
X3J16/96-0215
WG21/N1033

November 13, 1996
J. Stephen Adamczyk

jsa@edg.com

Core II WP Changes

Core Issue 668 (const string literals and how they participate in overload resolution):

Add to the end of 4.2 [conv.array] paragraph 2:

For the purpose of ranking in overload resolution (_over.ics.scs_), this conversion
is considered an array-to-pointer conversion followed by a qualification
conversion. [Example: "abc" is converted to "pointer to const char " as an
array-to-pointer conversion, and then to "pointer to char " as a qualification
conversion.]

Core Issue 670 (multi-level cv-qualification on pointer operands):

Add to 4.4 [conv.qual] paragraph 3, after "const, volatile, const volatile, or nothing",
starting a new paragraph:

The n-tuple of cv-qualifications after the first in a pointer type, e.g., cv1,1, cv1,2, ... ,
cv1,n in the pointer type T1, is called the cv-qualification signature of the pointer
type.

Replace 4.4 [conv.qual] paragraph 5 by:

Two multi-level pointer to member types or two multi-level mixed pointer and
pointer to member types T1 and T2 are similar if there exists a type T and integer
N > 0 such that:

T1 is cv1,0 P0 to cv1,1 P1 to ... cv1,n-1 Pn-1 to cv1,n T
and

T2 is cv2,0 P0 to cv2,1 P1 to ... cv2,n-1 Pn-1 to cv2,n T

For similar multi-level pointer to member types and similar multi-level mixed
pointer and pointer to member types, the rules for adding cv-qualifiers are the
same as those used for similar pointer types.

In 5.9 [expr.rel] paragraph 2, change

Core II WP Changes --2--

Pointer conversions ... are performed on pointer operands ... to bring them to the
same type, which shall be a cv-qualified or cv-unqualified version of the type of
one of the operands.

to
Pointer conversions (_conv.ptr_) and qualification conversions (_conv.qual_) are
performed on pointer operands (or on a pointer operand and a null pointer
constant) to bring them to their composite pointer type. If one operand is a null
pointer constant, the composite pointer type is the type of the other operand. If
one of the operands has type "pointer to cv1 void", the other has type "pointer to
cv2 T", and the composite pointer type is "pointer to cv3 void", where cv3 is the
union of cv1 and cv2. Otherwise, the composite pointer type is a pointer type
similar (_conv.qual_) to the type of one of the operands, with a cv-qualification
signature (_conv.qual_) that is the union of the cv-qualification signatures of the
operand types.

Change 5.10 [expr.eq] paragraph 2 from

... are performed to bring them to the same type, ... the type of one of the
operands.

to
... are performed to bring them to a common type. If one operand is a null pointer
constant, the common type is the type of the other operand. Otherwise, the
common type is a pointer to member type similar (_conv.qual_) to the type of one
of the operands, with a cv-qualification signature (_conv.qual_) that is the union of
the cv-qualification signatures of the operand types.

Change 5.16 [expr.cond] paragraph 5 bullet 3 from

... to bring them to a common type ... either the second or the third operand.
to

... to bring them to their composite pointer type (_expr.rel_).

Core Issue 684 (comparison of conversion sequences on multi-level pointers):

Change 13.3.3.2 [over.ics.rank] paragraph 3 bullet 1 sub-bullet 3 to:

S1 and S2 differ only in their qualification conversion and yield similar types T1
and T2 (_conv.qual_), respectively, and the cv-qualification signature of type T1 is
a proper subset of the cv-qualification signature of type T2,

Core Issue 685 (ambiguity in old-style cast):

Add to 5.4 [expr.cast] at the end of paragraph 5, before the example:

Core II WP Changes --3--

If a conversion can be interpreted in more than one way as a static_cast
followed by a const_cast , the conversion is ill-formed.

Core Issue 645b (lvalue-to-rvalue conversion on void expressions):

Add to the end of 5.2.9 [expr.static.cast] paragraph 4:

The lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_) and function-
to-pointer (_conv.func_) standard conversions are not applied to the expression.

Add to 5.18 [expr.comma] paragraph 1 after the first sentence:

The lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_) and function-
to-pointer (_conv.func_) standard conversions are not applied to the left
expression.

Add to 6.2 [stmt.expr] paragraph 1, following the syntax:

The expression is evaluated and its value is discarded. The lvalue-to-rvalue
(_conv.lval_), array-to-pointer (_conv.array_) and function-to-pointer
(_conv.func_) standard conversions are not applied to the expression.

Core Issue 662 (cv-qualifiers on call to object of class type):

Add to13.3.1.1.2 [over.call.object], paragraph 2, after the syntax:

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification
than, cv, and where ...

