Proposal to Acknow edge that Garbage Collection for C++ is Possible
X3J16/96- 0114
WG&E21/ N0932

Bj arne Stroustrup
AT&T Research
Mirray Hil

New Jersey 07974
USA

The ARM "The C++ Progranmi ng Language (2nd edition)", and "The Design
and Evol ution of C++" all nention that automatic garbage collection

of C++ is possible, but that an inplenmentation is not required to
provi de a garbage collector. This is a proposal to make this explicit
in the standard and to specify a couple of details of what it neans

to collect garbage. The proposal is for clarification rather than
significant normative changes.

I ntroduction

The nmost |oudly proclai med fundanmental weakness of C++ these days

is the absence of automatic garbage collection. This criticismis
harm ng C++'s reputation, scaring potential users away, and restricting
the range of applications for which C++ is a strong contender as an

i mpl ement ati on | anguage. For nmany applications automati c garbage
collection is indeed a very powerful tool and the right tool for

t he j ob.

It is my firmopinion that the conplaints about the |ack of garbage
collection in C++ will continue, will beconme |ouder as nore alternative
| anguages provi de garbage collection, and that the cases where the
complaint is based on valid reasons will becone nore frequent.

My defense has traditionally been that garbage collection is possible
for C++ and that garbage collecting inplenmentations do i ndeed exi st.
Currently both public domain and comercial garbage collectors for C++
are shipping. Nothing in the definition of C++ requires garbage
collection - and if it did serious harmwould be done to many C++
users - but on the other hand nothing prevents it from being done
either. See D&E for a fairly detailed discussion of C++ and garbage
col l ecti on.

However, the "permtted but not required" position is weakened by
being inplicit rather than explicit in the draft standard and by

a couple of possible alternatives in the nmeani ng of "garbage
collection for C++." | therefore propose to nmake "pernmtted but not
required" explicit by defining what it neans to be "garbage."

My proposal reflects ny opinion that we now have seen enough

i mpl ementations to know that autonatic garbage collection is
viabl e for C++ and al so a convergence of opinion of how to handl e
the unspecified cases. | expect to see a significant increase in
the use of garbage collectors with C++ over the next few years
Provi ders and users of garbage collectors or C++ would like their
i npl ementations to be standards conform ng and to know precisely
what that means.

Most of the suggestions below are clarifications and only one
af fects confornmance

Gar bage

The fundanmental idea of garbage collection is that an object that is
no longer referred to in a programw |l not be accessed again and can
therefore be destroyed and its nmenory reused for some new object.

For exanpl e:

int p =newint;
p = new int;

Here the first int created is unreferenced and its nenory can be used
for sone other new object.

What should it mean for an object to be unreferenced? Consider:

int* p = newint;

Il ong pl = reinterpret_cast<long>(*p) &xFFFFOOOG
Il ong p2 = reinterpret_cast<l ong>(*p) &xOOOCOFFFF
p=0;
/1l #1: no pointer to the int exist here

p = reinterpret_cast<int*>(pl|p2);
/1 nowthe int is referenced again.

O'ten, pointers stored as non-pointers in a programare

call ed "disguised pointers.” In particular, the pointer originally

held in "p" is disguised in pl and p2 above. |Is a garbage collector
all owed to deallocate the int fornerly pointed to by p at #1 above?

| propose that such program shoul d be considered inpl enentation
dependent. In particular, | believe that C and C++ currently

consi der such progranms well formed (though |I would be delighted if

I was wong), but that a garbage collecting inplenentation should

be allowed to collect objects to which no object of pointer or
reference type refers. That is, a disguised pointer is not sufficient
to keep an object alive.

| believe that the exanple is already inplenmentati on dependent because
there is no guaranteed conversion frompointer to int.

Uni ons

A special and difficult issue is howto handle a union with a pointer
and a non-poi nter nenber. Consi der

union U {
char* p;
int i;
b
U u;
u.p = new char;
Il #1
del ete u.p;
u.i = reinterpret_cast<int>(new char);
Il #2

char* p = reinterpret_cast<char*>(u.i)

Shoul d a pointer be considered disguised if it is placed in a union

that al so has an integer menber? Should any integer in a union that
has a pointer nenber be considered a pointer?

If a pointer to an object is placed in the pointer nmenber, that object
nmust still be considered referenced. Thus collecting the char at point #1
woul d be an error.

Once the only pointer to 'new char’ was cast to an int it was disguised
and that int object is unreferenced. Placing the cast value in a union
is ared herring. Thus collecting the int at point #2 is ok

However, it is usually inpossible for a garbage collector to distinguish
these two cases so a collector will usually have to be conservative

and assune that any value of a union a potential pointer to an object on
the heap. This is an inplenentation issue that doesn’t concern the standard.

Pointer to "the Mddle of" (bjects

Sone garbage coll ectors consider an object to be unreferenced unl ess
a pointer to the first byte of the object exists. This is unacceptable
for C++. Consider:

class A{ int a; };
class B{ int b; };
class C: public A public B{ int c; };

B* p = new C

Here, p nost likely points to "the mddle" of the C object and no
pointer to the first byte of the C object exists of need to exist.

A pointer to any part of an object is sufficient for that object to
be consi dered referenced.

Simlarly, any valid pointer to an array (even a pointer to one past
the end of the array) is considerd a valide pointer to the array and
the conplete array is considered referenced.

Del et e

If an inplementation autonmatically collects garbage, the ‘delete’ and
‘del ete[]’ operators are no |onger needed to free nmenory for potential
reuse. Thus, a user relying on garbage collection could sinply refrain
fromusing these operators. However, in addition to freeing nmenory
‘delete’ and ‘delete[]’ invoke destructors.

In the presence of a garbage collector, ‘delete p’ invokes the destructor
(if any) as ever, but any reuse of the nmenory is postponed until it

is collected. In many cases, this prevents serious errors caused by
multiple deletes of the same object. Specifically, destructors that

can be repeatedly executed become harnl ess.

As ever, access to an object after it has been deleted is undefined.
In particular, operator delete() my wite to the nmenory previously
occupi ed by the object. | do not propose to change this, but observe
that by del aying reuse of storage until collection time, access to a
del eted object (through another pointer to the object) that has no
destructor or a destructor that perfornmed deletes only is far |ess
likely to lead to disasterous results.

Destructors

When an object is about to be recycled by a garbage coll ector two
al ternatives exists:

(1) call the destructor (if any) for the object.

(2) treat the object as raw nenory (don’t call its destructor).
In the ARM | proposed (2) because one can see a garbage coll ector
as a nechanismfor sinmulating an infinite nmenory and undel eted obj ects
never gets deleted. | also proposed that objects for which the destructor
shoul d be called should be specifically registered. Experience w th garbage
coll ectors seens to have proven that not calling destructors at collection
time is the right default, but that there is a need for sone destructors
to be called at collection tine. However, there is no consensus on how to
express a need for a destructor to be call ed.

Consequently, | propose (2), |leave the nechanismfor requesting constructors
to be called by the collector (‘‘finalizable objects ') unspecified,

and to introduce a macro to hel p programmers isol ate decl arati ons and/ or
code relating to finalization actions beyond the scope of the standard.

__COLLECTI NG

It should be inplenentation defined whether an inplenentation provides
a garbage collector or not. Should the programmer be able to tel

whet her an inplenentation collectes or not w thout doing experinents
with disguised pointers or tiners?

| can imagine programers wanting to know and even to wite code that
depends on whether a garbage collector is available or not. In fact,

I am confident that progranmers will wite code to try to determ ne
whet her an inplenentation is garbage collecting or not whatever the
standard says so that the absence of a standard mechanismw Il sinply
lead to inconpatibilities.

Consequently, | propose a macro _ COLLECTING with the value 0 if no
collector is used and 1 if a collector as described here is used. Different
val ues are left undefined with the expectation that they will be used

by nore radi cal experinments with garbage collection

For exanpl e:

#if __ COLLECTI NG==0
/'l error: garbage collector assuned by this program
#endi f

or

class X {

int* p;

...
#if _ COLLECTI NG==0

~X() { delete p; }
#endi f

b

| dislike macros, but | suspect adding one to ease the use of garbage
collection for C++ is worth while.

11

Wor ki ng Paper Text

The only part of this proposal that actually affects conformance is

the presence of the __ COLLECTI NG macro, and the exact detail ed neani ng of
that cannot be specified. The rest of the proposal above are clarifications
that might be scattered in the text. However, since the aimof this proposa
is to make to possibility of garbage collection explicit, | propose to
define what it nmeans for an object to be reachabl e.

Add:

An object is referenced if it is naned or if a pointer or a

ref erence type holds the address of any part of that object. A pointer
stored in a union through a pointer menber of that union is considered
a pointer. A value of a non-pointer type obtained by casting a pointer
is not considered a pointer

comrent :
For exanpl e:

union U {
char* p;
int i;
b
U u;

u.p = new char;
/1 the char pointed to by u.p is referenced

u.i = reinterpret_cast<int>(new char);

/1l the char allocated on the previous line is unreferenced
/1l the char with the address originally assigned to u.p

/'l is unreferenced

end_coment

An object is reachable if
(1) it is a named object
(2) it is referenced by a reachabl e object.

comrent :
For exanpl e:

int* p = newint;

| ong p1 reinterpret_cast <l ong>(*p) &OxFFFFOOOG
| ong p2 reinterpret cast<l ong>(*p) &xOO0COFFFF;
p=0;

/'l now the integer originally referred

/1l to by p is unreferenced and unreacheabl e.

p = reinterpret_cast<int*>(pl|p2);
/1 nowthe int is referenced again.

end_coment

An i nmpl enentation may use the menory for an unreachabl e object for another
object. An inplenmentation that does that is called garbage collecting.

Access to an object that has been unreachable at any point is inplenentation
defi ned.

It is inplenmentation defined whether an inplenmentation is garbage collecting
or not. If an inplenentation is garbage collecting, the macro __ CO.LECTI NG
is defined as 1 in header <new>; otherwise _ COLLECTING is O.

