throw; // (1) OK, less restrictive
 fp_throw = f_nothrow; // (2) error, more restrictive
 fpp = &fp_nothrow; // (3) OK?? double-indirection has
 // no exception-specification.
 fp_throw = *fpp; // OK?? Didn't this defeat (2)?

Of course, I do not have a compiler to verify the above assertions, but
they
seem to be true, given the current language.

respectfully submitted,

John Lilley

jlilley@empathy.com

Nerds for Hire, Inc.
4270 Evans Dr.
Boulder, CO 80303
phone: 303-543-9115

==
	John Lilley GUIs phone: 303-543-9115	
	Nerds for Hire, Inc. Parsers fax: 303-543-6069	
	http://www.empathy.com jlilley@empathy.com	
==
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #39/Choolinin" follows >>>>>>
March 6, 1997

I offer to include in STL template the following template of the
function:

//________O/___

// O\ < Cut Here >
template< class _to, class _from >
_to safe_cast(_from value)
{

assert(value == _from(_to(value)));
return _to(value);

}
//________O/___

// O\ < Cut Here >

This function allow to convert numbers or text strings or anything else
from format to format without danger to lose information.

Eg:
//________O/___

// O\ < Cut Here >

short index();

short next_index = safe_cast< short, int >(index() + 1);
//________O/___

// O\ < Cut Here >

S. Y. George G. Choolinin, BITSoftware, Inc. Programmer, Moscow, Russia
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #40/Buck" follows >>>>>>
March 6, 1997

Please treat this as an official comment on the draft standard,
Doc No:X3J16/96-0225 of 2 December 1996. Please let me know if I have
to do something else to make this an official comment.

There is a mismatch between the specification of the container adaptors
"stack" and "queue" and the specification of the container classes.
The result that, while the standard specifies in [lib.queue]

"Any sequence supporting operations front(), back(), push_back() and
pop_front() can be used to instantiate queue."

and in [lib.stack]

"Any sequence supporting operations back(), push_back() and pop_back()
can be used to instantiate stack."

and in [lib.priority.queue]

"Any sequence with random access iterator and supporting operations
front(), push_back() and pop_back() can be used to instantiate
priority_queue."

these statements cannot be satisfied unless either the signatures of
certain functions are changed, or additional requirements are imposed on
sequences. That is, the current spec is self-contradictory.

Specifically, the following functions

stack<T,Container>::top()
queue<T,Container>::front()
queue<T,Container>::back()
priority_queue<T,Container,Compare>::top()

have return values of type Container::value_type& . But they are
defined as c.front() or c.back() on the underlying Container c,
and these functions are defined as being of type
Container::reference_type, which may or may not be equal to
Container::value_type&. Requiring Container::value_type& forbids
containers to use "smart reference" objects, or allocators that
use such objects.

There is a simple solution; I will illustrate it for stack, and the
corresponding change will work for queue and priority_queue.

namespace std {
 template <class T, class Container = deque<T> >
 class stack {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference; // CHANGE
 typedef typename Container::const_reference const_reference; //
CHANGE
 typedef typename Container::size_type size_type;

 typedef typename Container container_type;
 protected:
 Container c;
 public:
 explicit stack(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 reference top() { return c.back(); } // CHANGE
 const_reference top() const { return c.back(); } // CHANGE
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
 };
 ...
};

Note that top() is now correct for all legal containers that satisfy
the conditions. Note also that no code will break, because for the
cases that work with the SGI and HP STL implementations (those where
the reference type is a true reference) the type of top() does not
change.

The analogous change should be made to queue<..>::front(),
queue<...>::back(),
and priority_queue<...>::top().

Thank you.

Joseph Buck jbuck@synopsys.com
Synopsys, Inc. Phone: +1 415 694 1729
700 E. Middlefield Rd. Fax: +1 415 694 1626
Mountain View, California 94043
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #41/Clarke" follows >>>>>>
March 6, 1997

Dear Deborah J. Donovan,

 My name is David L. Clarke.
 My home address is: 25 Walbridge Hill Road, P.O. Box 328, Tolland, CT
 06084-0328

Mitakuye oyasin,
David L. Clarke
davec@imagine.com
 I work (full time) for Pratt & Whitney Aircraft, Mail Stop 161-05, 400
Main St., East Hartford, CT 06108; (part time) for Rensselaer at
Hartford,
275 Windsor St., Hartford, CT 06120-2991; and I am also a self employed
author writing a book on systems programming.

 My phone numbers are home: (860) 872-7653; work: (860) 565-9395

 My e-mail addresses are: davec@imagine.com; clarkedl@pweh.com;
davec@hgc.edu.

 I recently attempted to move a working program developed in my capacity
as
an educator to the platform we will be using at work (Pratt & Whitney).
The
program originally ran under Borland C++ and Microsoft Visual C++, both of
which used the STL and strings libraries of the draft proposal. The target
platform was a DEC alpha running Digital UNIX. To my surprise, the port
did

not compile.

 I traced the problem to a change that has been made to the strings
library
definition. The original code used the string::remove() method, which
followed the draft proposal of 28 April 1995. The DEC compiler expects
string::erase(), which follows the December 1996 draft proposal.
Apparently
"remove()" was removed and replaced.

 I understand that erase() is more comparable to the corresponding
method
for STL classes such as list, but removing "remove()" will cause a lot of
existing code to no longer compile. I feel that the remove() form should
be
retained to avoid this problem. I have used remove() in both my teaching
materials and in examples I have used in my book. I would not like to have
to
re-do all of this work.

Perhaps remove() and erase() can both be kept and used as synonyms.

Thank you and
mitakuye oyasin, (Lakota for "we are all related")

David Clarke
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #42/Choolinin" follows >>>>>>
March 7, 1997

Mr. Deborah J. Donovan
An discussions, wich took plase at BITSof, result the folowing
improvement of template safe_cast:
>//________O/__
>______
>// O\ < Cut Here >
template< class _to >
safe_cast {
public:

template< class _from >(_from arg) : body(arg) { assert(_from(
body) == arg); }

operator _to() const { return body; }
private:

_to body;
};
>//________O/__
>______
>// O\ < Cut Here >
usage of this class is the same to the privious offer, but type _from
always is correct, and there is not possibility to lose data by miss
choose of type _from:
>//________O/__
>______
>// O\ < Cut Here >

short f();
/* use class -- all correct */
short next_f = safe_cast< short >(f() + 1);

/* use function -- posible misstake: */
short next_f = safe_cast< short, char >(f() + 1);

>//________O/__

>______
>// O\ < Cut Here >

>S. Y. George G. Choolinin, BITSoftware, Inc. Programmer, Moscow, Russia
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #43/Abrahams" follows >>>>>>
March 7, 1997

Hi,

As someone who is not (yet) a member of the C++ committee, I figure I
should make a public comment about my pet issue, just to be sure it gets
addressed. I know this makes extra work for the committee, and I
apologize in advance. Since I am on the libraries mail reflector and plan
to attend at least the Nashua meeting, I hope that whoever is issuing
responses will be able to minimize their efforts -- I'll already be
somewhat informed.

The issue is that the current standard makes it unreasonably hard to
write exception-safe programs using the standard library templates. In
particular, the current standard only details some of the conditions
under which the library is liable to produce undefined behavior, e.g.
crash (see 17.3.3.6)! Many of the conditions are produced by obvious and
useful combinations of library components, such as vector<string>.

In order to write exception-safe programs, library clients need a
"contract" provided by the library which guarantees predictable behvior
if clients fulfill their part of the bargain. This contract should
provide the following (at least):

1. Certainty that the library does not leak resources. In particular,
every contained object constructed by a container should be destroyed by
the time that container is destroyed. Also, functions such as
uninitialized_fill must destroy the objects they have constructed if any
construction fails.

2. Certainty that the library maintains any invariants guaranteed by the
implementation of its contained objects' public interface. For example,
if use of a contained object's public interface maintains the object's
destructibility, the library will do the same. Or, if a contained
object's assignment operator implements "commit-or-rollback" semantics,
the objects in a container will always be complete copies of objects
constructed outside the container.

3. A way to get "commit-or-rollback" semantics from containers. This is
critical to exception recovery. If the contents of containers are
unpredictable after an exception is thrown, it becomes impossible to
maintain long-lived containers to support a running program. For example,
a program may need to maintain a vector of multiprocessing tasks. If an
exception is thrown while inserting a new task, it may be important that
the vector's state hasn't changed. If a program can't count on the
integrity of its long-lived containers, the best it can do in response to
an exception is unwind the stack and exit. In that case, why bother with
exceptions at all?

Thanks,
David

--
David Abrahams * Mark of the Unicorn, Inc. * abrahams@motu.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #44/DeRocco" follows >>>>>>

March 11, 1997

I'd like to see void be usable as a valid type for a template parameter,
so that generated functions could include void among their possible
return types.

I'd also like to see "void" be usable as the type of an external
identifier, meaning that the identifier refers to something at some
address whose type is unknown. The only thing you'd be able to do with
the identifier would be to take its address, which would naturally be of
type void*.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #45/DeRocco" follows >>>>>>
March 11, 1997

The standard defines offsetof, which nicely complements sizeof. I'd like
to see lengthof added to the standard, which would return the number of
elements in an array:

#define lengthof(x) (sizeof(x) / sizeof(*(x)))

It is obviously undefined for some arguments, and produces meaningless
results for others, but the same is true for offsetof.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #46/Brown" follows >>>>>>
March 12, 1997

My apologies if this is to late or addressed to the wrong person.

I noticed the following error in the Dec 96 draft C++ standard.
In section 20.1.1 Equality comparison [lib.equalitycomparable]

the last line of the following table reads

--If a == b and b == a, then a == c

I assume that it should read

--If a == b and b == c, then a == c
 ^

Cheers,

Steve Brown

--
Stephen Brown Phone (61)(2) 9412
6018
CSIRO Telecommunications and Industrial Physics Fax (61)(2) 9413
3293
126 Greville Street, Chatswood NSW 2067, Australia
sbrown@ul.rp.csiro.au
http://www.ul.rp.csiro.au
__
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #47/Parker" follows >>>>>>
March 12, 1997

Attn:
X3 Secretariat, Deborah J. Donovan, 1250 EyeStreet, NW, Suite 200,
Washington, DC 20005, Email: ddonovan@itic.nw.dc.us

Re: Public Review Comments on December 1996 Draft C++ Working Paper (3rd
submission).

Name: Brian Parker
Business Name: Voxel Graphics Research
Email: bparker@gil.com.au
Postal Address:
14 Jules Av,
Rochedale South,
Brisbane QLD 4123,
Australia

Phone: +61 7 32992807

Comments by section follow.
--
Page 7-16 Sec 7.3.3 [namespace.udecl]
I think that this section doesn't properly specify the interaction between
using declarations and templates within namespaces. In particular, for the
following example,

namespace test{
template<class T>
class tt{
};
}

It is not clear that the following is allowed (though I certainly hope it
is).

using test::tt;

tt<int> a;
tt<double> b;

(For example: Microsoft VC4.2 doesn't accept the using test::tt but it is
accepted
by Borland 5.01.)

And is, "using test::tt<int>" allowed such that only that particular
specialisation is accessible, and if so does it require a template
instantiation?

I think that at least one of the namespace examples should include a nested
template to make the intent clearer.

-

Page 14-36 Sec 14.8.2 [temp.deduct]
I think that the template argument(s) within nested template instantiations
should be deducible.

For example, T should be deducible in

template<class T>
void f(A< B<T>, C<T> >);

where A, B & C are previously defined template classes of 2, 1 & 1
parameters respectively.

The draft standard clause 9 states that T can be deduced for
class-template-name<T>, but the term "class-template-name" is not defined
anywhere. The parameter to the above function is essentially a template
type
of a single parameter T and so it should not be any more difficult for an
implementation to deduce T for this than for a simple non-nested template
type, so defining "class-template-name" to mean only non-nested template
types
would be an unnecessary limitation. It should be defined to mean any
parameterized type. (Note: this is not a purely theoretical issue; I
personally have code that would benefit from this.)

This may already be the intent of the draft standard; in any case,
"class-template-name" needs to be defined.

-

Page 14-36 Sec 14.8.2 [temp.deduct]
Given several function arguments where the template argument can be deduced
using one of the arguments but not the others, then shouldn't that
deduction
be used for the template function call? Clause 10 allows this in the
specific
case of a nested type definition, but clause 2 would seem to disallow it in
general ("If type deduction cannot be done for any parameter/argument pair
...
deduction fails."). Is there any
need for this restriction?

-

Various trivial editorial changes:

Page 27-4 Sec 27.2 [lib.iostream.forward] clause 9.
Semicolon left off end of class char_traits definition.

Page 20-11 Sec 20.3.6.1 [lib.binder.1st].
In class binderfirst, change "Operation::first_argument_type value" to
"typename Operation::first_argument_type value".
and the same for Page 20-12 [lib.binder.2nd].

Page 12-4 Sec 12.2 [class.temporary] clause 5. Example at top of page.
>From "friend const C& operator+" to "friend const C operator+" or "friend
C
operator+"

Page 20-1 Sec 20.1.1 [lib.equality.comparable] Table 28.
>From "If a == b and b == a, then a == c." to "If a == b and b == c, then a

== c."

-
End of file.
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #48/Galichsky" follows >>>>>>
March 12, 1997

Name: Konstantin V.Galichsky
Company name: PHYSICON, Ltd.
Address: BOX 59, Dolgoprudny-1 Moscow region, Russia, 141700
Telephone number: +7 (095) 408-77-72
Email: kg@scph.mipt.ru

Comment to [dcl.fct.spec] and [class.virtual]:
--
 The syntax for virtual function definition and overriding is the
same:

 class Base {
 // Introduce new entry in vtable.
 virtual void f ();
 };

 class Derived : public Base {
 // Replace the entry in vtable, but syntax is the same.
 virtual void f ();
 };

Assume that a programmer makes some misprint in the name or in the
parameter list of Derived::f. The compiler will not detect this error,
instead, it will introduce new entry in the vtable! Furthermore,
it is not easy for a program's reader (a human) to resolve the
declaration of a new virtual function from the overriding of some "old"
existing one. This produces new source of not-easy-to-detect errors
and makes text not easy to read.

My proposal:

 C++ must support additional syntax for the virtual function
overriding, for instance:

 class Derived : public Base {
 override void f ();
 };

In this case, the compiler must check the existance of the definition
of virtual f() in direct or indirect base classes. In addition, this
makes the code more readable. The old syntax, of course, must be preserved
for compatibility.

Drawback of the proposal:

 The new keyword may break existing code. Another solution is to use
some existing keywords, for instance:

 class Base {
 // The 'new' keyword guarantees that it is firstly defined.
 new virtual void f ();
 };

 class Derived : public Base {
 // 'Continue' guarantees that it is overriding of Base::f ().

 continue virtual void f ();
 };
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #49/DeRocco" follows >>>>>>
March 15, 1997

1) C++, like C, is rather limited in its initializer list syntax. In
particular, you can leave things uninitialized (or zeroed, if static),
or you can type out your initializers one at a time. Why not allow ...
to be used at the end of an array initializer list, meaning that the
last value should be repeated to the end of the array?

bool flags[1000] = { true, ... };

This doesn't break any existing legal programs, and the alternative is
either lots of typing, or explicit initialization code. It is also clean
and well-defined. Of course, the compiler would be free to translate the
above into some initialization code to fill the array--as it would have
to if the array were local to a function.

2) It would also be extremely useful if one could specify that
initializer sublists be repeated a certain number of times. A syntax
that wouldn't conflict with any existing legal programs would be to
follow a brace-enclosed list with an asterisk and a constant expression:

int foo[200] = { { 0, 1 } * 50, { 2, 3 } * 50 };

There may be some gotchas in here--I haven't had time to think this one
through, but the March 18 deadline is right around the corner, so I
thought I'd mention it anyway.

3) Once an initializer can be implicitly repeated in either of the above
two ways, the need to base an initialization value on the position
within the array becomes apparent. Since the name of the array has no
useful meaning within the initializer list, I suggest that within the
list the array name be interpreted as a constant of type size_t whose
value is the current array index being initialized. For instance:

long squares[1000] = { squares * squares, ... };

long table[][2] = // table of squares and cubes
 { { table * table, table * table * table } * 1000 };

You might kick this one around.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #50/Galichsky" follows >>>>>>
March 15, 1997

Name: Konstantin V.Galichsky
Company: PHYSICON, Ltd.
Address: BOX 59, Dolgoprudny-1 Moscow Region, Russia, 141700
Phone: +7 (095) 408-77-72
Email: kg@scph.mipt.ru
--

In the very beginning of "temp" the export keyword is introduced.
This keyword is absent in the list of keywords ("lex.key").
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #51/DeRocco" follows >>>>>>
March 15, 1997

Unlike C, C++ frequently involves the use of objects that need to be
named for syntactic reasons, but whose names are never subsequently
used. It would be useful if there was a reserved word that the compiler
replaces with a guaranteed-unique machine-generated name whenever it
occurs. Possible choices would be "unnamed", "_" or "__". I sort of
prefer "_" because it's short.

For instance, here's an object that calls a function when it's
constructed and another function when it's destroyed:

typedef void (*vfunc)();

class initializer {
 const vfunc term;
public:
 initializer(vfunc i, vfunc t): term(t) { if (i) (*i)(); }
 ~initializer() { if (term) (*term)(); }
 };

This can be used to force the execution of a function before and/or
after main():

void init_func() { ... }
void term_func() { ... }

initializer _(init_func, term_func); // doesn't need name

Another common example is an object representing ownership of a
resource:

class lock {
 mutex& mut;
public:
 lock(mutex& m): mut(m) { m.capture(); }
 ~lock() { mut.release(); }
 };

mutex the_mutex();

void func() {
 lock _(the_mutex); // doesn't need name
 ...
 }

The freedom not to make up a specific name for the object becomes
particularly important when there are loads of such invocations, or when
the invocations are generated by a template or preprocessor macro.

--

Paul D. DeRocco
DeRocco Engineering
87 Duff St.
Watertown, MA 02172
617-923-8987
mailto:pderocco@ix.netcom.com
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #52/J#248#rgensen" follows >>>>>>

March 18, 1997

I have a comment on the scope of names declared in for statements.

In the working paper: section 6.5.3 "The for statement", subsection 3:
 "If the for-init-statement is a declaration, the scope of the name(s)
 declared extends to the end of the for-statement."
This is not the same as "The C++ prog. lang." (second edition),
reference manual r.6.5.3, last sentence:
 "If the for-init-statement is a declaration, the scope of the names
 declared extends to the end of the block enclosing the
for-statement."

The cause of this difference is the difference between the "equivalent
statements":
 (Working paper, section 6.5.3, subsection 1):
 {
 for-init-statement
 while (condition) {
 statement
 expression ;
 }
 }
 (The C++ prog. lang, second edition, reference manual r.6.5.3):
 for-init-statement
 while (expression-1) {
 statement
 expression-2 ;
 }

Problem: This causes formerly well-formed programs to become ill-formed.

For example:
 for(int i=0; e[i]!=0; i++)
 ;
 e[i] = a; //ill-formed according the the working paper
For another example,
 for(int i=0; i<10; i++)
 a[i] = 0;
 for(i=0; i<20; i++) //ill-formed according the the working paper
 b[i] = 0;

>From a fresh viewpoint I would probably like the definition in the
working paper (limiting the scope of names to the for statement) the most.
However, from the viewpoint of the person forced to modify several sources
I
would like the new standard to stick with the old definition (extending the
scope of names beyond the for statement).

Yours sincerely,
 Ivan Skytte J#248#rgensen
ˇ
<<<<<< Attached TEXT file named "Pr Cmt #53/Houlder" follows >>>>>>
March 18, 1997

This is a suggested change to the proposed C++ draft of December 1996
with Doc No:X3J16/96-0225, WG21/N1043 from:

Tom Houlder
Dagaliveien 13
0387 Oslo

Norway
47-22 14 57 71
thoulder@pemail.net

and has been formulated with the help of
James Youngman, JYoungman@vggas.com
**

 SUGGESTION

I suggest that the class `complex' is changed so that the member
functions `T complex::real()' and `T complex::imag()' are suppressed
and the data `T real' and `T imag' are introduced as public data.

Alternatively, `T complex::real()' and `T complex::imag()' could be
retained for the convenience of existing code, but be made to return a
reference `T&' instead. New public variables, with for instance the
names `T re' and `T im', ought nevertheless to be added to the class.

 MOTIVATION

The suggested change makes it possible to explicitly modify the data
without instantiating a new `complex' object.

The change also reflects the mathematical nature of a complex number,
which can be thought of as two standard numbers on the real line (just
like a point in the x-y plane) subject to special mappings. The
implication is that the `complex' class should be regarded as a
container class (a pair) of two numbers.

The suggested change will make `complex' consistent with the rest of
the standard library as can be seen by the following:

One-dimensional variables are represented by `double's (or `float's or
`int's, etc). These are trivially not subject to protected access.
N-dimensional variables are represented by `valarray's (or `vector's
or `deque's) of `double's. These are not subject to protected access
either as there are operators like

`reference operator[](size_type n)'

returning a non-constant reference so that the number can be changed
directly.

So why should a two-dimensional variable hide its components? It is
difficult to find other reasons than that it "looks good" to a C++
programmer and that, theoretically, some obscure optimisation can be
done for the other functions interacting with the class. On the other
hand, there are weighty reasons for not hiding the data. It is
tempting to mention numerous examples from physics or mathematics
where it is necessary to manipulate the real and the imaginary parts
directly without any overhead. However, that is not needed. Just
imagine how it would be if changing the i'th element of a `vector' had
to be done by performing an operation with another `vector' or by
creating a new one. Alternatively, imagine all the problems we would
have if it were impossible to alter a standard variable otherwise than
by calling operator functions on it or by creating a new one. One

thing is sure, the application in question would be severely slowed
down.

It is important to understand that there is no difference between
these examples and the present `complex' class for programmers who
work with time critical applications requiring complex numbers. The
`complex' class should be a container class holding two numbers, not a
class encapsulating the fictive entity "A complex number". From a
mathematical point of view, such an entity does not exist other than
in daily speech, and it should absolutely not be included in the only
object oriented language which is useful for time critical scientific
applications. The class `pair' is a perfect example of how the data
in a `complex' class should be represented.

 CONCLUSION

The `complex' class coming with the standard library is of very
limited use in its present implementation since the individual data
can not be manipulated directly. The simple suggested change will
dramatically increase the class's usability at apparently no loss.

Sincerely yours,

Tom Houlder

 APPENDIX

Suggested changes illustrated by changing the section 26.2.2 of
CD2-ASCII.

[Primary Suggestion:

 26.2.2 Template class complex [lib.complex]
 namespace std {
 template<class T>
 class complex {
 public:
 typedef T value_type;

 T real;
 T imag;

 complex(const T& re = T(), const T& im = T());
 complex(const complex&);
 template<class X> complex(const complex<X>&);

 complex<T>& operator= (const T&);

 complex<T>& operator+=(const T&);
 complex<T>& operator-=(const T&);
 complex<T>& operator*=(const T&);
 complex<T>& operator/=(const T&);

 complex& operator=(const complex&);
 template<class X> complex<T>& operator= (const complex<X>&);
 template<class X> complex<T>& operator+=(const complex<X>&);
 template<class X> complex<T>& operator-=(const complex<X>&);
 template<class X> complex<T>& operator*=(const complex<X>&);
 template<class X> complex<T>& operator/=(const complex<X>&);
 };

 template<class T> complex<T> operator+(const complex<T>&, const T&);
 template<class T> complex<T> operator+(const T&, const complex<T>&);
 template<class T> complex<T> operator-(const complex<T>&, const T&);
 template<class T> complex<T> operator-(const T&, const complex<T>&);
 template<class T> complex<T> operator*(const complex<T>&, const T&);
 template<class T> complex<T> operator*(const T&, const complex<T>&);
 template<class T> complex<T> operator/(const complex<T>&, const T&);
 template<class T> complex<T> operator/(const T&, const complex<T>&);
 template<class T> complex<T> operator==(const complex<T>&, const T&);
 template<class T> complex<T> operator==(const T&, const complex<T>&);
 template<class T> complex<T> operator!=(const complex<T>&, const T&);
 template<class T> complex<T> operator!=(const T&, const complex<T>&);

1 The class complex describes an object that stores the Cartesian
 components, T real and T imag, of a complex number.]

[Secondary Suggestion:

 26.2.2 Template class complex [lib.complex]
 namespace std {
 template<class T>
 class complex {
 public:
 typedef T value_type;

 T re;
 T im;

 T& real();
 T& imag();
 const T& real() const;
 const T& imag() const;

 complex(const T& x = T(), const T& y = T());
 complex(const complex&);
 template<class X> complex(const complex<X>&);

 complex<T>& operator= (const T&);
 complex<T>& operator+=(const T&);
 complex<T>& operator-=(const T&);
 complex<T>& operator*=(const T&);
 complex<T>& operator/=(const T&);

 complex& operator=(const complex&);
 template<class X> complex<T>& operator= (const complex<X>&);
 template<class X> complex<T>& operator+=(const complex<X>&);
 template<class X> complex<T>& operator-=(const complex<X>&);
 template<class X> complex<T>& operator*=(const complex<X>&);
 template<class X> complex<T>& operator/=(const complex<X>&);

 };

 template<class T> complex<T> operator+(const complex<T>&, const T&);
 template<class T> complex<T> operator+(const T&, const complex<T>&);
 template<class T> complex<T> operator-(const complex<T>&, const T&);
 template<class T> complex<T> operator-(const T&, const complex<T>&);
 template<class T> complex<T> operator*(const complex<T>&, const T&);
 template<class T> complex<T> operator*(const T&, const complex<T>&);
 template<class T> complex<T> operator/(const complex<T>&, const T&);
 template<class T> complex<T> operator/(const T&, const complex<T>&);
 template<class T> complex<T> operator==(const complex<T>&, const T&);
 template<class T> complex<T> operator==(const T&, const complex<T>&);
 template<class T> complex<T> operator!=(const complex<T>&, const T&);
 template<class T> complex<T> operator!=(const T&, const complex<T>&);

1 The class complex describes an object that stores the Cartesian
 components, T re and T im, of a complex number.]
ˇ
----*LATE *COMMENT #54----

March 24, 1997-

It seems that there is some inconsistency in definition of trigraph
sequences in December 1996 Draft (2.3, lex.trigraph). The table of
trigraph sequences contains 9 elements, and it is explicitly stated
that no other trigraph sequences exist. "???" is not present in the
table of trigraph sequences.

However,a subsequent example states that the sequence "???=" becomes
"?=". This seems to indicate that "???" is a trigraph sequence that
should be replaces with "?". If this is so, then this sequence should
probably be added to the table of trigraph sequences.

- Vladimir Neyman
Dow Jones Telerate
vlad@tts.telerate.com
201-938-5790

